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Cellular migration is necessary for proper embryonic development as well asmaintenance

of adult health. Cells can migrate individually or in groups in a process known as

collective cell migration. Collectively migrating cohorts maintain cell-cell contacts, group

polarization, and exhibit coordinated behavior. This mode of migration is important

during numerous developmental processes including tracheal branching, blood vessel

sprouting, neural crest cell migration and others. In the adult, collective cell migration

is important for proper wound healing and is often misappropriated during cancer

cell invasion. A variety of genetic model systems are used to examine and define the

cellular and molecular mechanisms behind collective cell migration including border cell

migration and tracheal branching in Drosophila melanogaster, neural crest cell migration

in chick and Xenopus embryos, and posterior lateral line primordium (pLLP) migration in

zebrafish. The pLLP is a group of about 100 cells that begins migrating around 22 hours

post-fertilization along the lateral aspect of the trunk of the developing embryo. During

migration, clusters of cells are deposited from the trailing end of the pLLP; these ultimately

differentiate into mechanosensory organs of the lateral line system. As zebrafish embryos

are transparent during early development and the pLLP migrates close to the surface of

the skin, this system can be easily visualized and manipulated in vivo. These advantages

together with the amenity to advance genetic methods make the zebrafish pLLP one of

the premier model systems for studying collective cell migration. This review will describe

the cellular behaviors and signaling mechanisms of the pLLP and compare the pLLP to

collective cell migration in other popular model systems. In addition, we will examine how

this type of migration is hijacked by collectively invading cancer cells.

Keywords: collective cell migration, posterior lateral line, posterior lateral line primordium, collective cell invasion,

cancer

INTRODUCTION

Cellular migration is necessary both during development and adulthood and has been widely
studied in populations of cells that migrate independently. However, cells can also migrate in
groups in a process known as collective cell migration. During collective cell migration, cells
maintain cell-cell contacts, exhibit both morphological and behavioral polarization and interact
with neighboring cells within the collective to affect each others behavior. This process is important

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2018.00083
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2018.00083&domain=pdf&date_stamp=2018-08-17
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nechipor@ohsu.edu
https://doi.org/10.3389/fcell.2018.00083
https://www.frontiersin.org/articles/10.3389/fcell.2018.00083/full
http://loop.frontiersin.org/people/493221/overview


Olson and Nechiporuk Collective Cell Migration in Development and Disease

during the morphogenesis of multiple organ systems, as well as
during wound healing in adults. In addition, invading cancer
cells exhibit many hallmarks of collective cell migration.

Collectives can be organized in a variety of different forms,
including loose chains or strands, tight clusters, tubes, or
epithelial sheets (Figure 1). Neural crest cell migration is an
example of chain migration (Figure 1A; Rupp and Kulesa, 2007).
During migration, neural crest cells migrate out the neural tube
in a chain like manner with the ultimate goal of reaching distant
sites and differentiating into numerous cell types (Theveneau
and Mayor, 2012). Throughout migration, neural crest cells
maintain transient adherens junctions when briefly in contact
with each other. Specifically, when two migrating neural crest
cells touch, they induce contact inhibition of locomotion (Mayor
and Carmona-Fontaine, 2010). This causes the two cells to
retract cellular extensions at the site of contact and initiate new
extensions on the opposing side of contact of the cell. This
behavior restricts protrusions within the interior portion of the
chain of migrating cells and promotes protrusive behavior along
the edges of the chain, specifically the leading edge (Carmona-
Fontaine et al., 2008). This behavior is thought to be important
for directional migration and self-organization, and loss of this
behavior has been shown in invasive cancer cells (Carmona-
Fontaine et al., 2008; Astin et al., 2010).

Collectives can also migrate in a much more cohesive group,
often referred to as cluster cell migration (Figures 1B, 2). During
migration of this type, cells maintain adherens junctions while
migrating, thus remaining tightly connected. Examples of cluster
cell migration include pLLPmigration in zebrafish (Figures 2, 3),
border cell migration in D.melanogaster (Figure 1B), Kupffer
vesicle organogenesis in zebrafish, and movement of invasive
clusters of tumor cells (Figure 6). During border cell migration
a group of cells delaminates from the follicular epithelium of the
D.melanogaster egg chamber and migrates across the chamber
toward the developing oocyte (Montell et al., 1992). During
this migratory process, these cells maintain adherens junctions
while migrating. Similarly, during Kupffer vesicle organogenesis,
a group of around 20-30 cells cluster together and migrate
cohesively. Finally, invasive groups of tumor cells often migrate
as clusters during the invasion of many epithelial-based tumors
(Figure 6; Freidl et al., 2004; Christiansen and Rajasekaran,
2006; Alexander et al., 2008). This type of collective invasion is
discussed in more detail below.

Collective cell migration also contributes to the process of
branching morphogenesis. This cellular behavior drives the
formation of highly branched tubular structures including
mammalian kidneys, lung, prostate and mammary gland as
well as D.melanogaster trachea (Figure 1C; Sutherland et al.,
1996; Ewald et al., 2008; Metzger et al., 2008). During
branching morphogenesis, epithelial sheets reorganize into tube-
like structures through multiple cellular behaviors, one of which
is a specialized type of collective cell migration called invasive
branching. During this process, extension of new branches is
guided through invasive migratory behavior of a tip cell, which

Abbreviations: pLL, posterior Lateral Line; pLLP, posterior Lateral Line

Primordium; NM, Neuromast.

exhibits dynamic protrusive behavior. The cells that lag behind
the tip cell are referred to as “stalk cells” and maintain cadherin-
mediated adhesion to each other as well as to the tip cell.

In contrast to branching morphogenesis, epithelial sheet
migration involves collective movement of a leading cell
front, rather than individual cells (Figure 1D). Epithelial sheet
migration mediates wound healing in the adult, dorsal closure in
D. melanogaster, and migration of germ layers in some animals
(Martin and Parkhurst, 2004; Solnica-Krezel, 2005). This type
of collective cell migration is also observed in vitro after a
scratch wound assay of endothelial and epithelial cells Figure 1D.
In this assay, a scratch is made across a confluent sheet of
cells and sheet migration is observed to “heal” or repair the
“wound,” as cells migrate as a cohesive front to fill in the
space that was created by the scratch. On a cellular level, sheet
migration is characterized as a monolayer of migrating cells
that maintain strong adherens and tight junctions as well as
apico-basal polarity while migrating (Bahri et al., 2010). These
junctions restrict movement within the sheet and limit cellular
rearrangement (Zallen and Blankenship, 2008). Cells at the
leading or “free edge” take on leader cell positions and extend
actin-based cellular protrusions (Figure 1D; Poujade et al., 2007;
Vitorino and Meyer, 2008; Omelchenko et al., 2014). Follower
cells also exhibit protrusive behavior through the extension of
cryptic lamellipodia, as seen during wound closure in MDCK
cells in vitro (Figure 1D; Fenteany et al., 2000; Farooqui and
Fenteany, 2005). These cryptic lamellipodia form at the basal
side of the follower cells and protrude under cells in front.
These lamellipodia are necessary for generating traction against
the basal lamina (Fenteany et al., 2000; Farooqui and Fenteany,
2005).

