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Climate change can influence the transmission of vector-borne diseases

(VBDs) through altering the habitat suitability of insect vectors. Here we pre-

sent global climate model simulations and evaluate the associated

uncertainties in view of the main meteorological factors that may affect the

distribution of the Asian tiger mosquito (Aedes albopictus), which can transmit

pathogens that cause chikungunya, dengue fever, yellow fever and various

encephalitides. Using a general circulation model at 50 km horizontal resol-

ution to simulate mosquito survival variables including temperature,

precipitation and relative humidity, we present both global and regional pro-

jections of the habitat suitability up to the middle of the twenty-first century.

The model resolution of 50 km allows evaluation against previous projections

for Europe and provides a basis for comparative analyses with other regions.

Model uncertainties and performance are addressed in light of the recent

CMIP5 ensemble climate model simulations for the RCP8.5 concentration

pathway and using meteorological re-analysis data (ERA-Interim/ECMWF)

for the recent past. Uncertainty ranges associated with the thresholds of

meteorological variables that may affect the distribution of Ae. albopictus are

diagnosed using fuzzy-logic methodology, notably to assess the influence of

selected meteorological criteria and combinations of criteria that influence

mosquito habitat suitability. From the climate projections for 2050, and adopt-

ing a habitat suitability index larger than 70%, we estimate that approximately

2.4 billion individuals in a land area of nearly 20 million km2 will potentially

be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito

biology and climate change analysis provides new insights into the regional

and global spreading of VBDs to support disease control and policy making.
1. Introduction
Public health is very likely to be adversely impacted by climate change [1].

Future climate projections, even under optimistic emission scenarios, indicate

a substantial rise in near-surface temperatures and changes in the hydrological

cycle. As a result, the incidence frequency of vector-borne diseases (VBDs) may be

affected (increase or decrease) through differences in the geographical distribution

and breeding seasons of the insect vectors that transmit them.

In the past three decades Ae. albopictus (Skuse, 1894), an invasive and easily

adapting species (it may reproduce in flower pots, tin cans, bird baths, used
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tyres, tree-holes, etc.), has rapidly dispersed from its native

Southeast Asian occupancy by establishing populations in

parts of Europe, Africa, North and South America [2].

Ae. albopictus is a proven vector of dengue (DENV), chikun-

gunya (CHIKV) as well as West Nile arboviruses (under

field conditions) [3–5]. Under laboratory conditions Ae. albo-
pictus is capable of transmitting more than 20 viruses,

dangerous to both human and (domesticated) animal popu-

lations [5,6]. Therefore, the fast pace of its geographical

spreading, its high ecological and physiological adaptability

and its potential efficacy of transmitting hazardous patho-

gens makes Ae. albopictus a serious public health threat,

especially for vulnerable populations [7,8].

Considering its potential threat to public health, several

studies have been conducted to estimate the possible spatial dis-

tribution of Ae. albopictus using species distribution models

driven by environmental variables. For instance, the European

Center for Disease Prevention and Control (ECDC) studied cli-

mate change impacts using different IPCC emission scenarios

[9] and derived risk maps of the possible future habitat distri-

bution of Ae. albopictus over the European continent [10],

using among others, a multi-criteria decision model driven by

meteorological variables. Also focusing on Europe, Caminade

et al. [11] compared the results from three different vector distri-

bution models driven by meteorological variables computed by

regional models and assessed the spatial distribution of the habi-

tat suitability of Ae. albopictus under recent and future climate

conditions. Another study on the geographical spread of

Ae. albopictus over Europe under different climate conditions

by Fischer et al. [12] employed machine learning and expert

knowledge to model the vector distribution. Rochlin et al. [13]

investigated how climate change is expected to impact the

habitat of Ae. albopictus in selected areas of the northeastern

United States. Moreover, a recent study by Fischer et al. [14] sum-

marized and compared mechanistic and statistical/correlative

niche approaches employed to predict the geographical distri-

bution of the vector, mainly considering the European

continent. This study indicated that investigation of spatial

characteristics (e.g. introduction gateways, dispersal pathways)

and further laboratoryexperiments assessing the meteorological

constraints/thresholds affecting the mosquito are necessary to

improve modelling results. These studies consistently point to

a redistribution in the habitat range of the mosquito as a conse-

quence of the projected warmerand wetter winters, and warmer

and drier summers in the geographical regions considered.

It is important to mention that besides studies on the influ-

ence of climate change on the geographical expansion of the

vector, research has been carried out regarding the risks of epi-

demic outbreaks related to chikungunya and dengue fever,

viral infections transmitted by the Asian tiger and Aedes aegypti
mosquitoes. In early work, Poletti et al. [15] developed a cli-

mate-driven model of CHIKV transmission. Tilston et al. [16]

combined climatological information and data of the chikun-

gunya outbreak that occurred in Italy during the summer of

2007 to identify risk surveillance zones at a European level. A

similar study by Fischer et al. [17] using two climate change

scenarios and previous results for the habitat suitability of Ae.
albopictus over Europe, chikungunya, projecting that France,

northern Italy and East-Central Europe have the highest risk

of CHIKV transmission by the end of the twenty-first century.

The global distribution and burden under dengue fever has

recently been re-examined by Bhatt et al. [18], producing

updated risk maps for the transmission of the disease,
estimating that there are approximately 390 million dengue

cases per year, a number that is more than three times higher

than the current estimate by the World Health Organization.

Finally, Delmelle et al. [19,20] developed tools based on local

weather, climate and epidemiological data to forecast seasonal

dengue fever outbreaks in the urban environment of Cali,

Colombia. To date, few data are available to inform epidemio-

logical models of CHIKV transmission, although more data are

present in the literature on DENV transmission, making accu-

rate modelling of disease transmission extremely difficult.

