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Abstract

Using magnetic resonance diffusion tensor imaging data from 45 patients with major

depressive disorder (MDD) and 41 healthy controls (HCs), network indices based on

a 246-region Brainnetcome Atlas were investigated in the two groups, and in the

MDD subgroups that were subgrouped based on their duration of the disease. Corre-

lation between the network indices and the duration of illness was also examined.

Differences were observed between the MDDS subgroup (short disease duration)

and the HC group, but not between the MDD and HC groups. Compared with the

HCs, the clustering coefficient (CC) values of MDDS were higher in precentral gyrus,

and caudal lingual gyrus; the CC of MDDL subgroup (long disease duration) was

higher in postcentral gyrus and dorsal granular insula in the right hemisphere. Net-

work resilience analyses showed that the MDDS group was higher than the HC

group, representing relatively more randomized networks in the diseased brains. The

correlation analyses showed that the caudal lingual gyrus in the right hemisphere and

the rostral lingual gyrus in the left hemisphere were particularly correlated with dis-

ease duration. The analyses showed that duration of the illness appears to have an

impact on the networking patterns. Networking abnormalities in MDD patients could

be blurred or hidden by the heterogeneity of the MDD clinical subgroups. Brain plas-

ticity may introduce a recovery effect to the abnormal network patterns seen in

patients with a relative short term of the illness, as the abnormalities may disappear

in MDDL.

K E YWORD S

brain networking pattern, diffusion tensor imaging, major depressive disorder

1 | INTRODUCTION

Despite a debate over the degree of distributed processing in the

human brain, there are functionally specialized regions for different

cognitive processes, in addition to highly localized motor and primary

sensory brain regions (Caramazza & Coltheart, 2006). Nevertheless,

individual brain areas may not be working independently. Instead,

multiple brain regions may coordinate in a complex network

(Rubinov & Sporns, 2010; Strogatz, 2001) or a so-called small-world

network (Bassett & Bullmore, 2006; Bassett, Edward, & Bullmore,

2017). Complex network analysis seeks to characterize brain networks

using a few indices that are not only neurobiologically meaningful, but
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also easily computable, based on quantitative data of brain connectiv-

ity such as diffusion tensor imaging (DTI), functional magnetic resonance

imaging (fMRI), electroencephalograph (EEG) or magnetoencephalograph

(MEG) data. A small-world network, one type of such complex networks,

is characterized with a topology such that any pair of nodes in the net-

work may be connected with each other via connection to just a few

other nodes, even when the two nodes are not in the immediate vicinity

of each other. The small-world topology provides an infrastructure for

effectively processing information, both segregated/specialized and dis-

tributed/integrated. A complex brain network typically maintains a high

dynamic complexity at minimized wiring costs (Schilling, 2005), thereby

supporting functions such as cognitive insight (Schilling, 2005), self-

sustained persistent activity or failure transition (Roxin, Riecke, &

Solla, 2004), decision-making (Minat, Grisoli, Seth, & Critchley, 2012),

and executive functions (Satterthwaite et al., 2013) in routine life. Func-

tional networks are further divided into sublevel networks, each of

which typically consists of brain nodes with synchronizing brain activities

and generally focusing on a concrete brain function. Depending on the

analysis that is employed, 7–11 prevailing subnetworks are generally

identified and involved (Gordon et al., 2016; Power et al., 2011; Yeo

et al., 2011). Somatomotor, visual, auditory, salience, default mode net-

works, and fronto-parietal control systems are some of the commonly

described functional networks in brain studies (Gordon et al., 2016;

Power et al., 2011; Yeo et al., 2011). These functional networks can be

identified by a functional clustering characteristic, that is, functional syn-

chronizing rhythm. Brains of individuals with various psychiatric or neu-

rological disorders (e.g., autism, Alzheimer's disease, mild cognitive

impairment, schizophrenia, pain disorder, major depression and anorexia

nervosa) typically exhibit abnormalities in terms of small-world network-

ing properties [Nir et al., 2012; Zhou & Lui, 2013; Zhou, Yu, &

Duong, 2014], functional connectivity in the networks [Sun et al., 2020;

Xia et al., 2019; Zhao et al., 2017; Zhao et al., 2018], and physical

rewiring in the brain [Hu et al., 2017; Li, Weissman, Posner, & Xu, 2018]).

Major depressive disorder (MDD), schizophrenia, and bipolar dis-

order have been conceptualized as brain network disorders (Fornito,

Zalesky, & Breakspear, 2015; Gong & He, 2015). MDD has topological

alterations in functional brain modules (Hu et al., 2019; Zhang

et al., 2011), as do other psychiatric diseases (Liu et al., 2008; Spielberg

et al., 2016; Wang et al., 2019; Zhao et al., 2018; Zhu et al., 2016). In

the investigations, graph theory has been widely used assisting ana-

lyses based on anatomical, structural, and functional imaging data

(Chen et al., 2017; Korgaonkar, Fornito, Williams, & Grieve, 2014; Lu

et al., 2017; Sacchet, Prasad, Foland-Ross, Thompson, & Gotlib, 2015;