From these examples, it is clear that collective cell migration is
employed during the morphogenesis of multiple organ systems.
Despite this diversity, collectives often employ conserved cellular
strategies during the migratory process. Our understanding
of these mechanisms comes from studying various models
including pLLP migration. Here, we will first review the cellular
and molecular mechanisms that drive pLLP migration. Then
we will briefly review a few other examples of collective cell
migration and compare the pLLP to these other forms of
collective cell migration. Finally, we will discuss howmechanisms
of collective cell migration can be misappropriated during cancer
cell invasion.

Zebrafish Posterior Lateral Line
Primordium as a Model System to
Understand Collective Cell Migration
Over the years a variety of model systems have been used
to understand cellular and molecular mechanisms of collective
cell migration. These range from the slime mold Dictyostelium
discoideum to study movement of cell aggregates, to the mouse
retina to investigate blood vessel branching. With zebrafish
emerging as a genetic model system in the 1980s and 1990s,
collective cell migration of the lateral line primordium during
embryogenesis became one of the premier model systems to
dissect collective cell migration. Lateral line research has a rich
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FIGURE 1 | Different modes of collective cell migration. (A) Chain migration of neural crest cells. Cells start as a cohesive cluster at the neural plate border and then

delaminate away and migrate as chains toward the Cxcl12a source. Cells display transient adherens junctions. (B) Cluster cell migration of border cells in Drosophila

melanogaster. Cells maintain tight adherens junctions while migrating with the leading cell in front exhibiting extensive protrusive behavior. These cells migrate toward

the EGF/PVF-1 source. (C) Branching morphogenesis of Drosophila melanogaster trachea. While the leading cell migrates toward the source of Fgf, trailing cells form

tube like structures. (D) Epithelial sheet migration-wound healing. Leading cells on either side of the wound migrate toward each other to close the wound. Leading

cells extend filopodial protrusions toward each other. Follower cells extend cryptic lamellipodia underneath cells in front of them. Adherens junctions are maintained

during migration.

history, as studies examining this system date back to the 1600s,
when scholars first discovered that various fish species contain a
row of small pores that stretch along the trunk of the fish from
the head to the tail. At that time it was believed that this was
a glandular system required for the secretion of mucous that
covered the fish (Monro, 1785). However, in the 1800’s that view
was challenged when it discovered that this system is in fact
a mechanosensory system, similar to the touch sensory system
within the skin (Knox, 1825). Around 1850, Leydig discovered
that within the row itself there were actually small sensory
organs and in 1870, Schulze postulated that these sensory organs
were actually similar to those within the inner ear and that
movement of water stimulated their sensory capabilities (Leydig,

1850; Schulze, 1861, 1870). Up until this point however, the
majority of research had focused on observing the system but
not perturbing it. Fuchs (1894) was one of the first scholars to
experimentally test the system and discovered that the lateral line
in Torpedo only responded to changes in tactile stimulation but
not in regards to changes in temperature or chemical stimulation
(Fuchs, 1894). Finally, in 1904 Parker took a systematic approach
to examine factors that stimulated lateral line sensory organs in
eight different species of fish (Parker, 1904). He tested light, heat,
salinity, food, oxygen, carbon dioxide, foulness of water, water
current, water pressure, high frequency vibrations (hearing),
and low frequency vibrations. Interestingly, he found that only
vibrations of low frequency were sensed by the lateral line. He
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FIGURE 2 | Posterior Lateral Line formation (pLL) and posterior Lateral Line Primordium (pLLP) migration. (A) pLLP begins migrating around 20 hours post-fertilization

(hpf). (B) At 30 hpf the pLLP has migrated about half way down the trunk and deposited 3 neuromasts (NMs). (C) pLLP migration is complete at 48 hpf with the

deposition of the terminal cluster of NMs.

FIGURE 3 | Schematic of the posterior Lateral Line Primordium (pLLP). In blue are the 2–3 leader cells. In green is the leading region. In orange is the trailing region. In

white is a depositing neuromast. The top schematic is a lateral view of pLLP cells. The bottom schematic is a dorsal/ventral view. Arrows point to

proto-neuromasts/rosettes.

concluded that the lateral line system was a mix of the touch
(skin) sensory system and the hearing (ear) sensory system.
Further studies confirmed these findings and expanded on them
culminating in the conclusion that the lateral line in aquatic
vertebrates is a mechanosensory system that detects changes in

water current and is necessary for behaviors such as feeding and
swimming (Montgomery et al., 2000).

Harrison (1904) was the first to determine that this
mechanosensory system develops through the migration of a
group of cells that deposits smaller clusters of cells while
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migrating (Harrison, 1904). Specifically, Harrison used chimeric
frog embryos to study posterior lateral line (pLL) development.
In this study Harrison fused the head of a black tadpole to the tail
of brown tadpole and observed pLL development. Surprisingly,
he witnessed a dark streak (black cells) appear on the brown
tadpoles tail and this streak separated into pigmented dots.
From this he concluded that the lateral line develops by the
concertedmigration of a group of cells down the trunk of fish and
amphibians. Further research in the 1920s and 1930s identified
the origin of this group of cells. Stone (1933) discovered that
this group of cells originates from the post auditory placode
(Stone, 1933). Specifically, Stone stained salamander embryos
with Nile blue sulfate and then grafted the post auditory placode
from these stained donor embryos to unstained host embryos.
Following transplantation he observed a group of blue stained
cells migrating along the trunk of the embryo that deposited
small clusters of blue stained cells (presumptive mechanosensory
organs—neuromasts). These clusters then differentiated into the
sensory organs that form the lateral line. These experiments
identified the post auditory placode as the group of cells giving
rise to the pLL. As evident from these classical experiments, the
close proximity to the surface of the skin makes this an easily
tractable system to study mechanisms of mechanosensation and
collective cell migration.