This is an area requiring further experimental work in the

laboratory and the field.

In this study, we hypothesize that future climate change

scenarios will influence the global distribution of Ae. albopictus
through changes in global temperatures and shifting in pre-

cipitation patterns. Projecting the spatio-temporal distribution

of disease vectors under climate changing conditions requires

reliable modelling of vector populations and robust climate

models that produce the corresponding meteorological vari-

ables in accord with the present climate conditions as well as

being compliant with future projections. In recent years, cli-

mate modelling has achieved significant progress and the

computational resources have increased. However, sufficiently

high-resolution simulations on a global scale remain limited,

mainly owing to the vast computational resources required.

Here we present, for the first time, fairly high resolution glob-

ally consistent habitat suitability maps of the Asian tiger

mosquito for present and projected future climate conditions.

These maps were created using a vector distribution model

driven by seven meteorological criteria following a (fuzzy-

logic) multi-criteria decision analysis method. To derive the

seven meteorological variables, we have performed global cli-

mate simulations at a relatively high spatial resolution of

approximately 50 km (at the Equator) by employing the EMAC

general circulation model (GCM) [21–23]. Although finer resol-

ution regional studies, for instance at 25 km [11] covering

Europe, and studies modelling the Ae. albopictus distribution

locally over northeastern Italy and Switzerland [24,25] have

been performed, the spatial resolution is close to that of regional

studies, notably over Europe, and thus the results can be directly

compared. The climate simulations have been carried out for two

time periods, one that represents the recent past (reference period)

spanning years between 2000 and 2009, and the future projections

spanning years between 2045 and 2054. Enhanced resolution

global simulations typically improve the climate projections

because of the more realistic description of the topography,

such as mountainous and coastal regions, and associated atmos-

pheric flows [12]. Since this is the first global assessment of its

kind, we devote particular attention to evaluating climate

model uncertainties from the perspective of the so-called robust-

ness metric, introduced recently by Knutti et al. [26], also

employing the Intergovernmental Panel on Climate Change

(IPCC) CMIP5 multi-model ensemble. Furthermore, we present

a direct comparison between the climate data extracted from

our EMAC model simulations, and the ERA-Interim (ECMWF)

re-analysis meteorological dataset for the recent period [27].
2. Models and methodology
(a) Climate model
Temperature, precipitation and relative humidity (RH) are

among the important meteorological variables that affect
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the ecology and habitat suitability of the Asian tiger mosquito

[5]. To compute the relevant variables we have employed the

ECHAM5/MESSy2 atmospheric chemistry (EMAC) GCM

using a high-resolution mode. EMAC includes sub-models

describing tropospheric and middle atmospheric processes

and their interactions with oceans, land and vegetation, and

trace species emissions of natural and anthropogenic origin

[21–23,28].

For the present global climate simulations we utilized a

horizontal grid spacing (T255) that resolves 768 longitude

times 384 latitude points, where grid boxes, at the Equator,

have a horizontal dimension of approximately 50 � 50 km2—

corresponding to a quadratic Gaussian grid of approximately

0.478 � 0.478 in latitude and longitude—and 31 layers in the

vertical dimension that represent pressure levels up to 10 hPa

(lower stratosphere).

Two 10-year simulation runs have been performed for the

reference period (2000–2009) and the future projection period

(2045–2054). For the former simulation, we have imposed as

climatic boundary conditions the AMIP-II [29] sea-surface

temperature (sst) and sea-ice coverage (sic) assimilation data,

while the simulation for the future projections uses sst and

sic boundary conditions derived from the IPCC SRES-A2

emissions scenario [9,30]. Briefly, the SRES-A2 scenario

assumes intermediate to high future CO2 emissions and

describes a hypothetical politically fragmented world where

nations are self-reliant with economic development occurring

on a regional scale and in which the world population is con-

tinuously growing. The EMAC climate model was set up with

a 5 hour temporal resolution data output, chosen for optimal

data sampling and representation of the diel cycle.

The performance of the EMAC model for the purposes of

this study was tested against the European Centre for

Medium-range Weather Forecasts (ECMWF) ERA-Interim

(EI) re-analysis data [27,31]. Briefly, the EI data rely on glo-

bally recorded meteorological observations that are further

processed through a model assimilation system, which uses

a computationally demanding four-dimensional variational

algorithm [32] that produces short range forecasts in

order to determine the most realistic atmospheric state of

the Earth.
(b) CMIP5 multi-model ensemble and robustness
Producing multi-year global climate simulations from ensem-

ble runs on a fine spatial resolution requires immense

computational means in terms of CPU and financial invest-

ment, which is currently not permitted by the resources

available to us. Therefore, in addition to the high-resolution

data described in §2a, we have also considered the publicly

available lower resolution global simulations from the

Coupled Model Intercomparison Project–Phase 5 (CMIP5)

[33]. The CMIP5 multi-model ensemble was selected to

address model uncertainties based on the recently introduced

metric of robustness [26]. A list of the CMIP5 models

included in this study is shown in table 1.

It should be mentioned that when our global high-resolution

climate simulations were carried out, the CMIP5 multi-model

simulation results and the corresponding forcings of greenhouse

gas concentrations and emission pathways, known as represen-

tative concentration pathways (RCP), were not yet available.

Thus, for our model simulations regarding the future climate

projections we applied the boundary conditions from the
SRES-A2 emissions scenario. When the CMIP5 dataset became

available, we selected the results that follow the RCP8.5 path-

way, which corresponds to a radiative forcing of 8.5 W m22 in

2100, and according to Riahi et al. [35,36] represents an extension

and improvement of the SRES-A2 emissions scenario. More-

over, the RCP8.5 pathway serves as an upper bound of

the RCPs; hence it is considered to be a pessimistic scenario.

We have used the corresponding daily datasets as a basis for

analysing the CMIP5 datasets.