Tymofiyeva et al., 2017; Wang, Yuan, You, & Zhang, 2019; Zhang

et al., 2011). Topological organization of whole brain networks in

MDD based on resting-state fMRI data from 30 drug-naïve, first-

episode MDD patients and 63 healthy control (HC) subjects (Zhang

et al., 2011) identified lower path length and higher global efficiency,

implying a shift toward randomization in brain networks, although both

groups still showed small-world architecture in brain functional net-

works. Another fMRI study found disrupted functional connectivity of

right posterior insula in adolescents and young adults with MDD

(Hu et al., 2019). Despite reported correspondence between functional

and structural measures of brain connectivity (Goni et al., 2014; Honey

et al., 2009; Miši�c et al., 2016), data on functional/structural corre-

spondence in MDD are relatively scant. There had been some work on

relevant topics, but either based on a specific depressive population or

using methods not exactly desired. For instance, based on data from

patients of remitted late-onset depression, a DTI study using tract-

based spatial statistics and small-world indices (path length & network

efficiency) found that disrupted structural connectivity contributed to

cognitive deficits in these patients (Wang, Yuan, et al., 2019). Focused

on adolescents (age 16.2 ± 1.3 years) with MDD, another DTI-based

connectome analysis revealed hypoconnectivity of the right caudate

using graph indices (Tymofiyeva et al., 2017). Restricted to a patient

population with very short disease durations of 1–10 months, white

matter structural network topology in the brain at early stage of MDD

was investigated (Lu et al., 2017). The findings from these studies thus

applied only to their specific patient group or age segment lacking a

general consensus. A structural MRI study based on T1-weighted data

from 33 patients versus 33 matched normal controls reported alter-

ations in morphological cortical networks in MDD when assessing

whole-brain morphological networks, a picture indicating lower global

efficiency and higher modularity, suggesting impaired integration and

increased segregation of brain networks in the MDD patients (Chen

et al., 2017). Nevertheless, the brain networks they evaluated were

constructed based on reported intra-cortical similarities in gray matter

morphology using T1-weighted imaging data, which were actually

quantified by the covariation of gray matter volume and thickness in

the brain, rather than on the commonly recognized known brain func-

tions or functional networks. In short, the physical network wiring in

MDD brains using DTI has not yet been studied adequately.

Although depression is actually quite heterogeneous in its mani-

festation from one episode to another (Lopez-Castroman

et al., 2012; Yu et al., 2019), the biological underpinnings of this het-

erogeneity are largely unknown. Age of onset and disease duration is

often considered in biological studies, but symptom pattern may also

be relevant (Matthew et al., 2010). On the other hand, the diagnostic

assessment of depression could be a potential source of heterogene-

ity in the patient group although all of them are diagnosed as

patients with MDD. A recent study showed that different rating

scales have only a moderate mean overlap of 0.41(Fried, 2016;

Fried, 2020). Similarly, test–retest reliability estimates for diagnosis

of DSM-5 MDD are suboptimal (Regier et al., 2013). The heteroge-

neity of depression, including disease duration, thus is worthy of

detailed investigation.

Using DTI, a powerful imaging tool for directly examining structural

connectivity, the present work aimed to study network patterns in

MDD that may correspond with the small-world properties discussed

earlier. We investigated the DTI networking patterns in MDD and HCs,

and the impact of subgroup heterogeneity with respect to disease

duration. We hypothesized that MDD has altered brain-networking

patterns, and explored the possibility that the clinical heterogeneity of

MDD may be related to networking pattern abnormalities. We
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expected that this study may help to resolve some of the mixed find-

ings due to such heterogeneity of depression.

2 | MATERIAL AND METHODS

The data in the present study were extracted from our brain-imaging

database collected over the past 4 years from a number of studies

with different scientific objectives, as described in previous publica-

tions (Chhetry et al., 2016; Rizk et al., 2017). We identified raw DTI

datasets of 112 human subjects, including 63 MDD patients and

49 HC. A screening and preprocessing procedure of the DTI data was

performed to identify and exclude defective datasets that showed

data missing, artifacts or incompatibility and those had a disturbing

medication history before acquisition of the imaging data, although

patients who had a single antidepressant were originally allowed at

the time of recruitment.

2.1 | Participants and data acquisition

All included study protocols followed the Declaration of Helsinki and

were approved by the Institutional Review Board of New York State

Psychiatric Institute (NYSPI). Participants were recruited locally at

Columbia University Irving Medical Center and NYSPI in New York City

and from surrounding areas. Detailed procedures were as follows: All

subjects provided written informed consent to participate in the

research study. At study entry, the depressed adults, ages 18–65 years,

met DSM-IV criteria (A.P. Association, 1994) for a current major depres-

sive episode in the context of MDD, without a lifetime history of psy-

chosis, or a history of drug or alcohol abuse within the past 2 months or

drug or alcohol dependence (except nicotine) within the past 6 months,

based on the Structured Clinical Interview for DSM-IV (First, Williams,

Spitzer, & Gibbon, 1997), physician obtained medical history, review of

systems, physical examination, and laboratory tests. Female participants

also underwent pregnancy testing. Patients were not actively suicidal,

had not received electroconvulsive therapy within the past 6 months,

and presented with scores ≥16 on the 17-item Hamilton Depression

Rating Scale (HDRS; Hamilton, 1960; Hamilton, 1967) at study entry.

MDD participants were permitted to be on a single antidepressant or

were medication-free and had no history of antipsychotic medications

or mood stabilizers within 6 weeks; no special washouts were per-

formed. A team of experienced clinical research psychologists and psy-

chiatrists reviewed the results of SCID interviews and medical records,

and achieved diagnostic consensus. HC had no history of Axis I disor-

ders or of Axis II Cluster B disorders. Participants in both groups did not

have active medical illness. All participants were also assessed for acute

severity of illness within 1 week of the scan. If necessary, patients were

allowed to use short-acting benzodiazepines up to 3 days immediately

prior to scans for symptomatic relief, which enhances GABA-induced

inhibition (Hollister, Müller-oerlinghausen, Rickels, & Shader, 1993;

Wise, Berger, & Stein, 1972) but was considered unlikely to alter white

matter function or structure.