Posterior Lateral Line Development and
Posterior Lateral Line Primordium
Migration
Since the pLLP discovery in the early twentieth century, the
migratory behavior of this system has been actively investigated
in various aquatic species including zebrafish. In zebrafish, the
posterior Lateral Line Primordium (pLLP) is a group of around
100 cells that migrates along the lateral aspect of the trunk
of the embryo during embryogenesis (Figure 2). The pLLP
and sensory neurons of the pLL ganglion are both derived
from the pLL placode, a transient thickening of the embryonic
ectoderm positioned caudally to the developing otic vesicle
(Figure 2; Mizoguchi et al., 2011). Surprisingly, little is known
about molecular pathways that regulate pLL placode induction
and differentiation and this topic has been discussed elsewhere
(Sarrazin et al., 2010; McCarroll et al., 2012; Piotrowski and
Baker, 2014; Nikaido et al., 2017). At about 22 hours post
fertilization (hpf), the distal portion of the pLL placode begins
migrating along the lateral aspect of the trunk, whereas the
proximal portion, comprised of sensory neurons, stays behind
(Figure 2A). The pLLP continues migrating along the trunk
of the zebrafish until it reaches the tip of the tail at 48 hpf
(Figure 2C). As the pLLP migrates, it deposits clusters of about
20–30 cells from its trailing (caudal) end; these clusters will
differentiate intomechanosensory neuromasts (NMs) (Figures 2,
3). The pLLP also lays down a single line of inter-neuromast cells
(Figure 2; Metcalfe et al., 1985), which are latent precursors that
will differentiate into additional NMs during larval development.
Migration of the pLLP is complete with the deposition of the
terminal cluster, a group of two to three NMs that are located
at the distal region of the trunk (Figure 2C). Rapid embryonic

development, optical translucence, and genetic tractability make
the zebrafish a particularly suitable model system to define
cellular and molecular mechanisms of collective cell migration.

How Is the Posterior Lateral Line
Primordium Organized?
Cells within the pLLP display differential morphology and
different states of differentiation depending on their location and
can be generally designated as leader or follower cells. The leading
third of the pLLP is comprised of 2–3 tip cells of mesenchymal
character and less differentiated epithelial cells (Figure 3, Blue,
Green). Follower cells within the trailing two-thirds of the pLLP
(Figure 3, Yellow) form polarized rosettes. Tip cells exhibit flat
mesenchymal morphology (Figure 3), display active protrusive
behavior in their leading edge, and respond to guidance cues
that steer the collective. Cells proximal to tip cells in the leading
region, exhibit columnar epithelial morphology (Figure 3). Cells
within the trailing region (last 2/3 of the pLLP) apically constrict
to form epithelial rosette structures of the proto-NM (Figure 3;
Lecaudey et al., 2008). The remaining cells in the trailing region
contribute to the inter-neuromast cells and are deposited between
the NMs. These cells are positioned on the periphery of the pLLP,
surrounding the cells that have formed rosettes (Dalle Nogare
et al., 2017).

In addition to differences in morphology, leader and follower
cells within the pLLP show differences in their fate. As the
pLLP migrates it deposits proto-NMs every 5–7 somites. At
the onset of migration the pLLP contains 2 to 3 proto-NMs;
however, by the end of migration the pLL consists of 5–6 NMs
and the terminal cluster of NMs (Figure 2). Thus, new proto-
NMs must be generated during pLLP migration. These new
proto-NMs are generated by cell proliferation throughout the
pLLP (Dalle Nogare et al., 2017). Newly generated cells within
the leading region of the pLLP differentiate last and ultimately
contribute to the terminal cluster of NMs, while those in the
trailing region begin differentiating into cells that will contribute
to more proximal NMs and inter-neuromast cells (Dalle Nogare
et al., 2017). As a new proto-NM begins differentiating, cells
undergo apical constriction to form a rosette-like structure that
constitutes the proto-NM (Figure 3).

Chemokine Signaling During Posterior
Lateral Line Primordium Migration
Similarly to neural crest cell migration, the pLLP uses Cxcl12a
as a chemotactic cue. The pLLP migrates along the myoseptum
of the zebrafish embryo where cxcl12a is uniformly expressed
(Figure 4B; David et al., 2002; Li et al., 2004; Haas and Gilmour,
2006; Dambly-Chaudiere et al., 2007; Valentin et al., 2007). Loss
of Cxcl12a leads to a failure of migration (David et al., 2002;
Valentin et al., 2007), whereas ectopic expression of cxcl12a
results in a redirection of pLLP toward the “new” Cxcl12a source
(Li et al., 2004).

While pLLP can migrate toward an ectopic source of the
ligand, two recent studies demonstrated that the Cxcl12a does
not present as a gradient along the trunk (Donà et al., 2013;
Venkiteswaran et al., 2013). Instead, the pLLP produces an
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FIGURE 4 | Signaling and chemotactic pathways active during pLLP migration. (A) Signaling pathways active during pLLP migration. Wnt signaling is active in the

leading region (blue and green cells). Wnt signaling initiates expression of Fgf3/10a in the leading cells. Fgf 3/10a activate Fgf signaling in the trailing region (orange).

Wnt signaling initiates expression of sef, an inhibitor of Fgf signaling. Fgf signaling initiates expression of dkk1 and dkk2, inhibitors of Wnt signaling. Thus the two

signaling regions are maintained through mutual inhibition. (B) Chemokine signaling during pLLP migration. Green strip indicates the internal Cxlc12a generated within

the pLLP. cxcr4b chemokine receptor (yellow) is expressed in the leading 2/3 of the pLLP. cxcr7b is expressed in the trailing 1/3 of the pLLP (purple).