The study of model uncertainties is performed by means of

a recently introduced metric in climate studies, the so-called

robustness factor R [26,37]. This metric, which is applied exten-

sively in weather forecasting ensemble validation [38],

provides a direct way of evaluating locally inter-model agree-

ment on computed climate variables. For instance, using the

selected models shown in table 1 and also including our

EMAC results, we test the (dis)agreement of calculated

near-surface temperature and precipitation, both key driving

variables for the mosquito spatial distribution model.
(c) Fuzzy-logic and habitat constraints
Based on and extending previous work [3,5,39–42] on the

environmental/climatic factors affecting the life cycle of the

Asian tiger mosquito, a multi-criteria decision analysis

vector distribution model has been devised to estimate the

global habitat suitability maps. The mosquito spatial distri-

bution model combines seven meteorological indices based

on field observations, extensive literature review [5] and

expert knowledge. The model serves as a tool to explore

and identify the geographical areas that can potentially sus-

tain the thriving of the mosquito in recent and future

periods, i.e. under climate change scenarios.

As discussed at length in Waldock et al. [5], selecting

thresholds of environmental criteria for defining species dis-

tributions should take into account the scale and accuracy

of the climate model used. While laboratory experiments

may indicate the upper and lower limits of Ae. albopictus
survival and development, these conditions will not be

found uniformly across one grid square in any model

output. Even with relatively high-resolution model output

of 50 km, micro-climates will exist within each grid

square. The thresholds for our environmental criteria have

been selected based on comparison of EMAC model out-

puts with existing populations of Ae. albopictus in Europe

as described in Waldock et al. [5]. The seven empirical

criteria used to define a suitable, in terms of climate con-

ditions, environment for the Asian tiger mosquito using

EMAC model outputs are

(a) The annual average precipitation is at least 200 mm.

Precipitation is a complex parameter to model for

Ae. albopictus populations as breeding sites for this

species can be independent of rainfall. Despite a

threshold of 500 mm being reported previously [43],

Ae. albopictus populations are confirmed in areas of

Spain where annual rainfall is 292 mm [44]. Using exist-

ing European Ae. albopictus population distribution, as

in Waldock et al. [5], we selected a mean annual

cut-off of 200 mm for our analysis.

(b) The annual average temperature is higher than 8.08C.

Laboratory work analysing the temperature dependence

of Ae. albopictus survival and development [45–47]



Table 1. CMIP5 models and the corresponding groups considered for the evaluation of the robustness measure R. Owing to inconsistent grid sizes, we have
interpolated (regridded) the data to a common resolution of approximately 200 km (i.e. 1.8758 � 1.868 in longitude and latitude). The following daily
variables have been used: mean near-surface air temperature (tas), maximum near-surface air temperature (tasmax), minimum near-surface air temperature
(tasmin) and precipitation ( pr). The data have been downloaded from the ESGF database [34].

modelling centre (or group) institute ID model name

historical
ensemble
members

RCP8.5
ensemble
members

longitude
grid size (88888)

latitude
grid size (88888)

National Center for Atmospheric

Research

NCAR CCSM4 3 3 1.25 0.94

Met Office Hadley Centre MOHC HadGEM2-CC,

HadGEM2-ES

3 3 1.875 1.25

Institut Pierre Simon Laplace IPSL IPSL-CM5A-MR 3 1 2.5 1.27

Atmosphere and Ocean Research

Institute (University of Tokyo),

National Institute for

Environmental Studies, and

Japan Agency for Marine-

Earth Science and Technology

MIROC MIROC5 3 3 1.41 1.41

Max Planck Institute for

Meteorology

MPI-M MPI-ESM-LR 3 3 1.875 1.86

Meteorological Research Institute MRI MRI-CGCM3 3 1 1.125 1.125

Commonwealth Scientific and

Industrial Research

Organization in collaboration

with Queensland Climate

Change Centre of Excellence

CSIRO-QCCCE CSIRO-Mk3.6.0 5 3 1.875 1.86

EC-EARTH consortium EC-EARTH EC-EARTH 3 3 1.125 1.125
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gives lower thresholds for development of 12.88C, 12.58C
and 9.68C for eggs, larvae and pupae, respectively [5].

Survival thresholds are around 10–408C and 10–378C
for larvae and pupae, respectively [5]. To simplify our

analysis, we use the average annual temperature

to define area suitable for mosquito survival and

development. Using existing European Ae. albopictus
populations as in [5], we selected an annual temperature

cut-off of 8.08C.

(c) In January of the Northern Hemisphere (NH) (July of

the Southern Hemisphere (SH)) minimum temperature

is above 24.08C. Minimum temperatures for Ae. albopic-
tus egg survival are usually given as average January

temperatures. In the literature, lower limits for Ae. albo-
pictus range from 23.08C to 25.08C in China [48,49],

08C to 22.08C in Japan [49], 08C to 25.08C
and 22.08C in North America [13,48]. As for the pre-

vious criteria, using European populations of Ae.
albopicus as in Waldock et al. [5], we selected a cut-off

of 24.08C.

(d) The summer maximum temperature does not exceed

40.08C. Studies show that at 408C eggs fail to hatch

[7], and fitting curves to survival data from multiple

studies (as carried out in Waldock et al. [5]) gives

upper limits of survival around 40.08C.

(e) At least 60 days have measurable (greater than 1 mm)

rainfall. A minimum of 60 days with precipitation per
year has been used by Roiz et al. [42], Erijta et al. [44],

Benedict et al. [3], and this is in agreement with

EMAC model outputs compared with European Ae.
albopictus population as depicted in [5].