Both anatomical T1-weighted (T1) and DTI MRI images were

acquired on a 3.0T Signa Advantage system (GE Healthcare, Waukesha,

WI), as described elsewhere (Chhetry et al., 2016). Briefly, the setting of

the MRI pulse sequence for acquiring the T1 images used the following

imaging parameters: echo time (TE)/repetition time (TR) = 2.8 ms/

7.1 ms, field of view (FOV) = 256 mm � 256 mm, matrix size

=256 � 256, slice thickness = 1 mm (voxel size = 1 mm3 isotropic), at

178 slice locations. The diffusion data were acquired using a single-shot

EPI (echo planar imaging) sequence. Its imaging parameters were: TR/

TE = 14,000 ms / 82 ms, flip angle = 900, slice thickness = 3 mm, num-

ber of excitation (NEX) = 1, FOV = 240 mm � 240 mm, matrix =

256 � 256 (voxel dimensions = 0.9375 mm � 0.9375 mm � 3.0 mm

anisotropic); b-value = 1,000 s/mm2. The diffusion datasets were

scanned along 25 or 30 non-collinear directions plus five baseline

images without applying diffusion gradient, depending on project-wise

designs. The scanning time was approximately 11 min per data set.

2.2 | Data processing

The steps of preprocessing were as follows: (a) We checked all the

available DTI datasets both visually and quantitatively, and removed

those with apparent artifact, head motion (>2 mm of translation or 1�

of rotation), or poor image quality. (b) Eddy current correction was

performed using the FMRIB Software Library (FSL 6; http://www.

fmrib.ox.ac.uk/fsl) and our own method (Liu et al., 2012), including

removing head motion and registering all volumes of diffusion-

weighted imaging (DWI) data to the baseline images. (c) Nonbrain tis-

sues were removed (skull-stripping) using BET in the FSL software kit.

(d) Tensor estimation was performed using the DSI-Studio Toolbox

(http://dsi-studio.labsolver.org/), based on the data that were already

corrected. As the datasets were acquired from the same scanner along

25 or 30 noncollinear gradient directions, with a small difference in

the numbers but a large redundancy far more than the required six for

tolerating possible errors, no extra calibration was needed. (e) Spatial

normalization of each individual brain into the standard space of the

MNI152 template was accomplished using DSI-Studio. (f) Whole-

brain deterministic tractography was performed in the template space

using the same parameter settings in DSI-Studio as reported in (Baum

et al., 2017). (g) The connectivity matrix was computed based on

246 brain regions as identified in the literature (see Section 2.4.

Regions of Interest, below; Fan et al., 2016). (h) For networking and

modularity analysis, measuring indices, including clustering coefficient

(CC), global efficiency, modular resilience, characteristic path length,

and small-worldness were calculated using the GRETNA software

package (Wang et al., 2015). Figure 1 is an overview of the general

procedure of our analysis.

2.3 | Whole-brain tractography

Using the DSI-Studio software package, one million seeding points

were cast for deterministic fiber tracking in the brain for construction
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of a whole-brain fiber map. The angular threshold was 45� and the

fractional anisotropy (FA) threshold was set to the default settings in

DSI-Studio. The step size of the tracking was 0.94 mm. The fiber tra-

jectories were smoothed by averaging the propagation direction with

90% of the previous direction. Neural fiber tracts with length shorter

than 10 mm or longer than 400 mm were discarded.

2.4 | Regions of interest (ROI)

We adopted 246 brain regions (including 210 cortical and 36 subcorti-

cal regions) as ROIs from the human Brainnetome Atlas (http://atlas.

brainnetome.org/), which is a freely available resource (Fan

et al., 2016). This fine-grained atlas has been cross validated by hun-

dreds of independent neuroimaging studies, and it contains informa-

tion on both anatomical and functional connections. It is deemed

objective and stable for exploring the complex relationships between

structure, connectivity, and function, and thus has been widely cited

in the community.

2.5 | Connectivity matrix

Based on the whole-brain fiber tracking result, a connectivity matrix C

was computed. Each element cij (i,j = 1,…,246) in C was determined

by the number k of fibers passing through both ROIs i and j divided by

the total number m of fibers passing through i or j: cij = k/m. Because

cij could differ from cji due to the performance of the tracking algo-

rithm on the complex neural fiber structure, the average of cij and cji

was assigned to them so that the matrix C was forced symmetry.

2.6 | Networking indices

The following indices were calculated: connectivity, CC, global effi-

ciency, and modular resilience (Rubinov & Sporns, 2010). In addition,

characteristic path length, and small-worldness were also calculated,

for comparison purposes, as these were previously examined in other

studies on depressive patients (Korgaonkar et al., 2014; Lu

et al., 2017; Sacchet et al., 2015; Tymofiyeva et al., 2017).

The degree of connectivity D of a node (ROI) i is denoted as Di,

which is the number of nonzero elements cij in the i-th row in the con-

nectivity matrix C. Di indicates how many ROIs other than itself are

connected with the node i.

The CC of the entire network including all the nodes is defined as

(Rubinov & Sporns, 2010; Watts & Strogatz, 1998):

CC¼1
n

X

i � N

Ci ¼1
n

X

i � N

2ti
Di Di�1ð Þ , ð1Þ

where N is the set of all n ROIs, Ci is the CC of ROI i, and ti is the num-

ber of triangles in the graph involving all the ROIs that ROI i forms

with all the other nodes in N. In our case, the set N contained

246 nodes, that is, n = 246. Both CC and Ci take a value range from

0 to 1. Here, Ci approaching 1.0 would indicate that node i is a highly

clustering hub in the network, whereas a value close to 0.0 would

indicate that the node is highly segregated from other nodes. Conse-

quently, a low value of CC means that in general the entire brain net-

work is highly segregated.

The global efficiency E of the network is defined as

E¼1
n

X

i � N

Ei ¼1
n

X

i � N

P
j � N,j≠ id

�1
ij

n�1
, ð2Þ

where Ei is the efficiency of node i, and dij is the shortest path (dis-

tance) between nodes i and j (Lo et al., 2015; Rubinov &

Sporns, 2010). The global efficiency index E measures how effectively

the brain regions are connected with each other in a brain network;

the higher the value, the more densely connected. In depressed

brains, increased efficiency may be a trace of a tendency toward a rel-

atively more randomized network organization (Ajilore, Lamar, &

Kumar, 2014).

