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The tumor microenvironment (TME) is a complex and heterogeneous environment

composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating

immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells

play a vital role in fighting tumors, but chronic stimulation and immunosuppression in

the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived

suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent

immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact

with innate and adaptive immune cells and play a crucial role in negatively regulating the

immune response to tumors. This review discusses MDSC-mediated NK cell regulation

within the TME, focusing on critical cellular and molecular interactions. We review current

strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic

antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy

could be improved.

Keywords: natural killer cells, myeloid derived suppressor cells, tumor mircroenvironment, natural killer cell
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INTRODUCTION

Tumorigenesis is a complex and dynamic process involving three stages: initiation, progression,
and metastasis (1). Besides blood and lymphatic vessels, composed in part of vascular endothelial
cells, the major constituents of the tumor microenvironment (TME) are a heterogeneous
population of cancer cells, fibroblasts, immune and inflammatory infiltrated cells, and secreted
protein elements of the extracellular matrix (ECM) (2). The functional and physical interactions
of these tumor elements determine clinical outcomes. At the beginning of the nineteenth century,
Virchow described cancer as originating from chronic unresolved inflammation (3). Many studies
have demonstrated that cancer-associated inflammation plays a critical role in tumor formation,
contributing to genomic instability and epigenetic modification, and regulating the creation
of a protected TME to promote cancer proliferation and metastasis (4–6). Tumor-associated
inflammatory cells are observed in human cancers from the earliest phases of carcinogenesis (7).
The first line of defense, represented by natural killer (NK) cells and cytotoxic CD8+ T cells, usually
recognizes and kills malignant cells; however, a few immunogenic cancer cell variants can escape
immune recognition (8).
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The TME orchestrates multiple mechanisms to impair the
antitumor functions of immune cells. These mechanisms include
destabilizing the innate cell compartment, composed of NK
cells, macrophages, neutrophils, and dendritic cells (DCs),
and suppressing adaptive immune cell (T and B)-mediated
antitumor activity. The presence and recruitment of atypical
innate and adaptative immune cells in the tumor site are
thought to occur during both the early and later stages of
tumor development (6, 9). Tumor immune surveillance also
fails because immunosuppression and its associated chronic
inflammation further destabilize tumor-fighting immune cells,
defending rather than eradicating tumors (10). The TME
supports the growth of cancer-associated fibroblasts, stromal
cells, and endothelial cells, contributing to tumor-associated
capillary and lymphatic vessels that support tumor growth (11).
These mechanisms select potentially aggressive tumor clones
early during tumor development (9).

This review will discuss the crosstalk between NK cells,
myeloid-derived suppressor cells (MDSCs), regulatory T cells
(Tregs), and the critical cellular and molecular mechanisms
within the TME that impact tumor development, progression,
and angiogenesis, as well as how current therapies target these
immunosuppressive cells in the TME. We will also review
different NK cell exhaustion mechanisms and novel approaches
for enhancing NK cell therapeutic potential against tumors.

CYTOTOXIC T LYMPHOCYTES AND NK
CELLS IN CANCER

One of the adaptive and innate immune systems’ essential
activities is to kill infected and tumor cells. Mounting
epidemiological and experimental evidence points to a critical
role for cytotoxic T lymphocyte (CTL) and NK cell-mediated
effector functions in host resistance to cancer. The collaboration
between innate and adaptative effector cells can lead to tumor
rejection (12, 13). CTL and NK cell activity has been linked to
tumor immune surveillance and protection from cancer. Both
cell types can form cytotoxic immunological synapses (14), which
are specialized antigen-specific cell–cell junctions with a synaptic
cleft to directly communicate and transduce highly controlled
secretory signals between immune cells and their target cells (14).
This mechanism, also present in NK cells, improves the efficiency
of cytotoxic cell-mediated killing (15). Higher numbers of tumor-
infiltrating CTL and/or NK cells are a favorable prognostic
indicator for many cancer types (16, 17). T cell activation
occurs when a clonal T cell receptor (TCR) is triggered by a
tumor-derived antigen presented on class I human leukocyte
antigen (HLA-I), in combination with co-receptor ligation and
co-stimulation, leading to CTL activation, proliferation, cytokine
and chemokine secretion, and tumor cell killing (18). Similar to
CTL cells, NK cells are also cytotoxic lymphocytes and important
tumor fighters.

NK cells do not express a TCR but instead have many
activating receptors and also inhibitory receptors, which bind
major histocompatibility complex class I (MHC-I) (19, 20).
MHC-I is often downregulated by infected and malignant cells

to avoid CTL killing. NK cells sense this “lack of inhibition” and
are further activated by tumor cell-expressed stress ligands that
ligate NK cell-expressed activating receptors (20–22). NK cells
secrete cytokines, chemokines, pore-forming proteins (perforin),
and cytotoxic mediators (granzymes) that trigger target cell
apoptosis upon activation. A potent NK cell-activating receptor
is NK group 2 member D (NKG2D), and NKG2D ligands are
commonly upregulated on tumors (23).

Substantial evidence supports the conclusion that NK cells
play a crucial role in eliminating tumors and tumor metastases
(24). First, low cytotoxicity in peripheral blood (PB) NK cells
correlates with a higher risk of developing cancer (25). Second,
in many types of cancer, NK cells exhibit an altered phenotype
and hypo-functionality (26, 27). Third, in mice, resistance to NK
cell killing favors polyclonal metastasis (28). Several mechanisms
contribute to NK cell exhaustion, including modulating adhesion
and epithelial genes, decreasing the expression of NK cell-
activating ligands (28), and the suppressive effects of regulatory
immune cells and soluble factors within the TME (29).

NK ORIGIN, DEVELOPMENT, AND TISSUE
DISTRIBUTION

NK cells are bone marrow (BM)-derived granular lymphocytes
that lyse target cells rapidly and continuously upon activation
(30). In the BM, NK cells develop from CD34+ hematopoietic
stem cells through a common lymphoid progenitor (CLP)
intermediate that can seed and develop further in lymphoid and
non-lymphoid organs (31). NK cell maturation requires several
cytokines, among which interleukin (IL)-15, released by BM
stromal cells, is crucial for the differentiation of CLPs toward
the NK cell lineage (32). NK cells are well-represented in the PB,
spleen, and BM and are found in most organs, including the liver,
lungs, skin, gut, lymph nodes, tonsils, uterus, thymus, kidney,
pancreas, and adipose tissue. (33, 34). Their recruitment to
different tissues depends on the expression of several chemokine
receptors and is reviewed elsewhere (35, 36).