internal gradient of Cxcl12a through differential expression of
two chemokine receptors, cxcr4b and cxcr7b. cxcr4b is expressed
within the leading region whereas cxcr7b is expressed within the
trailing region (Figure 4B; Haas and Gilmour, 2006; Dambly-
Chaudiere et al., 2007; Valentin et al., 2007). Loss of either Cxcr4b
or Cxcr7b leads to a failure in migration (Haas and Gilmour,
2006; Valentin et al., 2007) indicating the necessity of both
receptors to ensure proper pLLP migration. Additionally, wild-
type cells transplanted to the leading region of cxcr4b mutant
pLLP can rescue migratory defects in these mutants (Haas and
Gilmour, 2006). This is also true for wild-type cells transplanted
to the trailing region of cxcr7b mutants (Valentin et al., 2007).
However, when wild-type cells are transplanted to the leading
region in cxcr4b mutants, impaired migration is not rescued.
Finally, when cxcr7b mutant cells are transplanted into the
leading region of cxcr4b mutants, migration is rescued (Valentin
et al., 2007). Altogether, these transplantation experiments
underscore the necessity for region-specific distribution of
Cxcr4b and Cxcr7b during pLLP migration. Two recent studies
used live imaging to visualize chemokine-receptor internalization
to demonstrate that Cxcl12a binds to Cxcr7b and then is
internalized with the Cxcr7b receptor (Donà et al., 2013;
Venkiteswaran et al., 2013). In doing so, this creates an internal
gradient of Cxcl12a, with low levels of Cxcl12a in the trailing
region and high levels of Cxcl12a in the leading region. Previous
reports support this model as Cxcr7b acts as a ligand sink in other
contexts (Dambly-Chaudiere et al., 2007; Boldajipour et al., 2008;
Naumann et al., 2010; Mahabaleshwar et al., 2012).

At this point, it is unclear how this region specific expression
of cxcr4b and cxcr7b in the leading and trailing region arises.
Aman and Piotrowski (2008) argued that cxcr7b expression
is downstream of two signaling pathways active within the
pLLP, Wnt (leading region) and Fgf (trailing region) signaling
(Figure 4A). When Wnt was constitutively active or Fgf

was inhibited there was a reduction in cxcr7b expression.
Additionally, while inhibition of Wnt signaling had no effect of
cxcr4b expression it did lead to an expansion of cxcr7b expression
into the leading region. However, a separate study did not report
any effect on cxcr4b or cxcr7b expression in the absence of Wnt
signaling (Valdivia et al., 2011). It should be also noted that
expression of chemokine receptors does not mirror Wnt and
Fgf signaling domains, suggesting that these receptors are not
directly regulated by these signaling pathways (Figure 4). Further
experiments are needed to determine how chemokine receptor
expression is regulated during pLLP migration.

Signaling Pathways Within the Posterior
Lateral Line Primordium
Within the pLLP there are a number of signaling pathways
that regulate patterning, maintain migratory behavior, and
initiate proto-NM differentiation. Among the main pathways
are the canonical Wnt signaling pathway (Figure 4; Aman and
Piotrowski, 2008), active in the leading region of the pLLP,
the Fgf pathway (Figure 4; Lecaudey et al., 2008; Nechiporuk
and Raible, 2008), active in the trailing region of the pLLP,
and the Notch-Delta pathway active in the forming proto-NM
in the trailing region (Figure 5; Matsuda and Chitnis, 2010).
CanonicalWnt signalingmaintains proliferation, patterning, and
migration of the pLLP. Additionally, canonical Wnt signaling
is necessary for initiating expression of fgf3 and 10a ligands
in the leading cells (Aman and Piotrowski, 2008; Matsuda
et al., 2013). These ligands activate Fgf signaling in the trailing
region and initiate proto-NM differentiation. Wnt signaling also
initiates the expression of dusp6 and sef, which are inhibitors
of Fgf signaling, allowing for restriction of the Wnt signaling
domain to the leading region (Aman and Piotrowski, 2008).
Furthermore, Fgf signaling also induces expression of dkk1 and
dkk2 (Figure 3; Aman and Piotrowski, 2008; McGraw et al.,
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FIGURE 5 | Signaling pathways for rosette formation and proto-NM maturation. (A) Hypothesized signaling that initiates apical constriction. Fgf signaling activates

Ras and MAPK. This initiates transcription of schroom3. Schroom3 interacts with Rock 2a (Rho Kinase) and activates non-muscle myosin at the membrane, which

initiates apical constriction of cells through reorganization of the actin cytoskeleton. (B) proto-NM maturation signaling. Fgf luminal signaling initiates atoh1a and

notch3 expression. Atoh1a induces expression of deltaA and fgf10a. DeltaA interaction with Notch3 initiates lateral inhibition allowing for atoh1a expression to be

localized to the central cell (hair cell precursor) and surrounding cells to remain as supporting cells.

2014), both of which are inhibitors ofWnt signaling to restrict Fgf
signaling to the trailing region. Thus, bothWnt and Fgf mutually
inhibit each other to generate region specific signaling domains
(Figure 4A).

Canonical Wnt Signaling Is Necessary for
Posterior Lateral Line Primordium
Migration and Proto-NM Formation
As mentioned above, canonical Wnt signaling is active in the
leading third of the pLLP and is necessary for pLLP migration
and patterning. Global inactivation of Wnt signaling during
pLLP migration causes a loss of proliferation, cell death, and
a loss of patterning within the pLLP (Aman and Piotrowski,
2008; McGraw et al., 2011). Additionally, overexpression of Wnt
signaling leads to overproliferation and premature termination of
the pLLP (Aman and Piotrowski, 2008). Interestingly, exclusive
loss of Lef1, a downstream effector of canonical Wnt signaling,
causes defects in migration and cellular behavior within the
leading region with no effects on cell death or proliferation
(McGraw et al., 2011). Specifically, cells in the leading region
of the pLLP are prematurely incorporated into NMs and
deposited early. This gradual depletion of cells in the leading
region ultimately results in a dispersal of the pLLP and an
absence of the terminal cluster of NMs (McGraw et al.,
2011; Valdivia et al., 2011). In summary, results from many
studies highlight the significance of canonical Wnt signaling in
regulating multiple cellular behaviors within the pLLP; however,
how these behaviors are executed downstream of Wnt is not well
understood.

Fgf Signaling Is Necessary for Neuromast
Formation and Differentiation
The Fgf signaling pathway functions downstream of Wnt and
is necessary for proto-NM formation (Figure 4A; Lecaudey
et al., 2008; Nechiporuk and Raible, 2008; Chitnis et al., 2012).
Blocking or reducing Fgf activity inhibits the formation of
rosettes and ultimately halts pLLP migration (Lecaudey et al.,
2008; Nechiporuk and Raible, 2008; Chitnis et al., 2012;), whereas
ectopic expression of Fgf leads to the formation of additional
rosettes (Lecaudey et al., 2008).