(f,g) The summer RH is at least 30% and the winter RH is

50% or higher. RH primarily affects the adult and egg

stages of Ae. albopictus. Limited data in the literature

demonstrate that survival and egg hatch rates are

improved at higher RH [50,51]. Between 60% and

90%, little difference is observed in adult survival

[39,46,47,52,53]. We have selected our thresholds using

EMAC model outputs and European Ae. albopictus dis-

tribution as in Waldock et al. [5]. Populations are

established in regions with summer RH as low as

35%, demonstrating the wide variety of RH tolerated

by the species.

The global maps presenting each one of the predictor vari-

ables (obtained from the EMAC simulation data) are given

in the electronic supplementary material, figures S1 and S2

(recent past), and figures S3 and S4 (future projection).

As the multi-criteria model (effectively) introduces sharp

thresholds on the considered climatic variables, which is con-

sidered unrealistic, we follow fuzzy-logic based on sigmoidal

membership functions. The latter are continuous (smooth)

functions that can be used to express the degree of suitability

of a certain meteorological variable around a threshold.
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Hence, any variability associated to the various thresholds,

imposed on the variables affecting the habitat suitability of

the vector mosquito, is fixed upon the introduction of the sig-

moidal membership functions. All the habitat/predictor

variables are standardized according to a sigmoidal function

of the form

S(x) ¼ 100

1þ exp(�a(x� b))
, (2:1)

except for the summer maximum temperature variable,

which uses a symmetric combination of sigmoidal functions.

S(x) expresses the degree of suitability, where x is the pre-

dictor variable under consideration (e.g. annual mean

precipitation), while a, b are characteristic constants (deter-

mining the rate of change of the function as it passes

through its mid-point and the location of its point of inflec-

tion, respectively), whose values are chosen accordingly to

conform with the associated constraint. The upper-bound

score of the sigmoidal functions is chosen to be 100. Our pro-

cess-based (mechanistic) approach is analogous to that

followed by the ECDC [10] and also explored in Caminade

et al. [11], who studied the distribution of Ae. albopictus over

Europe, using observations and results from regional climate

simulations. Our multi-criteria decision model for the vector

spatial distribution, apart from using global climate simu-

lation data for the vector habitat suitability, also introduces

more constraints in the sense that it includes seven climatic

factors (including extreme winter and summer temperatures)

that are combined to produce the habitat suitability maps.

The fuzzy-logic based multi-criteria decision model for pro-

jecting the vector geographical dispersal is illustrated by the

set of sigmoidal function plots provided in figure 1.
By applying these constraints to the global climate data

derived from our EMAC simulation, we estimate the geograph-

ical areas that could potentially sustain the establishment/

colonization of mosquitoes (assuming they are introduced)

during the reference period (years 2000–2009), and further

help us identify the regions that can support the presence of

the mosquito in the projected future period (years 2045–2054)

under the SRES-A2 emissions scenario. After rescaling each of

the seven habitat variables using the sigmoidal functions, we

define the habitat suitability index1 (hsi), which is a measure

of the possible spatial (habitat) distribution of the Asian

tiger mosquito. In this study, the habitat suitability score, S,

is calculated using an equal weight, geometric mean

combination of the seven (predictor variables’) suitability

scores Si

S ¼
Y7

i¼1

Si

 !1=7

: (2:2)

Besides tuning the sigmoidal membership function par-

ameters, one could elaborate and refine the weights chosen

for the seven criteria by applying a fuzzy analytic hierarchy

process (AHP) [54–56], where a panel of experts on the

field classifies the several criteria according to their

significance.

The urban heat island effect [57–59] was taken into

account in the estimation of the habitat suitability index con-

sidering that Ae. albopictus thrives in cities. The effect was

considered a posteriori, as the EMAC climate model does

not have a mechanism for simulating the phenomenon.

Using (gridded) population data [60,61], centred at the

years 2005 and 2050 for the two simulation periods
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considered, we increased the temperature, on average, by 18C
in (urban) areas with a population density equal to or greater

than 400 individuals km22, the latter leading to a global

population fraction of 50% in 2005.
3. Results
First, we briefly present a comparison of the near-surface

temperature between the EMAC (T255) simulations for the

reference period and the corresponding EI dataset. Sub-

sequently, we present the results regarding the mosquito

habitat suitability driven by the multi-criteria decision

model from using the two high-resolution simulation data-

sets. Based on the CMIP5 multi-model ensemble, we then

discuss uncertainties in climate model projections, focusing

on robustness—a measure that examines the multi-model

ensemble agreement—using two fundamental climatic fac-

tors affecting the mosquito habitat, i.e. the near-surface

temperature and precipitation in the part of the globe that

is relevant for Ae. albopictus (i.e. excluding oceans and land

areas with less than 10% hsi). Furthermore, we discuss the

hsi in view of the recently produced CMIP5 multi-model

ensemble database.
(a) EMAC compared to ERA-Interim
The scarcity of global gridded observational data for the

meteorological fields, required for the vector distribution

model, makes the evaluation of our high-resolution global

datasets rather difficult. However, the EI dataset is con-

sidered the best alternative for comparison. The EI dataset

is provided on a coarser spatial grid than our climate

model, corresponding to a horizontal resolution of approxi-

mately 75 km (at the Equator), where data were stored with

a frequency of 6 hours. First, we evaluate our results against

the near-surface temperature field from the EI dataset for the

relevant period of 2000–2009. This was done after our data

had been (bi-linearly) interpolated in time and in grid

space, respectively. Figure 2a displays the mean difference

over the 10-year period (2000–2009). For the two results,

we find a highly significant spatial (grid space) correlation,

with Pearson’s r-test correlation coefficient2, r ¼ 0.99

[99.9%CI, p , 0.001] showing that differences are generally

small. Monthly climatologies for relevant locations (green
dots in figure 2) in all continents, for the decade 2000–

2009, are shown in figure 3a. The comparison of the EMAC

computed and EI assimilated seasonal cycles corroborates

the good agreement, well within the 1s variability, although

in individual locations small biases can occur, which are,

however, unlikely to have a significant effect on the results

of the habitat suitability calculations.