Human NK cells express the hematopoietic cell marker CD45,
the glycoprotein CD56 and mature NK cells, and the cluster
of differentiation molecule CD16 also known as Fc receptor
FcγRIIIa, but they do not express any T or B cell receptors.
NK cell maturation is generally assessed by the amount of NK
cell-expressed CD56 and CD16 expression. Specifically, CD56dim

and CD56bright subsets show profound differences in cytokine
secretion, response to cytokines, and killing efficiency. CD56dim

CD16bright NK cells in the PB are about 90% of the total NK
cell population and include the alloreactive NK cells described
as “mature” with a higher cytotoxic potential. The remaining
10% of NK cells are CD56bright CD16dim and reside in the
lymphoid tissue; they are considered “immature or unlicensed.”
These NK cells are more sensitive to cytokine stimulation, which
will activate the secretion of a variety of cytokines, including
interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-
α), IL-5, IL-10, and IL-13 (37–39).

A sophisticated array of germline-encoded activating and
inhibiting receptors regulates NK cell development and,
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subsequently, their activation (40). Upon activation, NK cells
employ several mechanisms of target cell killing and secrete
chemokines and cytokines to interact with other immune
cells (41, 42). NK cells are traditionally defined as innate
immune response cells because they lack recombinase-dependent
clonal antigen receptors (RAG) (43). Nonetheless, recent
findings have revealed that NK cells display adaptive immunity
features (44–47), including several developmental and functional
characteristics of the adaptive immune system (43, 48–51).
These similarities include vaccination or sensitization-dependent
antigen-specific immunological memory (45, 46, 52–55). How
NK memory impacts the tumor-specific NK cell response is
currently unknown.

ANTITUMOR RESPONSES OF NK CELLS

Many studies have demonstrated that NK cells can kill tumor
cells (56). NK cells survey their environment with a distinct
receptor repertoire, including activating and inhibitory receptors,
adhesion molecules, and cytokine and chemokine receptors (57).
NK cells recognize the expression of HLA-I, also called MHC-I,
on autologous cells. This interaction is generally inhibitory and
prevents NK cells from attacking healthy host tissue. Specifically,
HLA-I or MHC-I binds NK cell inhibitory receptors, including
killer cell immunoglobulin-like receptors (KIRs) in humans, Ly49
in mice, and CD94/NKG2A (58, 59). In contrast to infected or
malignant cells, healthy nucleated cells express robust levels of
HLA-I/MHC-I molecules and escape NK cell immune attack.
However, during malignant transformation or viral infection,
the expression of MHC-I antigens on the cell surface can be
downmodulated. This variation in the expression of MHC-I
molecules on target cells (missing self) reduces the strength of
inhibitory signals delivered to NK cells, thus promoting NK
cell activation. NK cells survey tissues for low MHC-I molecule
expression (60, 61) and for the expression of activating ligands,
such as the NKG2D ligands (62, 63), and ligands for the natural
cytotoxicity receptors NKp30 and NKp44 in humans and NKp46
in humans and mice (64).

NK cells also have the unique ability to exert antibody-
dependent cell-mediated cytotoxicity (ADCC) upon engagement
of CD16 with the Fc portion of the antibodies (65). Activation
through these receptors elicits rapid target cell killing by several
mechanisms. NK cells form an immunological synapse with
target cells and kill them rapidly by secretion of lytic granules that
contain an arsenal of effector molecules (perforin, granzymes)
and cytokines (IFN-γ, TNF-α) that induce cell death in targeted
cells (66–68). Perforin and granzyme are proteins that play a
significant role in cell-mediated cytotoxicity. These molecules are
expressed in NK cells, and several cytokines regulate their level of
expression in CTLs. The role of perforin, which is involved in T
cell- and NK cell-mediated target cell lysis, was demonstrated in
mice lacking perforin with respect to their capability to eradicate
a syngeneic lymphoid tumor mammary adenocarcinoma (69).
Smyth and coworkers demonstrated that mice with lymphoma
and deficient in the pore-forming protein perforin [(pfp)-
deficient] showed an increased number of premalignant cells

than their immunocompetent counterparts. In fact, pfp-
deficient mice were 1,000-fold more susceptible to tumor (70),
demonstrating that lymphocyte-mediated cytotoxicity plays an
essential role in promoting host resistance to spontaneous
tumor formation. NK cells also express several TNF superfamily
proteins and death-inducing ligands, such as TNF-related
apoptosis-inducing ligand (TRAIL) and FAS ligand (FASL),
which induce target cell apoptosis via binding to their
corresponding receptors (TRAIL-R and FAS). Activated NK cells
also produce growth factors, such as granulocyte-macrophage
colony-stimulating factor (GM-CSF) and chemokines (XCL1,
CCL3, CCL4, and CCL5) l (26, 33, 71–73).

NK CELLS IN SOLID TUMORS

Genetic alterations in oncogenic pathways associated with an
aberrant inflammatory milieu (74, 75), abnormal activations of
transcription factors (nuclear factor kappa-light-chain-enhancer
of activated B cells [NF-κB] and signal transducer and activator
of transcription-3 [STAT3]) (76, 77), and hypoxia (78) may
contribute to development and maintenance of the TME.
The TME is responsible for tumor onset and progression
by orchestrating cell growth, proliferation, malignancy, and
immune escape processes. TME can impair and “polarize” the
innate, adaptive, stromal, and endothelial cell compartments
by several mechanisms (2, 79–82). Tumor cells, MDSCs, and
tumor-associated cells, such as tumor-associated fibroblasts
(TAFs) and endothelial cells (83), can contribute to tissue
modifications of the ECM by matrix metalloproteases (MMPs)
and fibroblast activation proteins and the release of soluble
factors (basic fibroblast growth factor [FGF], platelet-derived
growth factor, hepatocyte growth factor, insulin-like growth
factor), chemokines (CCL2, SDF1a/CXCL12, CXCL8), and
immunosuppressive cytokines, such as transforming growth
factor beta (TGF-β), IL-10, and IL-6 (84, 85). Due to the adverse
TME, immune cells lose their ability to reach, recognize, and
target tumor cells (2, 79, 86, 87). The TME impairs immune
cell homing to the lymphoid organs promoting tumor immune
cell escape, invasiveness, and angiogenesis (88–90). Thus, chronic
inflammation orchestrated by immunosuppressive mediators of
the TME supports tumor progression by exhausting immune
cells, such as NK cells (74, 78).