On a cellular level, Fgf signaling promotes the shape change
of epithelial cells from a columnar to an apically constricted
morphology during the formation of rosettes or proto-NMs
(Figures 3, 4A; Lecaudey et al., 2008; Nechiporuk and Raible,
2008; Chitnis et al., 2012). Two studies published in the same year
presented complimentary findings related to the intracellular
pathway that drives apical constriction of pLLP cells. In the
first study, researchers found that Fgf signaling activates Ras-
MAPK signaling which induces Rock2a localization to the
apical portion of cells where it activates myosin regulatory
light chain and induces apical constriction (Figure 5A; Harding
and Nechiporuk, 2012). The second study demonstrated that
Fgf signaling transcriptionally regulates Schroom3, a scaffold
protein that binds to Rock and has been shown to activate apical
constriction in other contexts (Figure 5A; Ernst et al., 2012).

Neuromast Maturation
Neuromasts are the sensory organs that comprise the pLL.
These sensory organs are composed of hair cells and supporting
cells. Hair cells lie within the middle of the neuromast with
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FIGURE 6 | A potential model of collective cell invasion. Small groups of cells

high in canonical Wnt signaling break off from the primary tumor, invade

surrounding tissue, and enter the blood stream. This cluster then extravisates

from the blood stream homing onto to a chemokine source, such as CXCL12.

The mechanisms of blood vessel intravisation and extravasation by cell

clusters are not known (question marks). It has been speculated that

behaviors of such clusters exhibit many similarities to leading front cells

present in collective cell migration during embryogenesis. Adherens junctions

are maintained throughout invasion process.

support cells surrounding the hair cells. When hair cell bundles
are deflected by changes in water current, this information is
mechanotransduced through the hair cell and then transmitted
back to the brain where it is further processed.

Differentiation into hair and supporting cell precursors occurs
during pLLPmigration and is driven by Fgf signaling. In addition
to its role in apical constriction, Fgf signaling also initiates
expression of atoh1a (Figure 5B), a transcription factor that is a
master regulator of hair cell fate and thus its activation initiates a
hair cell program in a small subset (1 to 2 cells) of cells within
a forming proto-NM (Sarrazin et al., 2006; Nechiporuk and
Raible, 2008). atoh1a expression and action is limited to a single
focus through Notch-Delta lateral inhibition. atoh1a expression
induces expression of deltaA, whereas expression of its receptor
notch3 is induced by Fgf signaling within the forming proto-
NM. Therefore, the DeltaA ligand (driven through the Atoh1a
transcriptional program) interacts with the Notch3 receptor
(driven by Fgf signaling) on neighboring cells within the proto-
NM and inhibits expression of atoh1a, in neighboring cells

therefore specifying them as supporting cells (Figure 5B; Itoh
and Chitnis, 2001; Matsuda and Chitnis, 2010). If Notch3 is
blocked, proto-NMs generate more hair cells at the expense
of supporting cells (Matsuda and Chitnis, 2010). Through this
mechanism, atoh1a expression is restricted to the central cell,
inducing hair cell progenitor fate in that cell.

Atoh1a also induces expression of both the fgf10a ligand
and atoh1b (Millimaki et al., 2007; Matsuda and Chitnis, 2010)
within the same hair cell precursor. Expression of fgf10a from the
central hair cell progenitor initiates a new Fgf signaling center
within the trailing region that promotes maturation of proto-
NMs (Figure 5B; Matsuda and Chitnis, 2010). Atoh1b maintains
atoh1a expression within the central proto-NM and inhibition of
Atoh1b results in a reduction in atoh1a expression (Millimaki
et al., 2007; Matsuda and Chitnis, 2010). Notably, Fgf ligands
accumulate in a microlumen at the apical center of the rosette
(Durdu et al., 2014). Inhibiting the formation of the microlumen
by knockout of Schroom3 results in a reduction of Fgf response
in cells that comprise rosettes. This suggests that the microlumen
acts to coordinate Fgf signaling among cells of the rosette during
migration. In summary, Fgf signaling plays a key role in both
the establishment of hair cell precursors as well as maturation of
proto-NMs.

Cell-Cell Adhesion and Cytoskeletal
Regulation During Posterior Lateral Line
Primordium Migration
During pLLP migration cells remain in a close contact as
they cohesively migrate along the trunk of the zebrafish. Cells
within the cluster are connected by cadherin mediated adherens
junctions. Specifically, E-cadherin and N-cadherin are both
expressed in the pLLP but show specific localization within
the proto-NM. In the proto-NM, N-cadherin is expressed in
both the hair cell progenitor cell (central cell of the proto-
NM) and supporting cells, whereas E-cadherin is only expressed
in the hair cell progenitor cell (Matsuda and Chitnis, 2010).
However, Revenu et al., reported in 2014 that E-cadherin and N-
cadherin are expressed in all cells within the pLLP as evidenced
by antibody staining against both cadherins (Revenu et al.,
2014). Revenu et al. also examined the maturation of adherens
junctions using a BAC fluorescent reporter of N-cadherin as
N-cadherin shows enhanced localization at apical junctions.
Specifically, they reported a role for N-cadherin in initiating the
change in morphology from mesenchymal in the leading cells to
columnar epithelial in more trailing cells. The authors showed
that N-cadherin clusters first and then epithelial columnar
reorganization follows. Finally, using tandem fluorescent protein
timers, a readout of protein turnover, the authors determined that
the N-cadherin localized at apical junctions is more stable than
N-cadherin localized at the basolateral membrane. Moreover,
the apical junctions become progressively more stable from the
leading to the trailing region.

Adherens junctions between cells often trigger activation of
intracellular signaling pathways via various binding partners such
as catenins. Recently, one of the catenins expressed in the pLLP,
Catenin Delta 1, was shown to regulate Rac1 signaling in cultured
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cells (Mizoguchi et al., 2017). Specifically, mutation of Mib1, an
E3 ubiquitin ligase, caused an accumulation of Catenin Delta
1 and hyperactivation of Rac1, which in turn induced ectopic,
random non-persistent protrusions and ultimately impaired
migration of cultured cells (Mizoguchi et al., 2017). The authors
showed that Mib1 is required for pLLP migration and normal
protrusive behaviors of pLLP cells. However, it is not clear if
Mib1 also regulates Rac1 activity in the pLLP, similar to the in
vitro model. In fact, not much is known about how Rac1 and
othermodulators of protrusive activity are regulated during pLLP
migration.

Below we will compare mechanisms active during pLLP
migration to other examples of collective cell migration and then
focus on how collectively invading cancer cells subvert these
mechanisms to invade surrounding tissues.