Network resilience is another measure assessing the robust-

ness of a network, by inspecting the impact of continuously losing

F IGURE 1 Overview of the general procedure of the analysis
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one particular node in a network on the global efficiency of the

entire network (Lo et al., 2015). In particular, all the cij elements in

the upper triangle of the connectivity matrix C will be first ranked

in a descending order. At a given density level, denoted as a per-

centage number x%, that is, taking into consideration only the first

x percentile of all the cij's in the connectivity matrix C, resilience R

is defined as the total area in the first quadrant in a two dimen-

sional coordinate space directly under the curve of the global effi-

ciency depending on the removal of the nodes, either in a

descending order or a random order. If the global efficiency E of

the network after removing one node s does not change much,

node s must not be an important one, as the remaining nodes in the

network may easily find alternative paths connecting with each

other. In contrast, a significant reduction of E means that the

removed node is a relatively important hub in the network. Remov-

ing nodes in a random order (random attack) basically regards all

the nodes with equal importance and therefore would profile the

baseline resilience of a brain network, while targeted attack (each

time removing a node with the top rank following their descending

order) would estimate the general vulnerability of the brain net-

work. Because a targeted attack precisely aims at the most densely

connected (least segregated) node in a network, the network resil-

ience due to a targeted attack normally would be significantly lower

than that of a random attack, as a network is certainly more vulner-

able to a targeted attack. Moreover, in the scenario of a targeted

attack, a higher resilience value of a network, which usually is

closer to the baseline profile at random attack, indicates that the

roles of all the nodes in the network are relatively more similar, as

they are more similarly and more densely connected with each

other, without anyone being particularly distinguished. In other

words, higher CC, higher E, and higher R infer that the nodes in the

network are generally less segregated and therefore the network is

less vulnerable to each removal of the nodes. When a targeted

attack occurs to a well-segregated network (typically with a low CC

value), each node removal would sharply lower the global efficiency

of the remaining network and therefore its resilience is lower than

that would be when the attack occurs to a less-segregated network.

In short, the resilience value of a well-segregated network is

typically low.

Characteristic path length L measures in general the average dis-

tance between different nodes in the network. L is one type of indices

measuring the integration of a network, and it can be computed as

follows:

L¼1
n

X

i � N

Li ¼1
n

X

i � N

P
j � N,j≠ idij
n�1

ð3Þ

where, Li is the average distance between node i to all other nodes in

the set N of all the nodes, and dij is the shortest path length between

nodes i and j. A lower value of L indicates a relatively densely con-

nected network (less segregated in our case), whereas a higher L value

means a relatively sparsely connected network (highly segregated in

our case).

Small-worldness S of a network is defined as:

S¼CC= �CCr

L=�Lr
ð4Þ

where, CC and L are the clustering coefficient and characteristic path

length of the network, respectively; whereas CCr and Lr are the aver-

age values of the corresponding indices measured base on the same

network's randomized version, respectively. Here, the corresponding

randomized version of the same network refers to a network with the

same topological configuration of nodes but the connections between

the nodes are randomly assigned. The index S is usually computed

based on the average CCr and Lr of a few hundreds of repetitions of

such a randomized network to achieve a non-biased estimation. A

network features small-worldness typically has a value S>1, when

CC= �CCr is much larger than 1.0 and L=�Lr is approximately 1.0 (Achard,

Salvador, Whitcher, Suckling, & Bullmore, 2006; Bassett &

Bullmore, 2006; Humphries, Gurney, & Prescott, 2006).

2.7 | Group analysis

To explore the possible differences in connectivity in MDD compared

with HC and the possible heterogeneity within the MDD patients, we

performed two sets of analysis: (a) A general group analysis to compare

all the patients with MDD versus HCs; (b) A subgroup analysis to

determine whether there were heterogeneities that may have blurred

the contrast between MDD patients and HCs, by comparing MDD

patients with a relatively short duration of the disease (≤10 years;

MDDS) versus those with a relatively long duration of the disease

(>10 years; MDDL) versus HCs. The disease duration was defined as

the time interval between the date of MRI data acquisition and the

recorded age of the patient's first onset. Limited by the available num-

ber of patients to be subgrouped for studying possible heterogeneities

with adequate statistical power in the patient cohort, the cutoff was

determined based on the median years of disease duration adjusted

for the counts of subjects and their sex and age in each subgroup suit-

able for the available MDD datasets. Two-sample t-tests were per-

formed, covarying with nuisance variables (age, sex, HDRS scores).

False discovery rate (FDR) correction was applied at p < .05 to control

for false positives for all the tests involving all the 246 regions. In addi-

tion, we analyzed the correlation (Pearson) between the network indi-

ces and disease duration, to examine how the disease process could

have affected the efficiency of brain regions and network and to iden-

tify brain areas that were the key contributors. Considering that the

cutoff age of 10 years for subgrouping the patients into long and short

disease durations may not exactly be an optimal choice although our

samples only allowed using the 10-year as a cut-off age, we also per-

formed multi-regression analysis using disease duration as a continu-

ous variable in the model, covariated with the nuisance variables, to

double check the possible effect of disease duration on the patient

cohort, thereby justifying the cutoff point of the two subgroups and

the correlation analysis that was just mentioned. The model was:
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Y¼ aþb1 �DDþb2 �Ageþb3 �Sexþ ε ð5Þ

which took the respective network indices as Y, plotting b1, and DD

was the continuous variable of disease duration.

3 | RESULTS

There were no differences between the MDD and HC groups in terms

of the proposed network indices. However, differences were

observed between the three subgroups, that is, between the MDDS,

MDDL, and HC groups.

3.1 | Demographic and clinical characteristics

Eleven MDD patients and eight HCs were excluded due to imag-

ing data deficiencies, artifacts, incompatibility of data format

(pulse sequence parameters, including the schema of gradient

direction, gradient strengths), or errors in spatial normalization.