NK cells also express inhibitory receptors targeting non-MHC
molecules on healthy cells. One of these inhibitory receptors
expressed on NK cells is killer cell lectin-like receptor G1
(KLRG1), a well-conserved member of the C-type lectin receptor
superfamily. KLRG1 is known for its role in NK cell maturation,
development, and homeostasis (91). Recently, a new role for
KLRG1 has emerged as an inhibitory receptor impacting NK
cell function in tumor surveillance. Impairment in the migration
and/or retention of NK cells in the BM has been observed in
multiple myeloma (MM). BM localization of the more functional
NK KLRG1− subtypes is impaired in MM by altering the
chemokine microenvironment (increasing chemokine [CXC]
ligand 9 [CXCL9] and CXCL10 and reducing CXCL12 expression
in BM) in a mouse tumor model of an early cancer growth
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stage (88). This is due to significant dysregulation of the
CXCR3 and CXCR4 chemokine receptor/ligand axes, influencing
NK cell responses (88, 92). Using murine models of chronic
NK cell stimulation, Alvarez and colleagues have identified a
“phenotypic signature of NK cell exhaustion,” characterized by
upregulation of KLRG1 and downregulation of the activating
receptor NKG2D (93). KLRG1 ligands, such as E- and N-
cadherin, were upregulated in tumor specimens from patients
with melanoma, breast, prostate, and colorectal cancer (94). The
same authors showed that anti-KLRG1 antibody monotherapy
in a 4T1 breast cancer mouse model enhanced tumor control
compared to controls (94). Tata and colleagues also demonstrated
that KLRG1-deficient mice had significantly fewer lung tissue
tumors than wild-type controls (95).

Several studies have demonstrated the prognostic significance
of tumor-infiltrating lymphocytes and their antitumor actions
in cancer (16, 17, 96–99). It has recently become clear that
CTL and NK cell cooperation are essential in many types of
tumors (100–110). Using mouse models of mastocytoma (mice
heterozygous for the H-2Ld/P1A35–43-specific TCR transgene:
TCRP1A on the DBA/2, B10.D2; TCRP1A tg B10.D2[×DBA/2]
F1; RAG-1◦/◦B10.D2), a study demonstrated that the frequency
of cancer antigen-specific T cell precursors and the rate of
antigen variants can contribute to the efficacy of adaptive T
cell responses to cancer (107). Moreover, the efficiency of an
effective antitumor antigen-specific T-cell response can depend
on the complementary interaction between effector T cells and
NK cells (107). Another study also demonstrated that the NK
cell’s antitumor effect requires interaction with specific activated
tumor antigen-CD8+ T cells (12). However, further studies are
necessary to clarify the mechanism of interaction between NK
cells and specific effector T cells.

In clinical trials studying solid tumors, impaired NK cell
function correlated with a poor prognosis in patients with
advanced disease (111, 112). The TME plays a critical role in
reducing NK cell persistence and trafficking in the tumor site
by inhibiting NK cell activation, leading to tumor invasion
and metastasis (26). Moreover, several studies showed anergic
and hypo-functional NK cells (26, 27, 113–120), including
tumor-associated NK cells in the PB and tumor-infiltrating
NK cells within the tumor tissue. These CD56bright CD16low/−

Perforinlow NK cells even exhibited pro-tumorigenic functions
and pro-angiogenic activities (80, 121–124) and have been
identified preferentially in many solid tumors (80, 87, 115–
121, 123, 125–129). Some of these NK cells also downregulated
their expression of NKG2D, impairing their antitumor
functions further.

MDSCs AND TREGS IN CANCER

Development and Phenotypes of MDSCs
Common myeloid progenitors differentiate from hematopoietic
stem cells in the BM. Later, they migrate to the peripheral
lymphoid organs and differentiate into myeloid cells. This
pathway involves granulocyte-macrophage progenitor and
various myeloblast intermediate precursors, including common
monocyte progenitors (130) (Figure 1). Immunological

stress, as well as cancer, prolonged inflammation, trauma,
and autoimmune disorders, can impair the differentiation
of these immature myeloid cells (131). Tumor-associated
myeloid cells are mainly represented by tumor-associated
macrophages (TAMs) and MDSCs, which are one of the
crucial players within the TME (Figure 1). The TME often
subverts immunosurveillance by generating MDSCs with strong
immunosuppressive activity and functional plasticity (130).
MDSCs are a heterogeneous population of myeloid-derived cells
represented by myeloid progenitors, immature granulocytes,
DCs, and macrophages. Therefore, the characteristics that
separate MDSCs from other myeloid cells are still under
investigation. It is widely accepted that MDSCs are divided into
two main subsets: granulocytic or polymorphonuclear (PMN)-
MDSCs and monocytic (M)-MDSCs, cells showing a phenotype
and morphology similar to neutrophils and macrophages,
respectively (132–136) (Figure 1). However, MDSC subtypes can
be distinguished from neutrophils and TAMs that are present in
the TME (137, 138). Studies have shown additional mechanisms
to describe the evolution and roles of these polarized neutrophils
in the TME, and some evidence supports the idea that these cells
are similar to MDSCs and could be described as PMN-MDSCs
(139–141), which represent the most prevalent cells in several
types of tumors (142, 143). MDSCs with granulocyte and
monocyte hallmarks have genomic profiles, biochemistry, and
in vitro properties that differ from neutrophils, monocytes,
and DCs (144). Recently, whole-transcriptomic and proteomic
analyses (134, 145–147) provided specific gene expression
patterns for the characterization of these different cell types.
Cell-surface markers have been identified to distinguish MDSC-
specific phenotypes from TAMs, tumor-associated neutrophils,
and neutrophils. M-MDSCs can be separated from TAMs by
their differential expression of F4/80, M-CSF and CD115high,
Ly6Clowtointermediate, IRF8low, and S100A9verylow (148). In
contrast, PMN-MDSCs are CD11b+Ly6G+Ly6CloLOX−1 in
mice and CD11b+CD14−CD15+ or CD11b+ CD14−CD66b in
humans, while M-MDSCs are CD11b+Ly6G−Ly6Chi in mice
and CD11b+CD14+HLA-DR−/loCD15− in humans (Figure 1).
A low percentage of MDCSs (around 3%) consists of a mixture
of more immature progenitors and precursors with myeloid-
colony-forming activity termed “early-stage MDSCs” (e-MDSC)
and are described as Lin−HLA-DR−CD33+ (132, 144). These
and other novel marker combinations are currently under
further investigation (133, 134, 149).