Similarly, we performed a comparison for the precipi-

tation flux. The two datasets are relatively strongly

correlated with r ¼ 0.87 [99.9% CI, p , 0.001]. Figure 2b
depicts the mean difference over the 10-year period (2000–

2009), indicating relatively small discrepancies. The compari-

son for individual locations in figure 3b shows that the

rainfall seasonalities typically compare well, although biases

can be much larger than for temperature. As precipitation

fluxes are highly variable (figure 3b) and because uncertain-

ties are larger than for temperature, it may be desirable to

test the sensitivity of the vector distribution model to uncer-

tainties associated with individual predictor variables in

future.

For completeness, we have included graphs comparing

EMAC against EI data, along with regression lines for both

the near-surface temperature and precipitation fields in the

electronic supplementary material, figure S14.
(b) Habitat suitability maps
Extending previous studies of the habitat suitability of

Ae. albopictus with a regional focus, here we employ the

global GCM EMAC to simulate climatic factors that influence

Ae. albopictus spatial distribution. The results from the rela-

tively high-resolution global analysis can be compared with

previous work for Europe and are additionally relevant for

other parts of the world.

Figure 4a shows that the Ae. albopictus climatically suit-

able region of Southeast Asia is captured by our vector

distribution model, with an hsi above 90% in most areas.

Owing to the lack of publicly available geospatial (gridded)

data of the current presence or absence of Ae. albopictus out-

side its native range of Southeast Asia, the assessment of

our vector distribution model results is limited. However, a

qualitative evaluation can be conducted based on online

information made available by CABI, a non-profit inter-

national organization concerned with environmental issues

[2,62]. Following a simple analysis approach, by comparing
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Figure 4. (a) Southeast Asian and (b) global maps of the habitat suitability based on the high-resolution climate model results (T255) for the recent period 2000 –
2009. The (green) dots show the locations where presence of Ae. albopictus has been reported according to the CABI database.
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Figure 5. (a) North American and (b) European maps of the habitat suitability based on the high-resolution climate model results (T255) for the recent period
2000 – 2009. The (green) dots show the locations where presence of Ae. albopictus has been reported according to the CABI database.
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the global occurrence (e.g. location coordinates) [2] against

the corresponding ones from the habitat suitability map, it

is evident that approximately 70% of the (sparse) geo-

referenced data from the CABI database occur in the region

of at least 35% hsi, estimated by the species’ spatial distri-

bution model. The several misses in non-climatically

suitable locations (e.g. western India) are possibly associated

with the fact that urban environments, which may help repro-

duce the necessary climatic conditions for mosquito

establishment (e.g. providing water containers in dry areas),

have not been explicitly considered in our vector distribution

model. The coincidence with the vector distribution model

prediction, under the current climatic conditions, is depicted

in figures 4 and 5. Apart from the fact that a number of points

reported in the CABI database refer only to the country level,

it should also be noted that in some of the reported locations

Ae. albopictus may have already been eradicated or is under

control. Therefore, it will be essential for the community to

establish a global network that reliably monitors the vector

distribution, and the data should be publicly available.

The global map in figure 4b shows that central and

southern Africa (including the tropical rainforest) and equator-

ial coastal western Africa, approximately between latitudes 88
N and 168 S, currently provides suitable conditions for estab-

lishment of the vector. This is corroborated by recent disease

outbreaks related to Ae. albopictus reported in Nigeria [2,5].

Suitable habitat conditions for the mosquito also seem to be

provided by the coastal areas of southeastern Africa. A

highly suitable environment is also found in tropical southcen-

tral America, especially along the eastern coastal part of Brazil.

Within the United States, depicted in figure 5a, the model

identifies most of southeastern states as suitable habitat areas

for the mosquito. Furthermore, we find quite suitable con-

ditions for vector survival in the populated southeast coastal

area of Australia and the North Island of New Zealand. This

provides support for the strict measures that have been

implemented in many developed countries with a currently

high degree of habitat suitability to prevent the establishment

and distribution of Ae. albopictus. Such measures are also

needed in less developed countries with high habitat

suitability.

Figure 5b depicts the recent habitat suitability in the Euro-

pean and Mediterranean basin area, indicating that regions

such as the central part of Italy, most of Greece, Albania,

Montenegro, Croatia, Bosnia and Herzegovina, western and

northern coastal Turkey, have highly suitable climatic
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conditions for the establishment of Ae. albopictus were it to be

introduced. It is also quite notable that the part of Israel

where the mosquito has been reported is climatically suited

as calculated with the high-resolution model. In §3(d), it

will be shown that such locations cannot be resolved at a

coarse grid scale. Figure 5b also shows that parts of the Iber-

ian peninsula, France, southern England and Ireland could

actually be hot spots for a potential establishment as the cur-

rent habitat conditions appear to be highly suitable for the

vector, although it has not been observed or reported (yet).

The low degree of suitability encountered in countries such

as central-eastern Germany, Czech Republic, Slovakia,

Poland and extending to Ukraine is attributed mainly to the

winter minimum temperature and the relatively low annual

average temperatures in these areas. It should be mentioned

that sometimes Ae. albopictus has been observed in cities

where our model predicts less suitable conditions. This is

probably related to very localized urban environs where

temperature and precipitation thresholds are being circum-

vented, such as in parks, gardens, etc. It might be necessary

to define adjusted mosquito survival criteria for such con-

ditions to be addressed in future work. From figure 5b, it is

also notable that in the Mediterranean region coastal areas
appear to be suitable habitats, related to the cooling influence

of the sea in summer, which prevents temperatures exceeding

408C in summer (also around the Caspian and Black Seas).