Another seven patients were also excluded due to their medica-

tion history, thus none of the included in this study had any anti-

depressant within 6 weeks prior to the MRI scanning and all

were drug free for at least 3 weeks. A final sample of 45 MDD

patients (22 males, 23 females) and 41 HC (15 males, 26 females)

survived initial processing steps from (a) to (d) in this procedure

and proceeded to the remaining steps with usable DTI data. The

MDDL subgroup contained 27 participants (13 males, 14 females),

and the MDDS subgroup had 18 participants (nine males, nine

females). Demographic data are reported in Table 1. There were

no differences across the groups or subgroups, except in the age

between MDDL and HC (p = .031). Current clinical severity did

not differ between the MDD subgroups (17-item HDRS score,

Beck Depression Inventory score and Beck Scale for Suicidal Ide-

ation score).

3.2 | Clustering coefficient

At all density levels, the CC of the HC group was consistently the low-

est of the three subgroups numerically, and MDDS had the highest.

There were no statistically significant differences between the MDD

and HC groups or between the MDDL and the HC groups. However,

differences were observed between the MDDS and HC groups at den-

sity levels ranging from 17 to 23%, with p-values <.05, respectively. In

particular, the difference between the MDDS and HC groups was sig-

nificant at p = .0486 at density = 20% (Figure 2). Unfortunately, the

significance did not survive FDR-correction, perhaps due to limited

size of the samples.

Individual brain nodes differed between groups (Table 2 and

Figure 3). Comparing MDDS and HC groups (Figure 3a), MDDS group's

CC values were higher (p < .01 uncorrected) in precentral gyrus (PrG)

and in caudal lingual gyrus (cLinG) (p = .0011, FDR-corrected). Com-

pared with the HC group, MDDL had higher CC values (p < .01

uncorrected) in dorsal granular insula (dlg) and postcentral gyrus (PoG;

p = .0016, FDR-corrected) in the right hemisphere (Figure 3b). The CC

values of MDDS were also higher than MDDL in cLinG (p = .0035, FDR-

corrected) in the right hemisphere and in rostral lingual gyrus (rLing;

p < .01 uncorrected) in the left hemisphere (Figure 3c).

3.3 | Global efficiency

None of the group or subgroup differences between the patients and

HCs, or between the patient subgroups and the HCs survived correc-

tion. In particular, no differences were identified at the 20% density.

TABLE 1 Demographic and clinical data of the participants

HC (N = 41) MDD (N = 45)

MDD (N = 52)

MDDS (N = 18) MDDL (N = 27) p-values

Age 30.47 ± 8.08 33.16 ± 10.49 29.67 ± 8.87 35.48 ± 10.98 MDD versus HC: .183

MDDL versus HC: .031

MDDS versus HC: .729

MDDL versus MDDS: .068

Sex (M:F) 15:26 22:23 9:9 13:14 MDD versus HC: .175

MDDL versus HC: .451

MDDS versus HC: .248

MDDL versus MDDS: .572

Onset age – 18.84 ± 9.49 25.90 ± 9.07 14.10 ± 6.35 MDDL versus MDDS: .469

HDRS-17 1.87 ± 2.59 18.02 ± 4.79 17.72 ± 3.58 18.22 ± 5.51 MDDL versus MDDS: .736

BECK DEPN 1.70 ± 2.81 23.90 ± 8.03 22.61 ± 6.31 24.81 ± 9.04 MDDL versus MDDS: .635

Suicidal ideation – 5.84 ± 8.34 4.89 ± 7.19 6.48 ± 9.10 MDDL versus MDDS: .536

Abbreviations: BECK DEPN, Beck Depression Inventory score; F, female; HC, healthy controls; HDRS-17:17-item Hamilton Depression Rating Scale; M,

male; MDD: patients with major depressive disorder; MDDS, MDD with a history ≤10 years; MDDL, MDD with a history >10 years.
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3.4 | Network resilience

Both the MDD population and the HC had well developed, function-

ally segregated, brain regions and brain network, as the resilience

curves of all the groups and subgroups were far below the baseline

profile outlined by the random attack based on HC at all density

levels, indicating targeted attack on brain hubs would easily harm the

global efficiency of the brain network (Figure 4). Again, the control

F IGURE 2 Clustering coefficients of the three groups at all density levels and their statistical difference. (a) The profile of the clustering
coefficients at density levels from 2 to 30%. Among them, the differences between the MDDS and HC group showed statistical significance
p < .05(*) at density levels from 17 to 23%. The light orange arrow in (a) indicates that the bottom-right inset is a zoomed-in view of the area
outlined by the black rectangle above it. (b) The statistical significance between the MDDS and HC group was p = .0486 (uncorrected) at
density = 20%

TABLE 2 List of brain regions (nodes)
that showed statistically significant
differences in clustering coefficient
between the group and subgroups
(p < .01 uncorrected, except #190a with
p = .0011, #160 with p = .0016 and
#190b with p = .0035, FDR-corrected)

Nodal index MNI coordinates Label

Left or right

hemisphere

MDDS > HC

54 55, �2, 33 Precentral gyrus (PrG) R

190a 10, �85, �9 Caudal lingual gyrus (cLinG) R

MDDL > HC

160 48,-24,48 Postcentral gyrus (PoG) R

172 39, �7, 8 Dorsal granular insula (dlg) R

MDDS > MDDL

190b 10, �85, �9 Caudal lingual gyrus (cLinG) R

195 -17, �60, �6 Rostral lingual gyrus (rLinG) L

F IGURE 3 Statistical difference of clustering coefficient of individual brain nodes when comparing across groups at 20% density.
(a) MDDS > HC; (b) MDDL > HC; (c) MDDS > MDDL. All the significances were thresholded at p = .01(uncorrected) except cLinG (p = .0011;
FDR-corrected) in (a), PoG (p = .0016, FDR-corrected) in (b), and cLinG (p = .0035; FDR-corrected) in (c). The color bar encoded the
246 individual brain regions (cLinG, caudal lingual gyrus; dlg, dorsal granular insula; F, front of the brain; L, left hemisphere; PrG, precentral gyrus;
PoG, postcentral gyrus; rLing, rostral lingual gyrus; R, right hemisphere)
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group was numerically consistently the lowest in resilience, with