The number of MDSCs is associated with the clinical cancer
stage and metastatic disease (150). Thus, MDSCs could be
a potential biomarker of disease in several types of cancer.
For example, the frequencies of MDSCs change during tumor
progression in glioma (151) and cervical cancer (152). The
frequency of peripheral PMN-MDSCs has been correlated with
cancer prognosis, while the percentage of M-MDSCs has been
shown to be higher in patients with advanced cervical cancer
(152). Moreover, PMN-MDSCs’ rate is negatively correlated
with CD8+ T cells’ rate (151, 152). MDSCs have been reported
as prognostic markers in non-small cell lung cancer (NSCLC)
(153); breast and colorectal cancer (154); gastric, esophageal, and
pancreatic cancer (155); andmelanoma (156). Therefore, MDSCs
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FIGURE 1 | Pathological myelopoiesis in cancer. Under physiological conditions and chronic inflammation, hematopoietic progenitor cells (HPCs) differentiate via

common myeloid progenitor cells (CMPs) into monocytic/dendritic progenitor cells (MDPs). Myelopoiesis is altered under pathological conditions, such as in a tumor.

Tumor-immunosuppressive factors produced in the TME alter myelopoiesis, leading to aberrant differentiation and accumulation of myeloid lineage cells. The black

lines show the normal pathways of myeloid cell differentiation from immature myeloid precursor cells to dendritic cells (DCs), macrophages (M8), and granulocytes, as

depicted. The red lines indicate the aberrant pathways of myeloid cell differentiation that arise in cancer, in which the TME promotes the development of

immunosuppressive populations, including monocytic myeloid-derived suppressor cells (M-MDSCs), polymorphonuclear myeloid-derived suppressor cells

(PMN-MDSCs), inflammatory DCs, and tumor-associated macrophages (TAMs). The MDSC mouse and human phenotypes are shown in the left square on the

bottom. BM, bone marrow; sTNF, soluble tumor necrosis factors. Created with BioRender.com.

can also be used as a predictive marker for immunotherapy.
Additionally, a diminished number ofMDSCs helped to eradicate
metastatic disease after the removal of primary tumors in a
mammary carcinoma model (157).

Recruitment and Expansion of MDSCs in
Tumors
While absent in normal physiological conditions (144), MDSCs
can be detected in the BM, blood, spleen, tumor, and lymph
nodes in pathological conditions (Figure 1). MDSCs have been
shown to increase significantly in early- and late-stage cancer
in preclinical animal models and human tumors (6, 145,
151). Upon their recruitment, MDSCs gradually expand in the
TME and support the development of an immunosuppressive
tumor environment by interacting with several components
of the innate and adaptive immune systems (158, 159) and
by stimulation of neo-angiogenesis (160, 161). Vetsika et al.
described all phases of this process (162); here, we will

summarize. The network of transcriptional regulators that
directs MDSC development can be combined into two partially
overlapping groups: (i) factors promoting myelopoiesis and
avoiding differentiation of mature myeloid cells and (ii) factors
contributing to pathologic activation of MDSCs. In different
types of mouse and human cancers (132, 144, 163–166),
MDSCs are gradually recruited and increase in the TME. They
support tumor progression through non-immune activities by
stimulating pre-metastatic niche formation, invasion (167, 168),
and inducing pro-tumor angiogenesis (169). Some authors have
proposed a “two-signal model” for describing how MDSCs can
acquire the modifications guiding their pathological activation,
immunosuppressive activity, and expansion in the TME under
tumor pathologic signals (170, 171). Myeloid cells exposed to
pathological conditions (autoimmunity, cancer, trauma, graft
vs. host disease, and infections) can be activated in response
to damage-associated molecular pattern molecules, pathogen-
associated molecular pattern molecules, or pro-inflammatory
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cytokines (144). Because patient blood has been observed
to have increased tumor-released macro- and micro-vehicles
during tumor progression, tumor niches could potentially
gather MDSCs from the BM by releasing exosomes. Their
contents have been demonstrated to reprogram target cells in
different types of cancer, increase the mobility of the progenitor
myeloid population to the tumor site, and increase tumor
immunosuppression (162).

MDSCs migrate in response to several chemo-attractant
molecules released from cells in the TME using two main
pathways: PMN-MDSC migration includes the secretion of
CXCL1, CXCL5, CXCL6, CXCL8, and CXCL12, and M-
MDSCs respond to CCL2, CCL5, and CSF1 (172) (Figure 1).
The TME can guide the differentiation of incoming MDSCs
in several different directions. The commitment of myeloid
progenitor and precursor cells into MDSCs can be triggered
by immunosuppressive cytokines released in the TME, such
as soluble tumor necrosis factors (sTNF), IL-1β, IL-6, IL10,
TGF-β, and vascular endothelial growth factor (VEGF) (173,
174) (Figure 1). MDSC phenotypes develop under conditions
of acute or chronic inflammation, stress and hypoxia, high
concentrations of oxidative molecules, and reduced nutrients
(172, 175) (Figure 1). Hypoxia, specifically hypoxia-inducible
factor 1 alpha (HIF-1α), appears to be one of the most critical
stresses (35, 56) and was shown to be essential in M2-type
TAM generation from Ly6Chi monocytes inside a tumor (176).
During hypoxia, immunomodulatory proteins and chemokines
also mediate the differentiation of TAMs or M2 macrophages
(177) from M-MDSCs or/and guide later events in tumor
progression (177, 178).

Because M-MDSCs have a longer lifespan (179), their
differentiation has been studied more extensively than that
of PMN-MDSCs. TAMs can be derived from tissue-resident
macrophages proliferating in situ in pancreatic and mammary
tumors (180, 181). Several studies have shown the ability of
M-MDSCs to differentiate into TAMs after migrating from the
spleen to a tumor (178, 180, 182, 183), and TAMs can be
“regenerated” by the arrival of newM-MDSCs from other organs
during tumor progression (184–186) (Figure 1). MDSCs can also
differentiate into DCs and fibrocytes during cancer progression
(187). Moreover, Ly6Chi, Ly6CX3CR1, and Ly6C+CCR2+

monocytes can differentiate into TAM subsets (Figure 1) in
mammary adenocarcinoma, lung adenocarcinoma, and lung
carcinoma models (188, 189). In the chronic inflammation
present in tumor tissues, IL-18 can support the function of
TGF-β1 that is produced and activated by M2-polarized TAMs
(190, 191). IL-18 promotes the differentiation of CD11b− BM
progenitor cells into M-MDSCs and increases their suppressive
functions, including arginase expression (ARG1) and NO
secretion (192). MDSCs induced by IL-18 can inhibit CD4+ T
cell proliferation and IFN-γ production (192), contributing to
the negative regulation of immune responses in tumors through
immunosuppressive functions.