On the other hand, in elevated areas, e.g. in the Balkans

and Anatolia, winters can be cold which precludes mosquito

survival. Similarly, in distinct areas in other continents the

habitat suitability of Ae. albopictus can be closely related to

topographical features and coastlines, which underscores

the usefulness of relatively high-resolution climate

simulations.

Figures 6 and 7 show the hsi for the mid-century projec-

tion under the SRES-A2 emissions scenario. Thus, owing to

the expected overall global warming, the changes in global

climatic suitability are reflected in the shift/alteration of

potentially suitable areas for invasion by and/or establish-

ment of the Ae. albopictus vector. The projected climate

change leads to significant pattern shifts in South America

and in some parts of Southeastern Asia. Moreover, parts of

the northern-central territories of Mexico are becoming

more prone to mosquito establishment, whereas in the

United States, the habitable area, apart from being more

suited, expands further beyond the southern states to include

mid-western states. Also notable is some expansion of the
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climatically favourable range in the western part of the

United States. From figure 7b, an overall decrease in future

habitat suitability is evident in southern European and Med-

iterranean areas, although the overall pattern seems mostly

the same as in the corresponding reference period, while at

the same time an increase in habitat suitability is projected

in some of the northern and eastern European states.

In addition, habitat suitability plots for specific regions

around the globe referring to both simulation periods are

given in the electronic supplementary material, figures S9

and S10. Also maps obtained using the corresponding EI

data showing the climatological fields, predictor variable

suitability scores and differences in habitat suitability when

compared against the EMAC-based estimate, have been

included in the electronic supplementary material, figures

S15 and S16, figures S17 and S18, and figure S19, respectively.

The above results are summarized by the actual difference

DS in habitat suitability pattern presented in figures 8 and 9.

Note that before taking the difference between the fields, we

excluded areas with hsi less than 10% as they are insignificant

for mosquito survival. A pronounced decrease in habitat suit-

ability is manifest in the South American tropical rainforest

and savannah regions, representing a change in the suitable

range by more than 50%. A similar decrease occurs in the
southeastern Asian nations Laos, Vietnam and Cambodia,

all in the Ae. albopictus native habitat zone. In contrast, we

project an increased suitability over the northeastern United

States, driven by the simulated warmer temperatures in

future in conjunction with the increased RH. Overall, it

appears that climate change induces a poleward shift of the

suitable habitat conditions that is most apparent in Europe,

the United States and eastern Asia, and to a lesser degree

in southern Africa and Australia. For habitat suitability

changes in specific regions around the globe, we refer to

the electronic supplementary material, figure S11.

One conclusion can be readily drawn regarding the pres-

ent and future climate scenarios. From the global habitat

suitability maps for both the recent past and future projec-

tion, the regions with the most favourable conditions for

mosquito establishment are, as expected, the tropical rainfor-

est areas. This coincides in particular with the Ae. albopictus
(original) native environment of Southeast Asia. Climate

change seems generally to reduce habitat suitability in the

tropical forest regions where Ae. albopictus is native. Owing

to its high ecological plasticity, the decline of its native

environment is unlikely to minimize its capacity to establish

populations in other regions, especially in non-forested areas

with dense human populations. Thus in response to climate



Table 2. Estimates of recent global population and surface area where the Ae. albopictus hsi exceeds 10, 35 and 70% based on 2005 population density for
several regions.

hsi > 10% hsi > 35% hsi > 70%

year 2005
individuals
(3106)

area
(3106 km2)

individuals
(3106)

area
(3106 km2)

individuals
(3106)

area
(3106 km2)

region

Europe 540 4.5 315 2.4 141 1.0

Africa 596 14.0 410 8.8 256 4.5

North America 271 3.7 185 2.5 105 1.4

South America 314 16.0 298 13.7 239 9.5

Asia 1760 8.0 1310 6.5 1040 5.1

Australia 14 2.3 12 1.2 7 0.5

global 3495 48.5 2530 35.1 1788 22.0
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change, where other regions become more suitable (than

existing ones), mosquito populations may become estab-

lished in these new territories. In future work, it may be

desirable also to account for tropical deforestation in climate

change scenarios and habitat suitability calculations.

Finally, the exposure of human populations to different

levels of Ae. albopictus habitat suitability, i.e. referring to

population and land area, is estimated using gridded popu-

lation density data. For the recent past, we have used data

available from the SEDAC service [60], while for the mid-cen-

tury projections the population density was extracted using

the medium-fertility scenario of the United Nations—Popu-

lation Division [61,63]. Note that for the estimated

population in the year 2050, changing patterns in human

population (density) are not considered in this study. The

results, summarized for six regions, are presented for the

recent past and the mid-century projection in tables 2 and

3, respectively. These estimates indicate that approximately

2.4 billion individuals and an area of nearly 2 � 107 km2

will be subject to high level Ae. albopictus habitat suitability

(i.e. hsi greater than 70%) around the year 2050. Although

the land area covered in the mid-century period is slightly

less than in the recent past, the projected population

growth together with the (habitat suitability) geographical

distribution shift makes the mosquito threat even more

important in future.
(c) CMIP5 ensemble and robustness
Estimating uncertainties of climate model simulations is chal-

lenging [26,64]. Multi-model ensemble simulations have

become a preferred procedure in climate assessments and

evaluation of the simulation results, also applying various

anthropogenic emission scenarios (IPCC SRES and RCPs).