MDDL in the middle, and MDDS the highest among the three sub-

groups (Figure 4a). Although the MDDL group did not differ statisti-

cally significantly from the HC or MDDS group, the MDDS group

showed statistical significance of either p < .05 or p < .01 at density

levels from 19 to 27%, compared with the HC group (Figure 4a). In

particular, the statistical significance of the difference between MDDS

and the HC groups was p = .0157 (FDR-corrected) at density = 20%

(Figure 4b), which is the density level commonly used in the literature.

3.5 | Correlations between network resilience and
the duration of disease

The Pearson correlation showed that the network resilience and CCs

were negatively correlated with duration of illness since onset of

MDD, both generally and locally (Figure 5). In particular, the correla-

tion coefficient between the network resilience and the duration of

disease was r = �.305 at p = .041 (Figure 5a). Two brain regions

showed a negative correlation with the CC, bilaterally (Figure 5b):

cLinG (r = �.342, p = .021) in the right hemisphere, and rLinG

(r = �.328, p = .028) in the left hemisphere.

3.6 | Characteristic path length

The analyses showed that the difference was not statistically signifi-

cant between the patients and HCs, or between the patient sub-

groups and the HCs.

3.7 | Small-worldness

All the groups demonstrated small-worldness, and their values were

between 2.0 and 3.5 (Figure 6), with HCs consistently the lowest.

However, difference was significant only between MDDS and HC in

the density range from 24 to 30%, not at the 20% level under obser-

vation in this study. Moreover, none of the significance survived FDR-

correction.

3.8 | Multiple regression using disease duration as
a continuous variable

The analyses did not identify disease duration to be a factor of statis-

tical significance for the network indices that we have examined in

this work, with that for network resilience being the most prominent

among them, showing a negative relationship, at p = .098 though

(density level = 20%). Age and sex appeared to be insignificant factors

(p = .479 and .772, respectively), either.

4 | DISCUSSION

Our examination of network clustering efficiency, global efficiency,

network resilience, characteristic path length, and small-worldness

based on 45 MDD patients and 41 demographically matched HC did

not identify differences between the two general groups. However,

taking into account the duration of MDD illness, by subgrouping

MDD into those who had this disorder for more than or less than

F IGURE 4 Network Resilience of the three groups at all density levels and their statistical differences. (a) The profile of the network
resilience at density levels from 2 to 30%. Among them, the differences between the MDDS and HC group showed statistical significance either
p < .05(*) or p < .01(**) at density levels from 19 to 27%, all FDR-corrected. The black-triangle profile of random attack on the top was based on
the healthy controls for reference. At all density levels, the HC group was consistently the lowest while the MDDS group was the highest. The
light orange arrow indicates that the bottom-right inset is a zoomed-in view of the area (containing the HC, MDDL, and MDDS curves) outlined by
the small rectangle above it. (b) The statistical significance between the MDDS and HC group was p = .0157 (FDR-corrected) at density = 20%
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10 years, we found heterogeneity in terms of networking patterns

characterized by the indices of a small-world network.

In the clustering efficiency analysis of the 246 brain regions, we

observed that the HC group exhibited a higher level of baseline func-

tional segregation when compared with the MDD group, based on a

lower numerical CC of the HC group, indicating that the brain regions

had relatively fewer inter-regional connections. However, only the dif-

ference between MDDS and HC reached statistical significance, as the

subgroup heterogeneity could have blurred the difference between

the general MDD group and the HC. Brains undergoing normal devel-

opment are progressively more functionally and structurally segregated

(Baum et al., 2017). Resting fMRI data of patients with MDD have

found greater clustering when compared with normal controls (Zhang

et al., 2011). Our observation that the CC values of MDDS were higher

than the HC group suggests that these network patterns may repre-

sent a structural change occurring around illness onset, or early in the

course of illness (Figure 2). In contrast, CC values of the MDDL were

not different from the HC group, suggesting that this anatomic pattern

does not persist with more chronic illness states, possibly due to

homeostatic responses, functional and structural neuroplasticity (Liu

et al., 2017) or treatment effects (Abdallah et al., 2017). MDDS and

MDDL groups did not differ in terms of current depression severity,

ruling that out as an explanation of the group differences.

A similar pattern of subgroup heterogeneity related to illness

duration was observed in relation to the network resilience analysis,

F IGURE 5 Pearson correlation analysis showed negative correlations between networking indices and the duration of MDD, represented by
those at the density level of 20%. (a) The network resilience was negatively correlated with the duration of the disease: r = �.305 (p = .041).
(b) Clustering coefficients of most of the 246 brain regions were not correlated with the duration of the disease except for the right side cLinG
(r = �.3421, p = .021) and the left side rLinG (r = �.328, p = .028) whose clustering coefficients were negatively correlated with the disease
duration (cLinG, caudal lingual gyrus in the right hemisphere; rLinG, rostral lingual gyrus in the left hemisphere)

F IGURE 6 Small-worldness of the three groups at all density
levels and their statistics at density levels from 2 to 30%. Among
them, MDDS and HC group showed statistical difference with p < .05
(*) at density levels from 24 to 30%, however, none survived FDR-
correction. At all density levels, the HC group (red) was consistently
the lowest while the MDDS group (green) was relatively the highest at
all the density levels higher than 13%. The light orange arrow
indicates that the bottom-right inset is a zoomed-in view of the area
(containing the HC, MDDL, and MDDS curves) outlined by the small
rectangle above it
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where values in MDDS were higher compared with the HC group

(Figure 4). This is consistent with fMRI findings in MDD showing

higher global efficiency in the literature, representing relatively more

randomized brain networks in MDD (Zhang et al., 2011). Using net-

work resilience, an index derived from network connectivity and

global efficiency, but profiling the efficiency globally in a dynamic

fashion, we were able to measure the vulnerability of the network-

clustering pattern. We have found that the difference in MDD from

HCs was confined to MDDS. This observation suggests that MDD ear-

lier in its course (≤10 years) involves a more severe structural abnor-

mality in the brain than later in the course of the disorder. This

surprising finding requires replication in an independent data set.