Treg Origin and Development in the TME
CD4+CD25+ Tregs are a subpopulation of suppressor T cells that
mediate immune homeostasis, maintain peripheral tolerance,

and prevent immune and auto-immune disease by suppressing
autoreactive T cells (193). These cells regulate immune responses
in the context of immunity and infections differently (194,
195). In cancers, Tregs are linked to the development of
an immunosuppressive TME, promoting immune evasion and
cancer progression and preventing antitumor immunity (196–
198). Tregs represent about 1–3% of CD4+ T cells in human
tumors and about 10% in rodents. These cells express cell surface
molecules associated with activated/memory T cells, CD25,
FoxP3, CD45RBlow, CD62L, CD103, cytotoxic T-lymphocyte
associated protein 4 (CTLA-4), and glucocorticoid-induced TNF
receptor (199). An increase in Tregs prevalence has been shown
in several tumor malignances (7), and they are recruited and
expand within the TME via several mechanisms (200). We will
summarize these stages in the following steps. Tregs are recruited
into tumors in response to chemokines secreted by tumor cells
and innate immune cells. Tregs then expand and proliferate in
response to tumor-derived factors (TGF-β, adenosine, VEGF, and
IL-10) within the TME. TGF-β and adenosine, released from
cancer cells and alsoMDSCs, seem to play a key role in generating
suppressive CD25+ FoxP3+ Tregs from non-suppressive CD25−

FoxP3− conventional Tregs. The recruitment of Tregs occurs at
early tumor stages, as demonstrated by their presence in pre-
malignant lesions, and their prevalence increases with pancreatic
and breast tumor progression and worsening clinical outcomes
(114, 201–203). Moreover, it has been shown that the depletion
of Tregs cells in pancreatic ductal adenocarcinoma slows tumor
growth and prolongs survival (204–207).

Crosstalk Between MDSCs and Tregs
MDSC expansion in PB is directly correlated with poor clinical
outcomes (208–210).MDSCs can support the conversion of naive
CD4+ T cells into Tregs by secreting retinoic acid and TGF-β
(Figure 2), promoting the trans-differentiation of Th17 cells into
Foxp3+ Tregs (211). Moreover, MDSCs can also induce Tregs
immunosuppressive functions by mediating the release of IL-
10 and IFN-γ (162). Tumor-infiltrating M-MDSCs express high
levels of C-C chemokine receptor type 5 (CCR5) ligands and
recruit high numbers of Tregs into the TME (212), establishing
an additional cooperative network between MDSCs and Tregs
(24, 35). Therefore, Tregs are accumulated in the TME and
produce VEGF, which promotes angiogenesis (161, 213). By
using light-sheet fluorescent microscopy, Siret and colleagues
demonstrated direct interactions between MDSCs and Tregs in
pancreatic ductal adenocarcinoma (214), and in vivo depletion of
MDSCs significantly reduced the Tregs population in pancreatic
tumors (215). Furthermore, video-microscopy and ex vivo
functional assays have demonstrated that MDSCs can induce
Treg cells by cell–cell-dependent contact at different stages of
human cancer, and Tregs can also affect the survival and/or
the proliferation of MDSCs (214). The molecular mechanisms
guidingMDSC/Tregs interplay are not fully understood. The role
of co-stimulatory molecules, protein membranes, and receptor
candidates, respectively, such as PD-L1 (216), CD80 (217), and
CD40 (218), is currently under investigation. Together, Tregs and
MDSCs contribute to establishing an immunosuppressive TME
in multiple solid neoplasms (114, 201, 202, 214).
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FIGURE 2 | Crosstalk between MDSCs, NK cells, and Tregs in the TME. Myeloid-derived suppressor cells (MDSCs) and natural killer (NK) cells crosstalk within the

TME. The cartoon shows the immunosuppressive activity of MDSCs and regulatory T cells (Tregs) on NK cells using different pathways. MDSCs impair NK cell

activation, cytotoxicity, survival, and maturation by several secreted factors, including transforming growth factor beta (TGF-β), indoleamine 2,3-dioxygenase (IDO),

nitrogen oxide (NO), reactive oxygen species (ROS), and prostaglandin-E2 (PGE2). MDSCs contribute to tumor angiogenesis by releasing pro-angiogenic factors,

such as adenosine and vascular endothelial growth factor (VEGF), under pathological conditions. Created with BioRender.com.

CYTOKINES AND OTHER MEDIATORS IN
MDSC-MEDIATED NK CELL REGULATION

In addition to cell-intrinsic defects caused by chronic stimulation
(219), an immunosuppressive TME represses CTL and NK
killing (29, 220) via the recruitment of other cells types, such
as MDSCs, M2 macrophages (221), and Tregs (222), which
contribute to immune exhaustion via the expression of inhibitory
ligands, suppressive cytokines, and tumor-promoting factors
(221, 223). MDSCs display potent immunosuppressive activity
and play a critical role in regulating tumors and metastasis
development (144). MDSCs can impair CD8+ CTLs and NK
cells directly by influencing the pro-tumor TME (224). Their
contribution to regulating T lymphocytes is well-described, while
their interactions with other immune cells, such as NK cells,
DCs, or macrophages, in the TME are less understood (158).
The suppressive effects of MDSCs are mediated through cell–
cell contact, as well as the secretion of soluble factors, and result

in antigen-specific or antigen-non-specific suppression of T-cell
responses (225). The presence of MDSCs in tumors is associated
with chronic inflammation and antigen-specific tolerance by
T cells (226). MDSCs can also regulate the innate immune
response by inhibiting NK cell functions (227–230) and/or by
modulating macrophages’ cytokine production (159, 225). The
immunosuppressive activity of MDSCs plays an essential role in
the regulation of the NK cell response to the tumor. In vitro co-
culture of MDSCs and NK cells showed a reduction in NK cell-
mediated cytotoxicity and higher tumor cell tolerance. MDSCs
inhibit antitumor responses in part through immune checkpoint
inhibition (ICI), including programmed death (PD)-1/PD-L1,
galectin-9/T-cell immunoglobulin domain and mucin domain 3,
and CTLA-4/B7 interactions (231).