The models employed are continuously being improved in

terms of simulating atmospheric and climatic processes in

greater detail, thus enhancing the confidence level in terms

of being more realistic [26], though not necessarily reducing

overall uncertainty. It is argued by Knutti et al. [26] that jud-

ging climate model progress based on uncertainties is a rather

strict criterion. Following Knutti et al. [26], we assess the per-

formance of the CMIP5 and EMAC models for the
geographic regions of relevance to our study using the

robustness measure R. This metric, which is based on

the signal-to-noise ratio and the ranked probability skill

score [38], takes into account the sign and magnitude of the

difference, variability and inter-model spread. Robustness

with a value R ¼ 1 suggests that the agreement between the

models is perfect and the confidence is greatest, while a

value of R ¼ 0 implies no relative skill or confidence at all.

We should stress that the choice of the cut-offs for R used

to demonstrate the model agreement is rather subjective,

but nevertheless the higher the threshold value the greater

the confidence [26].

We computed R for both the near-surface temperature and

precipitation fields and the results are presented in figures 10

and 11, respectively. Figure 10 depicts the mean boreal

winter (DJF) and summer (JJA) near-surface temperature

change, comparing the simulation periods 2000–2009 and

2045–2054. Robustness larger than 0.75 is shown with dots,

while cross-hatching represents robustness between 0.5 and

0.75. Likewise, figure 11 shows the mean boreal winter (DJF)

and summer (JJA) relative precipitation change, where robust-

ness greater than 0.5 is displayed with dots, and robustness

between 0.2 and 0.5 by cross-hatching. For the near-surface

temperature, the dominant value of R . 0.75 indicates a

rather good model agreement implying a high confidence

level in the multi-model results. On the contrary, for precipi-

tation we find a very low level of agreement between the

models, especially over land. This is to some degree expected

as climate models, especially at coarse grid resolution, are less

skilled in simulating precipitation patterns and intensity, in

particular by deep convection, being represented by sub-grid

scale parametrizations.

To get an impression of the simulated climate change by

EMAC at T255 resolution under the SRES-A2 scenario rela-

tive to the CMIP5 models under the RCP8.5 scenario, figure

12a shows the area-weighted mean temperatures for the

recent period 2000–2009 and figure 12b for the future

period 2045–2054. The oceans have been excluded and the

land areas with an hsi less than 10% have also been

masked. Both EMAC outcomes seem to be consistent with

the CMIP5 models, especially for the simulated future projec-

tions where our model is closest to the ensemble average.



Table 3. Estimates of future global population and surface area where the Ae. albopictus hsi 10, 35 and 70% based on 2050 population density for several regions.

hsi > 10% hsi > 35% hsi > 70%

year 2050
individuals
(3106)

area
(3106 km2)

individuals
(3106)

area
(3106 km2)

individuals
(3106)

area
(3106 km2)

region

Europe 606 5.2 340 2.4 174 1.0

Africa 1380 13.5 952 8.3 568 4.2

North America 464 5.3 330 3.3 173 1.8

South America 451 16.0 417 12.3 327 7.2

Asia 1810 7.2 1450 5.8 1150 4.7

Australia 20 2.6 18 1.3 10 0.4

global 4731 49.8 3507 33.4 2402 19.3
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Figure 10. Multi-model mean and robustness (dots (R � 0.75) and cross-hatching (0.5 , R , 0.75)) for the change in near-surface temperature in DJF (a) and
JJA (b) for 2045 – 2054 compared with 2000 – 2009.
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Notably in the future period, our model results indicate

larger inter-annual variability, possibly related to the higher

resolution of the simulations.

(d) Habitat suitability based on CMIP5
In this section, we study the effect of grid size and test the

representativeness of our calculations in view of the most

recent climate projections. We emphasize that from the avail-

able daily datasets in CMIP5 not all models report the RH.

Thus for a fair comparison, the corresponding criteria of the

vector distribution model were switched off in extracting

the habitat suitability index from the EMAC T255 data.

For the projected period between 2045 and 2054, the habi-

tat suitability is illustrated in figure 13. On a global scale the

pattern of potentially suitable areas supporting the establish-

ment of the vector is similar to that calculated by EMAC

(figures 6 and 7). The Pearson spatial (grid-space) correlation

coefficient for the projected period between CMIP5 (RCP8.5)

and the regridded EMAC (SRES-A2) indicates good agreement

(r ¼ 0.85 [99.9% CI, p , 0.001]). By excluding the RH variable

from the multi-criteria decision vector model, the correspond-

ing habitat suitability shows a slightly higher correlation (r ¼
0.86 [99.9% CI, p , 0.001]). Although the global maps (figures

6b and 13a) appear to be similar, the regional maps (figures 7b
and 13b) illustrate that the coarse grid global model ensemble

misses many details that can be relevant for vector control
policies. For example, the degree to which coastal areas and

islands are affected, especially in subtropical regions, is more

realistically represented at high resolution, which is illustrated

by comparing the Mediterranean regions in figures 7b and 13b.
4. Discussion and conclusion
Aedes albopictus is a public health threat owing to its environ-

mental adjustability and its capability to transmit the

pathogens that cause dengue fever, chikungunya infection,

West Nile fever and potentially other diseases. The global dis-

tribution of this dangerous vector has shown considerable

changes during the past decades. As the body temperature

of Ae. albopictus is regulated by environmental conditions, cli-

mate change potentially influences its distribution. To assess

the present and future geographical regions that can provide

suitable habitat conditions, we employed a multi-criteria

vector distribution model based on seven meteorological

variables related to temperature, precipitation and RH

[3,5,39,40]. The seven predictor variables included in the

multi-decision criteria vector distribution model are rep-

resented by fuzzy-logic membership functions, which

signify the climatic suitability on a 0–100 scale. The meteor-

ological fields have been averaged for 10-year periods, one

for the recent past (2000–2009) and one for the middle of

the century (2045–2054), computed with a comparatively
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high-resolution (50 km) version of the EMAC global climate

model. We show that this resolution is particularly helpful

to represent topographically pronounced and coastal areas,

the latter typically associated with high population density

worldwide, whereas global climate simulations are usually

performed at much coarser resolution. The 50 km grid scale

is also close to that employed in previous regional studies,

e.g. of Fischer et al. [12,14] and Caminade et al. [11] who

focused on Europe, for which we find many similarities

with our results.