Distribution of Leaders and Followers
Within Collectives
Similar to the pLLP, most collectives show division into two
different populations of cells, leaders and followers (Figure 1).
Leaders are the cells that detect and sense chemotactic cues,
exhibit active protrusive behavior, and produce molecular or
mechanical cues to guide the trailing population to the proper
destination. While leader cells exhibit common behaviors,
follower cells have diverse functions and fates depending on the
context. For example, follower cells contribute to trachea bronchi
or blood vessels during branching morphogenesis whereas
during pLLP migration follower cells ultimately contribute
the sensory organs of the lateral line system. Leaders and
followers show differences in morphology with leaders displaying
mesenchymal morphology and in some contexts follower cells
displaying polarization. Interestingly, the assignment as leader or
follower is not always permanent during this migratory process.
In border cell migration for example, the leader cell rotates as
the cell with the highest levels of RTK/MAPK signaling acquires
the leader cell position (Bianco et al., 2007). Another example
in which leader cell identity is not maintained throughout
migration is during neural crest cell migration (Kuriyama et al.,
2014). Whereas it is not exactly clear what determines neural
crest cell leader position, leader cells maintain higher levels
of RAC1 activity and exhibit greater protrusive behavior than
follower cells (Theveneau et al., 2010). Further, during branching
morphogenesis of the trachea in D. melanogaster, cells that
receive the highest level of the breathless (Fgf) signal take on
the role of the leader cell (Caussinus et al., 2008; Lebreton and
Casanova, 2014).

Although in many examples of collective cell migration, it is
not uncommon for cells to switch positions during migration,
this is not observed in wild-type pLLPs. In some instances cells
within the pLLP can be forced to move into new positions as a
result of experimental manipulation. Haas and Gilmour (2006)
found that when wild-type cells were transplanted into cxcr4b
mutant embryos, they often ended up at the leading edge of the
pLLP. Live imaging of chimeric pLLP revealed that this resulted
from the tumbling behavior exhibited by wild-type cells in
cxcr4bmutant pLLPs. They suggested that the tumbling behavior

exposes wild-type cells to the Cxcl12a signal and “captures” these
cells at the leading edge of the pLLP. Once wild-type cells are
captured in the leading region, the pLLP commences normal
migration and proper deposition of NMs. A similar tumbling
behavior was observed in chimeric primordia that contained lef1
mutant cells (McGraw et al., 2011). When lef1 mutant cells were
too close to the leading edge (a couple of cell diameters), the
chimeric pLLP stopped and tumbled until mutant cells were
“pushed back” and excluded from this leading region (McGraw
et al., 2011). Once this occurred, the pLLP resumed its migration.
The reason for this tumbling behavior is not clear and it is
unlikely that this results from lef1 mutant cells being unable to
sense the chemokine, as lef1 mutants still express normal levels
of the cxcr4b receptor. Although collectives determine leading
and following positions differently, the division of collectives
into these two populations allows for cohesive migration of these
cohorts of cells.

Chemotactic Cues Guide Collectives
During Migration
In order for collectives to migrate in a directional manner
they must respond to specific chemotactic cues. Usually, these
cues appear as a gradient, with the collective migrating to the
highest levels of chemokine or secreted ligand. Leading cells
sense these cues and in turn change their behavior, morphology,
and protrusive behavior to respond to the cue appropriately
(Sutherland et al., 1996; Haas and Gilmour, 2006; Prasad and
Montell, 2007). This is often achieved by regulating proteins
that remodel the cytoskeleton. For example, RAC1 activation in
leader cells in response to guidance cues has been observed in
numerous examples of collective cell migration including border
cell migration, D.melanogaster trachea formation, and neural
crest cell migration (Murphy and Montell, 1996; Chihara et al.,
2003; Theveneau et al., 2010; Scarpa et al., 2015).

Despite differences in organization of collectives and
environmental contexts through which they migrate, some
collectives utilize common guidance cues during migration. For
example both neural crest cells in Xenopus and the cells within
pLLP respond to Cxcl12a during migration (Figures 1A, 4B;
David et al., 2002; Li et al., 2004; Theveneau et al., 2010).
Overexpression of Cxcl12a during neural crest cell migration
leads to aberrant migration whereas loss of Cxcl12a during pLLP
migration results in inhibition of migration (Valentin et al., 2007;
Olesnicky Killian et al., 2009). Additionally, in both of these
examples Cxcl12a is uniformly expressed and self-generated
gradients are produced by the collectives. During neural crest
cell migration, neural crest cells migrate toward the epibranchial
placodes, the source of the Cxcl12a (Theveneau and Mayor,
2013). Neural crest cells use contact inhibition of locomotion
to facilitate proper migratory behavior. Specifically, neural crest
cells extend protrusions that interact with the placodes during
the onsent of migration. This induces a repulsive response by
placodal cells in which focal adhesions are dissassembled and
placodal cells migrate away. Neural crest cells then migrate
toward the placodal cells again and migration occurs in a “chase
and run” manner (Theveneau et al., 2013).
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In the case of pLLP migration, Cxcl12a is expressed uniformly
throughout the myoseptum of the zebrafish (Figure 4B; David
et al., 2002; Li et al., 2004). In this case, domain specific expression
of Cxcl12a receptors, cxcr4b and cxcr7b, produces a local gradient
within the pLLP. cxcr4b is expressed in the leading region,
whereas cxcr7b is expressed in the trailing region. Cxcr4b acts
as the chemoreceptor initiating a G-protein signaling cascade
within the leading cells whereas expression of cxcr7b in the
trailing region acts as a ligand sink creating a gradient within
the pLLP itself (Haas and Gilmour, 2006; Dambly-Chaudiere
et al., 2007; Valentin et al., 2007). These differences in the
ligand binding and ligand-receptor turnover lead to a gradient
of Cxcl12a response within the pLLP.

Other examples of different guidance cues used during the
migration of collectives include EGF and PVF-1, two molecules
within the developing D. melanogaster oocyte that are necessary
for proper border cell migration (Figure 1C). Mutation of
either EGFR or PVR results in uncontrolled protrusive behavior
and defects in migration (Prasad and Montell, 2007). Finally,
Fibroblast Growth Factor (FGF) is used as a chemotactic cue
during branching morphogenesis in the trachea, mammary
gland, and lung (Figure 1D; Sutherland et al., 1996; Ewald et al.,
2008; Metzger et al., 2008) as well as in other examples of
collective cell migration such as nephric duct migration, wound
healing, and endothelial cell migration (Werner et al., 1992;
Vitorino and Meyer, 2008; Attia et al., 2015). In summary,
collectives recognize a variety of guidance cues and employ
diverse strategies as to interpret these cues and maintain their
migratory behaviors.