STAT3 regulates NK cell biology at several levels, including
activation, cytokine/cytolytic-mediated functions, and
interactions with other immune system components (232).
Many growth factors and cytokine receptors signal through
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STAT family transcription factors. STATs are impaired in several
types of cancer and play a crucial role in innate and adaptive
immunity (225, 233–235). In particular, STAT3 regulates several
pathways involved in NK cell development, cytotoxic activities,
and killing (232). Similarly, several cytokines, transcription
factors/regulators, and signaling pathways are involved in
the expansion and differentiation of MDSCs. These include
interferon regulatory factor 8 (IRF8), CCAAT-enhancer-binding
protein, and retinoblastoma protein; signaling pathways STAT3,
STAT1, STAT6, Notch, NF-κB, and cyclooxygenase 2 (COX-2);
and endoplasmic reticulum. Stress pathways are involved
in MDSCs’ expansion (170) (Figure 2) and include STAT3
activation in e-MDSC subtypes, which is critical for NF-κB
activation and increasing indoleamine 2,3-dioxygenase (IDO),
the release of which inhibits NK cell activation, proliferation, and
effector functions (236). The molecular mechanisms regulating
PMN-MDSC and M-MDSC populations differ from the afore-
described pathways and are currently under investigation.
Danvatirsen, a STAT3 antisense oligonucleotide, reversed the
immunosuppressive TME and enhanced immune activity, as
well as checkpoint blockades, in patient tumor samples from two
phase I clinical trials and murine models (237).

Tumor-derived IL-1β release into the TME has been shown
to enhance the recruitment of specific MDSCs during chronic
inflammation (173). The augmented suppressive potential of
IL-1β-induced MDSCs in mice was due to the activity of a
novel subset of MDSCs lacking Ly6C expression (173). When
these cells are prevalent under inflammatory conditions, they
can impair NK cell development and function in vitro and
in vivo by reducing the expression of the NK cell activating
receptor NKG2D (173). Ly6C− MDSCs may be a valuable
therapeutic target.

Tumor-derived prostaglandin-E2 (PGE2) may also play a
crucial pro-tumor role in inducing MDSCs, mainly via COX-2
(238) (Figure 2). Monocytes exposed to PGE2 acquire MDSC-
like functions, gaining the ability to inhibit NK cells via TGF-β
(239, 240). High levels of TGF-β in the plasma were observed
in patients with advanced tumors and correlated with worse
outcomes (241, 242). TGF-β is released from cancer cells and can
increase the expansion of M-MDSCs (243), recruit suppressive
cells to the TME (MDSCs, Tregs, DCs, and stromal cells),
and compromise the function of NK cells (230, 244–246),
cytotoxic CD8+ cells, DCs, Tregs, and macrophages (247). NK
cells exposed to MDSCs secrete less IFN-γ and downregulate
NKG2D and CD247 in vitro and in vivo (229, 230, 248, 249).
TGF-β not only impairs NK cell functions by downregulating
the expression of activating receptors (NKG2D and NKp30)
and inhibiting their transcription but also downregulates tumor
cell-expressed NKG2D ligands (250). Thereby, NK cells lose
their capacity to recognize and kill tumor cells via NKG2D
(250). Furthermore, TGF-β inhibits CD16-mediated IFN-γ
production and ADCC in human NK cells through mothers
against decapentaplegic homolog 3 (SMAD3) activation (251)
and affects CD34+ hematopoietic progenitors by inhibiting
the maturation of CD56brightCD16+ NK cells fraction in the
PB (246). The incubation of PB-NK cells with stromal cells,
isolated from decidual tissue conditioned media, mimicked

the suppressive effects of TGF-β1. NK cell interactions with
CXC chemokine ligands and progesterone at the maternal–
fetal interface after TGF-β1 exposure resulted in the reduction
of CD56brightCD16+ NK cells and induced decidual-like NK
cells that showed an exhausted phenotype (246). As such,
STAT3 blockade and TGF-β inhibition improve tumor immune
surveillance by NK cells (252). Specifically, tumor-infiltrating
and tumor-associated NK cells from STAT3-deficient tumor-
bearing mice express enhanced levels of NKG2D, CD69, FASL,
granzyme B, perforin, and IFN-γ, reducing tumor growth and
improving survival (252, 253). TGF-β signaling is deregulated
in many diseases, including cancer. In early-stage tumor cells,
this pathway has tumor-suppressor functions, including cell-
cycle arrest and apoptosis (254). TGF-β signaling in late-stage
cancer can promote tumorigenesis, angiogenesis, metastasis, and
immunosuppression (254–256). MDSCs release TGF-β in the
TME (144, 163, 175), and NK cell anergy (Figure 2) correlates
with the marked increase of MDSCs in the liver and spleen
in orthotropic liver cancer-bearing mice (230). Also, MDSCs
prevent cytotoxicity, NKG2D expression, and IFN-γ production
by NK cells (Figure 2) in vitro and in vivo through membrane-
bound TGF-β (230).

IDO is an intracellular enzyme, and it regulates tryptophan
catabolism into kynurenine (257, 258), which inhibits the
proliferation and function of NK and T cells (259–261). IDO
synthesized by MDSCs impairs NK cell activation, development,
and expansion, resulting in dramatically decreased expression of
NKG2D and DNAM-1 and limiting IFN-γ secretion (262, 263)
(Figure 2).

ARG1 and reactive oxygen species (ROS), soluble factors
secreted by MDSCs, also impair NK cell functions (Figure 2)
in cancer models in vivo (248, 264). Moreover, several
pro-inflammatory cytokines have been identified to mediate
MDSC/NK crosstalk in the TME (264). These phenotypic
and functional TME alterations due to MDSC/NK cell and/or
T cell interactions contribute to pro-tumor, pro-angiogenic,
and pre-metastatic activities in the tumor. Further studies are
necessary to elucidate the mechanisms involved in MDSC/NK
cell interactions to identify potential therapeutic candidates
or pathways to limit NK cell MDSC-mediated suppression in
the TME. MDSCs secrete high levels of soluble factors, such
as ROS, inducible nitrogen-oxygen synthase (iNOS), nitrogen
oxide (NO), peroxynitrate, and ARG1 (144), and show an
elevated endoplasmic reticulum stress response (132, 265)
(Figure 2).

NO is a ubiquitous, water-soluble, gaseous transmitter, which
plays an essential role in various physiological conditions,
inflammation, and cancer (266, 267). NO can play different roles
in regulating immunity depending on the exact circumstances
of its secretion. The autocrine production of NO by NK cells
can improve NK cell function, but when MDSCs produce NO,
it plays a vital role in mediating immunosuppression (266,
267). Co-cultures of autologous NK cells and MDSCs from
patients with cancer showed that MDSCs suppress FcR-mediated
function and signal transduction, leading to reduced responses to
monoclonal antibody (mAb) therapies, and inhibit the secretion
of IFN-γ and TNF-α by NK cells. Elimination of MDSCs or
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abrogation of NO production can improve responses to mAb
immunotherapy (228).