While all the groups and subgroups showed small-worldness, our

analyses again found the HC group was the lowest among the groups.

Although the differences were not significant, the relativity of the

groups was in line with the findings in the literature, which saw a simi-

lar situation (HC smaller than MDD, yet difference not significant;

Sacchet et al., 2015). Moreover, MDDS again was the highest and

MDDL in the middle, indicating a short term tendency in the MDDS

developed toward randomization and in a long run MDDL's returning

to HC. The small-worldness measure was thus also in line with our

findings in the analyses of CC and network resilience. In the literature,

investigators reported a potential scarring effect suggesting that a

depressive episode may leave lasting changes in personality and self-

concept (Christensen & Kessing, 2006; Kaltenboeck & Harmer, 2018;

Rohde, Lewinsohn, & Seeley, 1990; Zautra et al., 2007), and a

911 study also showed multimodal neuroimaging evidences of stress-

related changes in healthy adult brains (Ganzel, Kim, Glover, &

Temple, 2008). However, such arguments remain largely inconclusive,

psychologically, biologically and cognitively (Wichers, Geschwind, van

Os, & Peeters, 2010). For example, a study based on a large sample of

350 participants using a daily diary design found that the scar hypoth-

esis was not clearly supported (O'Grady, Tennen, & Armeli, 2010).

Moreover, these studies mostly focused on personality traits. Yet,

how the psychological effect may reflect in brain imaging, is still

mysterious. Our findings based on the current patient cohort demon-

strated a curing tendency in neuroimaging in a long run, which in fact

does not conflict with the possible scarring effect—just like a cut on

the skin will cure anyway whether or not a scar would present and last

later. Nevertheless, the curing effect found in our study could have

resulted from the heterogeneity that may exist in the depressive

patients, because, as mentioned in the text, depression is actually

quite heterogeneous in its manifestation from one episode to another

(Lopez-Castroman et al., 2012; Yu et al., 2019). Future studies should

conduct a more precise and detailed work to clarify all the variables

that may have contributed to the heterogeneity.

Our data identified no group or subgroup difference concerning

the characteristic path length between MDD and HC, or MDDS/

MDDL and HC. Studies in the literature actually reported conflicted

results. For example, one DTI study on a remitted geriatric depression

population (35 geriatric depression patients vs. 30 HC) found

increased path length in the patient group compared with the HCs at

p < .05, uncorrected (Bai et al., 2012). A second DTI Study on MDD

(95 MDD vs. 102 HC) found that the patient group was slightly higher

than the controls (p-value = .048, uncorrected; Korgaonkar

et al., 2014), and another structural MRI study (93 MDD vs. 151 HC)

also had a similar result (p < .05; Singh et al., 2013). The statistical sig-

nificances in these studies were generally weak and did not survive

correction, although the latter two studies involved relatively large

sizes of samples. Moreover, the second DTI study focused mostly on

a part of the brain, that is, the nodes of two networks (the default

mode network and frontal-thalamo-caudate regions), which may not

reflect the whole-brain status like what we have done in the current

study. The third study again constructed the network based on volu-

metric correspondence in the cortices, which was very different from

the ways of constructing either the conventional fMRI network or the

DTI network. In contrast, studies on depression using graph theory

based on functional MRI data (resting state function MRI data)

reported abnormally low values of the characteristic path length and

consequently higher global efficiency in the patient group, which con-

tradicted with the findings from the aforementioned imaging studies

either using DTI or structural imaging data (Zhang et al., 2011).

Although people have tried to explain the inconsistency, lack of con-

sensus is factual. We attribute the disagreement to the heterogeneity

in the employed imaging modalities and the analysis methods, and to

the possible heterogeneity in the sample of MDD patients as well.

Our study resulted in no difference in the measures of characteristic

path length and global efficiency was therefore reasonable. The unset-

tled argument shall be further studied with better design to

comprehend,

In general, many MDD studies comparing MDD and matched HC

employed graph theory, and many of them identified no or only weak

global network abnormalities in the brains with MDD. This perhaps is

partly due to their strategy that used all the MDD participant as one

group, without taking into consideration of the possible heterogeneity

that may exist (Ajilore et al., 2014; Korgaonkar et al., 2014; Sacchet

et al., 2015). The DTI study using a support vector machine (SVM) on

MDD (Sacchet et al., 2015) investigated the respective relationship

between nine graph indices (including CC, global efficiency, character-

istic path length, and small-worldness) in MDD against normal con-

trols and identified uncorrected weak significance from only one

index (global flow coefficient), but none survived FDR-correction.

However, its analysis on the SVM employed in this work showed that

small-worldness and global efficiency were the two leading variables

that contributed to the accuracy of classifying MDD out from normal

healthy people. Yet, directly analyzing the correlation showed that

none of the clinical variables under investigation (disease duration,

age of onset, Beck Depression Inventor-II, Global Assessment of

Function) was correlated to small-worldness with statistical signifi-

cance. Our work in the current study that subgrouped the MDD

patients thus may be an encouraging effort, although our analyses

based on the small sized samples revealed group difference only in a

part of the nine indices.