Cell-Cell Junctions and Cell-ECM
Interactions During Collective Cell
Migration
In order for cells to migrate cohesively as a group during
collective cell migration, cells must communicate often through
stable or transient cell-cell junctions. These junctions usually
consist of cadherins, desmosomes, and tight junction proteins;
loss of these structures often leads to improper or failed
migration. Cadherin junctions are the most prevalent junctions
observed during collective cell migration. For example, cell-
cell junctions between migrating border cells and nurse cells
are mediated by the transient presence of E-cadherin and
loss of E-cadherin results in decreased protrusion formation
at the front of the cluster and ultimately impaired migration
(Niewiadomska et al., 1999; Geisbrecht and Montell, 2002; Cai
et al., 2014). Additionally, during neural crest cell migration
in Xenopus, Cadherin-11 is necessary for contact inhibition
of locomotion, which allows for processive and directed
migration of neural crest cells as described above (Becker
et al., 2014). Loss of Cadherin-11 results in non-directional
migration and impaired adhesive ability (Becker et al., 2014).
In addition to cadherin-based cell-cell junctions, desmosomes
and tight junctions are also observed during collective cell
migration. In wound healing, both desomosomal-junctions and
tight junctions are necessary for proper healing (Danjo and
Gipson, 1998; Shaw and Martin, 2009). Knockdown of either

desomosomal or tight junction proteins leads to decreases in
cell migration velocity and ultimately impairment of migration
to close the wound (Bazellières et al., 2015). Desomosomal
and tight junctions are also observed during mammary gland
morphogenesis. Interestingly, these two junctional complexes
show differences in cellular localization within the developing
mammary gland (Shamir and Ewald, 2015). Tight junctions
are only seen at the apical portion of cells that face
lumens, whereas desomosomal junctions connect interior
portions of cells in the mammary duct (Shamir and Ewald,
2015).

During migration, cells need to generate force to processively
migrate toward their destination. To achieve this, cells adhere to
the extracellular matrix as well as use supracellular organization
to generate force between the leaders and the followers. To
connect with the extracellular matrix cells utilize integrins,
which link the intracellular cytoskeleton to the extracellular
matrix. This allows transduction of mechanical signals as well as
force generation through the recruitment of cytoskeletal adaptor
proteins, which couple the integrins and their extracellular
binding partners (Nobes and Hall, 1999; Zaidel-Bar et al., 2007).
During wound healing, integrin-mediated signaling induces
cytoskeletal rearrangements that initiate leader cell properties
at the wound edge (Etienne-Manneville and Hall, 2001). These
leader cells use the integrins α2β1, α5β1, and αvβ3 to generate
force on a collagen substrate and initiate movement to close
in the wound (Grose et al., 2002). Similarly, β1 integrins are
used during angiogenesis to couple the extracellular matrix to
the cytoskeleton within the endothelial collective. β1 integrins
activate guanine nucleotide exchange factors (GEFs) for Cdc42
and Rac1 as well as kinases such as Src and FAK (Lamalice et al.,
2007; Osmani et al., 2010) to promote protrusive behavior at
the leading edge of tip cells, which is necessary for appropriate
migratory behavior (Scales and Parsons, 2011; Lawson and
Burridge, 2014).

In addition to integrin-mediated force generation, collectives
also maintain collective movement and force generation
through supracellular cytoskeletal organization. Specifically, focal
adhesions at the leading front edge associate with actin-myosin
cables, which initiate contraction and force generation. These
actin-myosin cables ultimately extend through multiple layers
of follower cells allowing for force generation throughout the
entire collective instead of the first row of cells (Li et al., 2012;
Reffay et al., 2014). However, during collective cell migration the
largest forces are generated at the leading edge of collectives with
a decrease in force strength in back of the collective (du Roure
et al., 2005; Trepat et al., 2009; Tambe et al., 2011; Anon et al.,
2012; Cai et al., 2014). For example, during border cell migration,
tension decreases at the back of the cluster (Cai et al., 2014). A
similar distribution of force is observed in wound healing, where
the greatest traction forces are exhibited at the leading edge of the
monolayer but forces are maintained among follower cells in the
collective (du Roure et al., 2005; Trepat et al., 2009; Tambe et al.,
2011; Anon et al., 2012).

In addition to adhering to the extracellular matrix for force
generation, cells in collectives also remodel the extracellular
matrix while migrating. Migrating and/or surrounding cells
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deposit new basement membrane to form migrating tracks.
The deposition of a new basement membrane forms a
smooth surface to promote migration. During neural crest cell
migration in both Xenopus and chick embryos, neighboring
cells deposit fibronectin along neural crest migrating streams to
facilitate migration (Alfandari et al., 2003). Similarly, astrocytes
underlying the migrating endothelial cells secrete fibronectin
during angiogenesis (Stenzel et al., 2011). Fibronectin then
induces tip cell filopodia promoting migratory behavior (Stenzel
et al., 2011). When fibronectin is specifically deleted from the
astrocytes, endothelial cells show defects in migration (Stenzel
et al., 2011). In addition, the basement membrane that is
produced by endothelial cells and pericytes during angiogenesis
helps stabilize the migrating blood vessels (Eming et al., 2007).
The deposition of new basement membrane allows for migrating
collectives to migrate through the path of least resistance.

How Does Collective Cell Migration
Influence Our Understanding of Invasive
Cancer?
The dogma surrounding cancer cell invasion for many years was
that single cells would detach from cancerous tumors, enter the
blood stream and metastasize in other tissues. However, in the
last 50 years that viewpoint has been gradually expanded and it is
nowwidely recognized that inmany cases clusters of cells can also
detach from the primary tumor to initiate metastasis (Figure 6).

It was first reported more than half a century ago that
cancer cell metastasis could be associated with both single and
clusters of tumor cells (presumably detached from the primary
tumor) found in blood samples of patients (Figure 6) (Zeidman
and Buss, 1952). Subsequent research indicated tumor cell
clusters were better at initiating metastasis than single cells when
intravenously injected into mice (Liotta et al., 1976). Further
studies confirmed this observation and revealed that tumor cell
clusters are actually 20–30-fold better at initiating metastasis
in vitro (Cheung et al., 2016) and in vivo (Hou et al., 2012;
Maddipati and Stanger, 2015; Cheung et al., 2016).