MDSCs also support tumor progression by inducing tumor
angiogenesis through the release of VEGF, basic FGF (bFGF),
prokineticin 2 (Bv8), and some MMPs (169, 172, 268–270)
(Figure 2). Some studies showed that MDSCs in the TME
produce high levels of MMPs, including MMP2, MMP8,
MMP9, MMP13, and MMP14 (167, 268, 271, 272). MDSCs
in the presence of high levels of MMP9 can promote
VEGF function by raising its bioavailability (273). VEGF
stimulates MDSCs via STAT3 in the TME and potentiates their
immunosuppressive activity by expanding other immune cell
populations (213, 274, 275) and stimulating the secretion of
numerous additional angiogenic factors and chemokines, which
further enhanceMDSCs accumulation within tumors. IL-1β, C-C
motif chemokine ligand 2 (CCL2), CXCL8, CXCL2, angiopoietin
1 and 2 (AGPTs), and GM-CSF (Figure 2) have been shown to
contribute to MDSC-mediated angiogenesis and involve STAT3
for their expression (80, 276–278).

The major components of the TME are the endothelial cells
of the blood and lymphatic vessels, fibroblasts, immune cells,
and the ECM (2). During tumor development and progression,
cancer and stromal cells often have restricted access to nutrients
and oxygen. Most solid tumors have hypoxic regions due to
abnormal vascularization and inadequate blood supply (279).
The changes to cancer and stromal cells that are necessary
for tumor progression in a hypoxic environment are attributed
to HIF-dependent signaling. The HIF family of transcription
factors includes HIF-1, HIF-2, and HIF-3. Signaling by HIF-1
and HIF-2 induces the expression of multiple pro-angiogenic
factors (VEGF, angiopoietin-2 [ANG-2], phosphatidylinositol-
glycan biosynthesis class F protein [PlGF], bFGF, and semaphorin
4D), and angiogenesis was promoted in MDSCs by HIF-
1 through VEGF and S100 calcium-binding protein A8
(S100A8) (280).

The TME has high levels of adenosine during hypoxia
and inflammation. Adenosine/adenosine receptor interactions
increase immunosuppression and angiogenesis through immune
cells (281, 282). MDSCs express increased levels of CD39 and
CD73 under hypoxic conditions or TGF-β stimulation (283,
284). These enzymes can convert adenosine triphosphate (ATP)
and adenosine monophosphate (AMP) to adenosine, resulting
in increased adenosine levels in tumor lesions (Figure 2).
Adenosine accumulation impairs IL-2 and Ly49D activation,
NKp46-receptor crosslinking, and maturation in NK cells (285).
It has also been shown that adenosine signaling is involved in
reducing the engagement of A2A adenosine receptor (A2AR) as
a checkpoint in NK cell maturation (286).

Tregs interact with different components of the TME (287)
and exert their suppressive function via contact-dependent and
-independent mechanisms, which have been previously reviewed
(288, 289). NK cell–Treg crosstalk in the human tumor has
not been studied extensively (290). However, it has been shown
that peripheral Tregs isolated from healthy donors and patients
with gastrointestinal stromal tumors impaired NK cells by
downregulating the expression of NKG2D activated receptors
and also inhibitedNK cell functions viamembrane-bound TGF-β

(291) (Figure 2). A similar effect was observed in vitro with
cervical carcinomas (292).

Through these mechanisms, MDSCs and Tregs inhibit CTL
and NK cell activity, promote tumor progression, and hinder
antitumor immunity (169, 172, 287, 293–296). Therefore, it is not
surprising that high MDSC infiltration of tumors correlates with
poor patient prognosis and resistance to immunotherapy and
chemotherapy (150, 175, 297–300). MDSC and Treg numbers
also positively correlate with disease stage and tumor burden
(114, 132, 144, 163–166, 201–203) and are predictors of poor
outcome in patients with solid tumors (301–304). Both MDSCs
and Tregs increase suppressive activity via signaling pathways,
and their interactions in tumors have recently been reviewed
(287, 305). Consistent with these findings, pharmacological
targeting of MDSCs and Tregs in animal models and cancer
patients significantly improves antitumor immunity, enabling
tumor control (306, 307).

TARGETING MDSCs AND THEIR
LIGANDS—CROSSTALK WITH NK CELLS

The complexity of the TME impairs immune cell functions and
affects their phenotype. Several strategies have been developed,
investigated, and applied in clinical trials to target MDSC
immunosuppression and enhance NK cells’ cytotoxic activity in
the TME.

Studies have indicated that the types of mediators responsible
for the differentiation, inhibition, and recruitment of MDSCs
into the tumor were dependent on the different MDSCs subsets
and tumor models (175). Targeting MDSCs is an approach
designed to limit their immunosuppression within the TME
and reduce neo-angiogenesis. Many therapies are focused on
blocking intratumoral recruitment and expansion of MDSCs
(Figure 3). Other approaches are dedicated to increasing MDSC
differentiation or inhibiting their immunosuppression activity
(264) (Figure 3). MDSCs are robust immunosuppressors in
the TME and are an impediment for many cancer immune
therapies (161).

Low doses of chemotherapy induce MDSC exhaustion
(308, 309). Chemotherapy drugs such as gemcitabine (310),
5-Fluorouracil (311), and doxorubicin (312) reduce MDSC
frequency, which enhances NK-mediated antitumor cytotoxicity
(313–315). Phenformin and metformin, two antidiabetic
drugs, impair MDSC functions mainly by blocking 5’ AMP-
activated protein kinase (AMPK). These drugs also upregulate
the expression of MHC class I polypeptide-related sequence
A (MICA) and heat shock protein 70 (HSP70) on cancer
cells through the phosphatidylinositide 3-kinase/protein
kinase B pathway leading to NK cell activation (316). In
addition to chemotherapy and radiotherapy, many studies
have combined MDSC targeting methods with immune-based
therapies to increase the antitumor effects (317). Encouraging
progress has been made combining MDSC targeting with
immunotherapy strategies.