For example, for the recent past all studies indicate a rela-

tively large degree of habitat suitability in the western Iberian

Peninsula, France, Italy and the western Balkan Peninsula and

a northward spread into Europe in future. However, the

results of Caminade et al. [11], who also followed a process-

based approach, seem slightly closer to our results than

those reported by Fischer et al. [12,14], using a statistically

based niche modelling approach. For future projections, the

three-variable model used by Caminade et al. [11] predicts
larger areas in Central and Eastern Europe as suitable for

the mosquito than our seven-variable model, possibly because

our model introduces additional constraints and/or because

our climate simulations imposed boundary conditions from

a different future emissions scenario. In the electronic sup-

plementary material, figures S20 and S21 (left columns), we

present the habitat suitability maps referring to Europe, esti-

mated using a three-variable model driven by annual

rainfall, January minimum and summer maximum tempera-

tures [10,11]. Absolute differences between the three- and

seven-variable models, for both simulation periods, are also

provided in the electronic supplementary material, figure

S22. Moreover, comparing the results of Fischer et al. [14]

with our results, a noticeable difference is evident regarding

the habitat suitability predictions for the British Isles and Bre-

tagne (France); for the recent period they report a moderate

climatic suitability while it is more pronounced in our results.

For the mid-century projections, Fischer et al. [14] indicate that

the aforementioned areas become ‘increasingly suitable’, based
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on the SRES-A1B (intermediate) emissions scenario. The over-

all pattern differences may be attributed to the different

assumptions followed by the two (species distribution) model-

ling approaches, whereas the hsi differences may again be

attributed to the climate change scenarios being employed.

For the recent past simulations (2000–2009), we forced the

EMAC model with AMIP-IIc sea surface temperature

and sea-ice assimilation data, whereas for the future

(2054–2054), the climate projection is based on the SRES-A2

greenhouse gas emission estimates, representing a relatively

pessimistic scenario (strong warming), roughly equivalent

to the more contemporary RCP8.5 pathway. The recent past

simulation has been evaluated against EI meteorological re-

analysis data over the same period, indicating a very high

grid–space correlation for near-surface temperature though

a slight warm bias of our model in the regions where suitable

habitat conditions (i.e. hsi . 10%) are expected. For precipi-

tation we obtain lower correlation coefficients, though

nevertheless reasonable agreement. For the future scenario,

we tested the model robustness (R) based on the recent

CMIP5 climate model output of eight additional climate

models forced by the RCP8.5 pathway. We find a high

degree of model consistency and good agreement with our

calculations for the period 2045–2054 for the near-surface

temperature (R . 0.75), while the robustness for precipitation

is much less (R , 0.2).

Our habitat suitability calculations indicate highly favour-

able conditions for Ae. albopictus in most of the wet tropical

regions and somewhat reduced but nevertheless very suitable

conditions in the subtropical parts of Brazil, the southeastern

United States, southern Africa, Madagascar, Southeastern

China and the northern part of the Mediterranean basin. The

most northerly occurrence (subsequent to introduction of the

mosquito) may be expected in Western Europe. Our calculations

appear qualitatively consistent with the observed presence of

Ae. albopictus. A more systematic evaluation of our model results

would be possible if the observational database were to

improve, i.e. if existing data were to become publicly available.

Based on our climate simulations for the period 2045–2054, a

poleward shift of the suitable habitat conditions may be

expected. A significant increase of habitat suitability is pro-

jected to occur in eastern Brazil, the eastern United States,

Western and Central Europe, and Eastern China, to a large

degree related to increasing near-surface temperatures in

winter. On the other hand, significant reductions are projected
for northern South America, Southern Europe, Central Africa,

Madagascar and Southeast Asia, where (summer) temperatures

can become too high. In general, it seems that environmental

conditions in the tropics, where Ae. albopictus is native

become less suitable, whereas other regions become more pre-

disposed to mosquito invasion, allowing the species to

compensate for the loss of territory. Furthermore, combining

the simulated hsi above 70% and population projections (for

2050), we estimate that 2.4 billion people will live in areas

that are climatically favourable for Ae. albopictus.
For future work, we recommend a suitable weighting

scale on the fuzzy-logic membership functions based on

expert judgement [54,56], accounting for the relative import-

ance of environmental factors for the survival of Ae.
albopictus, and additional laboratory work and data collection

to refine the break-points and rates of change relating to the

degree of suitability of each meteorological (predictor) vari-

able. It is also useful to consider the sensitivity of the

vector distribution model to the variabilities associated with

the weight factors assigned by the field experts, and to the

uncertainties related to the predictor variables, respectively.

It should be stressed that another important aspect, not con-

sidered in this study, is the role of globalization. This has a

direct link to the geographical dispersal of Ae. albopictus.

Owing to the intense global transportation and in conjunction

with climate change [65], seaports and airports may act as

potential gateways for the vector species and their associated

pathogens, which could easily be transmitted from their

endemic or epidemic areas into these, usually densely popu-

lated, urban localities. We suggest the refined representation

of urban areas (including harbours and major airports) in cli-

mate modelling, since Ae. albopictus is a container-breeder

living in close association with humans, and urban environ-

ments can provide the micro-climatic conditions that

influence its habitat suitability and could be important for

its enhanced spread.
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Endnotes
1The suitability index, ~S, is expressed relative to the maximum
suitability score (~S ¼ S=100 ¼ S%). For example, a suitability score
of 60 is equivalent to a suitability index (si) of 60%.
2For the r-test comparison statistics, we have not excluded areas with
a habitat suitability index less than 10%.
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