The insula plays a key role in emotional-cognitive integration

(Augustine, 1996). The brain connectivity pattern in the right insula

region is abnormal in people at high familial risk for depression
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(Li et al., 2018). In the current study, we found an abnormal connectiv-

ity pattern in the right insula in MDD compared with the HC group,

however only in the MDDL subgroup and not in the MDDS subgroup;

perhaps, because the deficits of emotional-cognitive functions inte-

grated with this particular brain region in MDD need an extensively

long time to develop.

Numerous imaging studies on MDD versus HC have found abnor-

malities in the PoG area, including those studying functional connec-

tivity, regional homogeneity, local brain volume, cortical thickness,

cortical area, or serotonin 1A receptor binding, using MRI or PET

(Drevets et al., 1999; Jaworska et al., 2014; Li et al., 2010; Mao

et al., 2020; Shen et al., 2015; The-ENIGMA-MDD-Working-Group,-

2017; Vasic, Walter, Höse, & Wolf, 2008; Wehry et al., 2015). The

PoG is the primary sensorimotor area and receives the majority of the

somatic sensory relay information from the thalamus. Functional

imaging studies have previously found that PoG is associated with

higher ReHo in MDD patients with somatic symptoms including pain

(Liang et al., 2020). We also identified an abnormality in this region in

MDD. Interestingly, the significant difference was only detected in

MDDL. We do not know whether this difference means the distinctive

connectivity pattern in PoG explains difference in somatic symptoms

in MDD or a difference in brain between MDDL and MDDS groups.

Future studies must address this question.

The lingual gyrus is relevant for anxiety-depression severity in

young adults (Couvy-Duchesne et al., 2018), but its volume may

impact depression/anxiety severity and antidepressant response

(Jung et al., 2014). We found that part of the right lingual gyrus

(cLinG) of the MDDS brains was more clustered compared with

MDDL. The longer the MDD course, the closer the clustering pat-

tern resembled HC (Figures 2 and 5). This effect was most promi-

nent in the lingual gyri in both hemispheres, which suggests that

these brain regions may be more plastic (Papmeyer et al., 2015;

Peng et al., 2015). Cognitive therapy, pharmacotherapy (SSRI, keta-

mine, etc.) and even religious beliefs could influence cognitive and

structural renormalization of the brain (Abdallah et al., 2017;

Godlewska, Norbury, Selvaraj, Cowen, & Harmer, 2012; Hasler &

Northoff, 2011; Joffe, Levitt, Sokolov, & Young, 1996; Li

et al., 2018; Simons, Garfield, & Murphy, 1984), although not specif-

ically the lingual gyri. For example, abnormal brain activity patterns

reversed after MDD recovery (Phillips, Drevets, Rauch, &

Lane, 2003). While our patients were drug-free at least 3 weeks and

antidepressant-free at least 6 weeks at the time of the MRI scans in

this study, many had received antidepressant treatments previously.

However, due to the variation in types of medication, duration of

usage and time since the last dose, we were unable to statistically

account for the potential effect of such past lifetime medication or

treatment in our analyses. We speculate that such prior treatment

could have contributed to time-dependent recovery in terms of

brain connectivity in MDD.

To address possible concerns on the 10-year cutoff to subgroup

the patients, we also performed additional regression analyses using

disease duration as a continuous variable to check the effect of this

variable, although we have explained that using this particular cutoff

was an optimal choice in the current study. Unfortunately, no signifi-

cance was detected for most of the network indices we examined in

this study (Section 3.8), perhaps due to the modest size of our sub-

groups. Nevertheless, the negative correlationship between disease

duration and the network resilience was the most prominent among

all the network indices, although its p-value did not reach a conven-

tionally significant level, at only p = .098. This observation demon-

strated somewhat agreement with our correlation analysis between

the index of network resilience and disease duration that showed a

negative correlation with statistical significance (Section 3.5 &

Figure 5), inferring that disease duration is an important factor in

studying MDD. While the latter analysis was basically a discrete ver-

sion of using the variable of disease duration, the slight discrepancy

between the results of the two strategies encouraged using larger

sample sizes in the fitting process for a better estimation of the

relationship.

The current work has limitations. First, 246 brain regions

employed in the current study were mostly DTI-based, with the nodes

centered at the voxel with a local peak FA value. The regions thus did

not have an exact correspondence with those in the functional neuro-

imaging studies, where brain regions were identified based on func-

tional activity. Therefore, structural findings based on DTI could differ

from those in functional neuroimaging studies. Similar structural func-

tional network analyses should be employed in future studies combin-

ing fMRI and DTI. Second, we studied all the 246 regions within one

small-world network, while functional neuroimaging studies typically

study the brain based on a number of functional neural networks

identified based on their synchronized rhythms of the blood-oxygen-

level-dependency signals. The network indices in this current study

thus were all used as global measures to provide an overview of the

networking status based on DTI data, but did not follow exactly

the conventional approach of using them at separated nodal or global

levels. The interpretations thus were made with caution from a

slightly different angle of view. Third, the sample sizes were modest.

While this study involved nearly 100 participants, we divided the

MDD cohort into two subgroups. Future studies demand larger sam-

ple sizes to permit more detailed clinical subgrouping approaches to

investigate the possible heterogeneities of networking patterns

in MDD.

In summary, our study employed DTI to investigate the net-

working patterns in MDD and possible heterogeneity in this patient

population. Our findings showed that duration of the illness has an

impact on the networking patterns. MDD patients have networking

abnormalities compared with HCs; however, such abnormalities

could be blurred or hidden by the heterogeneity of the MDD clini-

cal subgroups, such as duration of illness. Brain plasticity may intro-

duce a recovery effect to the abnormal network patterns seen in

patients with a relative short term of the illness, as these abnormal-

ities are not observable in those whose onset of MDD occurred

longer than 10 years prior to scanning. Future studies should

recruit larger sample sizes to examine longitudinal clinical effects in

more detail, including the effects of treatment on network

patterns.
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