Research over the last two decades strongly suggests
that collective cell invasion mediates metastasis in numerous
epithelial cancers including prostate, pancreatic, lung, colorectal
and breast cancer (Friedl et al., 1995; Nabeshima et al., 2000;
Hegerfeldt et al., 2002; Aceto et al., 2014; Gundem et al., 2015;
Maddipati and Stanger, 2015; Cheung et al., 2016). However, only
recently studies provided most rigorous evidence for collective
cell invasion mechanisms in both humans and mouse models.
Recent advances in microfluidics and next generation nucleic
acid sequencing allowed for isolation and interrogation of a small
number of circulating tumor microclusters. In humans, RNA
sequencing of circulating cancer cell clusters in comparison to
circulating single cancer cells (Aceto et al., 2014) revealed a small
subset of differentially expressed genes. One of the transcripts
enriched in microclusters was Plakoglobin, a component of
desmosomes and adherens junctions. This study revealed that
Plakoglobin plays a role in maintaining adherens junctions in
cancer cell clusters and thus enhances their metastatic potential.
Interestingly, Plakoglobin has been shown to be important in

focal adhesions during collective cell migration of mesendoderm
in Xenopus (Bjerke et al., 2014). Another study investigating
breast cancer invasion in a mouse model, found that Keratin14 is
upregulated in circulating tumor cell clusters and lung metastasis
(Cheung et al., 2016). When Keratin14 was depleted, it disrupted
the metastases markers Tenascin C, Jagged 1, and Epiregulin.
As Keratin14 is also enriched in desmosomes, this study further
emphasizes a critical role for cell-cell adhesions during tumor
cluster invasion.

Interestingly, these invasive fronts share molecular similarities
to collective cell migration observed during embryonic
development. For example, the leading edge of invasive cancer
clusters share common molecular properties observed at the
leading edges of collectives including cell-cell junctions and cell
adhesion receptors (Figure 6) (Freidl et al., 2004; Christiansen
and Rajasekaran, 2006; Alexander et al., 2008). In addition,
collectively invading cancer cells use self-generated gradients to
promote migration. Similar to self-generated gradients by border
cells and the pLLP, a study examining invasion of melanoma
cells identified a mechanism by which tumor cells generated
a gradient of lysophosphatidic acid (LPA) (Muinonen-Martin
et al., 2014) and used this gradient to promote cancer cell
invasion. In this study, tumor cells acted as a ligand sink by
breaking down LPA into byproducts. This created a gradient
in which LPA was high in surrounding tissues but low within
the tumor itself. Melanoma tumors then used this gradient to
migrate to higher sources of LPA in the surrounding tissue,
initiating metastasis.

Common signaling pathways used during development as
well as collective cell migration are often reactivated during
collective invasion (Korc and Friesel, 2009; Katoh, 2017; Bach
et al., 2018). For example, many downstream components of the
canonical Wnt signaling pathway are misregulated in a variety of
cancers (hepatocellular, colorectal, orapharyngeal squamous cell
carcinoma) and their associated metastasis including Axins, β-
catenin, and TCF/Lef1 transcription factors (Figure 6) (Lammi
et al., 2004; Salahshor and Woodgett, 2005; Marvin et al., 2011;
Papagerakis et al., 2012). Notably, Lef1 is active at the leading
front of invasive lung and colorectal cancers, similar to canonical
Wnt signaling being active within the leading region of the
pLLP (Nguyen et al., 2009; Wang et al., 2013). In addition to
mutations in canonical Wnt signaling, other signaling pathways
active during pLLP migration are also implicated in certain types
of metastatic cancer. Mutations in the Notch/Delta pathway have
been associated with poor prognosis in colorectal and breast
cancer as activation of this pathway is associated with metastasis.
Although it is not clear whether this pathway is involved in
collective cell invasion (Leong et al., 2007; Wang et al., 2013).

Cancer cells also make use of chemotactic signals during
metastases. In particular, numerous invasive cancers show
abnormal expression of the chemokine receptors CXCR4 and
CXCR7 as well as the ligand CXCL12 both within the tumors
and at potential sites of metastases. For example in breast
cancer, tumor cells express high levels of CXCR4 and metastatic
target tissues (lung, liver, bone) express high levels of the
ligand CXCL12 (Figure 6) (Wang et al., 2013; Wu et al., 2015).
Further, high levels of CXCR4 and CXCR7 are associated
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with shorter survival times than those with low levels (Wu
et al., 2015). Although, this association does not seem to hold
true for other types of cancers. In a pancreatic cancer in
vivo mouse model, cells producing CXCL12 showed deficits
in migration and poor metastatic potential in comparison
to control cells producing no CXCL12 (Roy et al., 2014).
Based on this evidence it is possible that the CXCL12
chemokinemay act differently in various cancer contexts. Despite
the known prevalence of mutations within these signaling
pathways, the mechanisms by which these mutations induce
and promote or inhibit collective invasion and metastases
remain unknown. Understanding how these signaling pathways
regulate collective cell migration of the pLLP may provide
clues as to how these pathways are hijacked during cancer
invasion.

Based on the similarities between collective invasion and
collective cell migration, we can use models of collective cell
migration during development to discern mechanisms used
by tumor clusters during metastasis. For example, as Lef1 is
upregulated at the invasive fronts of both lung and colorectal
invasive cancers and canonical Wnt signaling via Lef1 is active
in the leading region of the pLLP we can use the leading region of
the pLLP as a model for collective cancer invasion. We can study
cellular adhesion, protrusive behavior, and cell-ECM interactions
using the pLLP model to identify cellular mechanisms that
promote cancer front migration and metastasis. Identification of
cellular pathways that act downstream of Lef1 in the pLLP may
provide clues as to how these factors are misregulated during
invasive cancers that show increased Lef1 expression at their

leading edge. Thus, further insights gained through studies of
pLLP leading edge behavior could provide insight into how these
invasive clusters promote metastasis.

CONCLUSIONS

Collective cell migration is a widely used developmental
process that initiates and promotes morphogenesis of many
different organ systems. While collectives are organized into
a variety of different forms, they often share similar cellular
strategies. Collectives are guided by leading cells that sense
and respond to the extracellular environment, specifically
chemotactic cues. These chemotactic cues are then transmitted
through specific signaling pathways to initiate molecular
changes that guide migration as well as differentiation.
Insights gained from studying mechanisms of collective cell
migration can be used to identify mechanisms by which
invasive cancers hijack developmental machinery to promote
metastasis.
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