Blocking TGF-β pathways is a promising strategy in some
preclinical and clinical trials. Some of the approaches currently
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FIGURE 3 | Strategies for targeting MDSCs and augmenting NK cell functions. Myeloid-derived suppressor cells (MDSCs) are robust immunosuppressors in the

tumor microenvironment (TME) and represent an obstacle for many cancer immune therapies. Targeting MDSCs is a different approach designed to limit their

immunosuppression within the TME and reduce neo-angiogenesis. Many combinatorial therapies are focused on blocking intratumoral recruitment and expansion of

MDSCs. Other approaches are dedicated to increasing MDSC differentiation or inhibiting their immunosuppression activity. Natural killer (NK) cell-based

immunotherapy strategies have been studied in an increasing number of clinical trials. Although NK cells can be useful in some types of cancer, it is necessary to

improve the efficacy of currently available NK cell products to avoid cell exhaustion. Innovative combinatorial approaches intended to improve NK cell function and

block MDSCs are in development. MDSC targeting, enhanced NK cell cytotoxic activity, and drugs targeting hypoxia can be used with current cancer therapies,

including immunotherapy, and may improve antitumor response efficacy. ICIs, immune checkpoint molecules. Created with BioRender.com.

under investigation in preclinical models and clinical trials
consist of decreasing circulating TGF-β, blocking ligand–
receptor interactions using neutralizing antibodies, and
inhibiting TGF-β signaling pathways (NCT00356460 and

NCT01722825) (318–323). Blocking TGF-β is a viable strategy
to prevent myeloid precursors from differentiating into M-
MDSCs and impair the migration and expansion of MDSCs
and Tregs in the TME (Figure 3). Alternatively, manipulating
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NK cells to block TGF-β signaling pathways is an attractive
and promising strategy for solid tumors. In SMAD3-silenced
NK cells (NK-92-S3KD), TGFβ1-mediated immunosuppression
was blocked, inhibiting cancer progression in mouse models
with human hepatoma and melanoma (324). Similarly, NK-92
cells genetically modified to express a chimeric TGF-β type II
receptor (extracellular and transmembrane domains) and the
intracellular domain of NK cell-activating receptor NKG2D were
resistant to TGF-β-induced suppressive signaling and did not
downmodulate expression of NKG2D (325). The same authors
demonstrated that NK-92-TN cells inhibited the differentiation
of human naïve CD4+ T cells to Tregs and decreased tumor
volumes in vivo in a hepatocellular carcinoma xenograft cancer
model (325).

A recent study demonstrated that NK cell sensitivity to TGF-β
can be reduced by stimulation of NK cells with IL-2 (Figure 3),
which increases IFN-γ and TNF-α production by NK cells in
the tumor, compared to NK cells that encountered acute TGF-β
exposure or were not TGF-β imprinted (326). A new approach
to overcoming tumor resistance mechanisms to ICIs has been
tested by combining TGF-β, CXCR1/2 signaling, and PD-L1
(327). This simultaneous inhibition reducedmesenchymal tumor
features and infiltration of suppressive PMN-MDSCs into the
TME, improving antitumor activity by promoting immune cell
infiltration and activation in tumors (327).

Cytotoxic agents and tyrosine kinase inhibitors (TKIs) deplete
MDSCs and regulate myelopoiesis (264). TKIs, such as axitinib,
sorafenib, and sunitinib, induce DNA damage by histone
γ-H2AX phosphorylation and checkpoint kinase 1 activation,
leading to senescence of human renal carcinoma cells (328).
The presence of DNA damage in cancer cells also improved the
identification of tumor cells by NK cells (328). TKIs can directly
target VEGF and/or involve c-KIT signaling and interact with
other factors, such as CSF or STAT3. Thesemechanisms impaired
MDSC function and inhibited tumor angiogenesis (329, 330).
These processes upregulate NKG2DLs and, consequently,
stimulate NK cell antitumor cytotoxicity (329, 330). Several
in vivo studies combined TKI and ICI therapies; the
combination therapy improved antitumor mechanisms
and simultaneously reduced immune cell exhaustion
(330–333).

STATs are activated in tumor cells by multiple soluble factors.
This activation causes impaired cytolytic functions mediated
by perforin and granzyme B in NK cells and alters the
expression of NK cell receptors NKG2D and DNAX accessory
molecule-1 (DNAM-1) (232). STAT3 activation in tumor cells
also represses the expression of NK cell-chemotactic factors,
which reduce the migration of NK cells in the TME. TGF-
β and IDO produced by tumor cells and MDSCs impair NK
cell development, proliferation, and activation (232), leading
to reduced NK-mediated cytotoxicity. Exhausted NK cells and
T cells have a diminished secretion of IFN-γ (334). MDSCs
secrete type I interferons to maintain a high level of PD-L1
expression and preserve their immunosuppressive activity in
the TME as a compensatory mechanism (335); therefore, the
autocrine IFNα/IFNβ-pSTAT1-PD-L1 circuit represents a pivotal
pathway to targeted MDSCs (335).

STAT3 also increases the expression of PD-L1, which engages
PD-1 expressed on NK cells, reducing their antitumor response
(232). Janus kinase (JAK)/STAT3 inhibitors decrease MDSC
trafficking in the TME, diminishing angiogenesis by inhibiting
VEGFA and casein kinase 2 (336) and driving NK cell activation
(336, 337). Targeting STAT3 in tumor-bearing mice leads to
tumor reduction, better survival, and a significantly higher
number of activated NK cells following treatment, as compared
to control mice (252, 253).

Other approaches using STAT3 inhibitors combined
with ICIs, such as nivolumab (NCT03647839), STAT3 small
interfering RNA (siRNA), or decoy STAT3 oligonucleotide
inhibitors alone or combined with ICIs (AZD9190), are in phase
I/II clinical trials (NCT03421353). STAT3 siRNAs coupled to
CpG oligonucleotides reduced the immunosuppression of toll-
like receptor 9 (TLR9)-expressing PMN-MDSCs in preclinical
data (338). Mouse and human PMN-MDSCs overexpress fatty
acid transporter protein 2 (FATP2) due to stimulation by
GM-CSF through activation of the STAT5 transcription factor
(339). FATP2 inhibitors alone, or in combination with ICIs,
delayed tumor progression in tumor-bearing mice (339). CSF-1R
inhibitors, combined with anti-PD-1, improved the immune
response in a mouse model of neuroblastoma (340).

MDSC immune functions are also impaired using class
I deacetylase, entinostat, or ARG1 small-molecule inhibitors
by decreasing iNOS and COX-2 levels (341). Some of these
treatments enhanced NK killing and blocked MDSC-mediated
suppression of T cells in vitro and in vivo in tumor models (342–
344). One study showed that an ARG1 small peptide inhibitor
combined with anti-PD-L1 slowed tumor growth (345). ARG1
inhibitors (such as CB-1158) showed encouraging preclinical
results (346), increasing tumor-infiltrating NK cells and CD8+

T cells (345, 347), reducing tumor burden (348, 349), and
decreasing MDSCs recruitment into the TME (345).

Conventionally, phosphodiesterase-5 (PDE5) inhibitors
(sildenafil and tadalafil) are used as therapies for non-malignant
conditions (350). Recent evidence suggests that PDE5 inhibitors
could improve antitumor cell responses by inhibiting the
suppressive functions of MDSCs in the TME (306, 351, 352).
Preclinical and clinical data show that the PDE5 inhibitor
tadalafil enhanced the immune response in head and neck
squamous cell carcinoma (HNSCC) patients through inhibition
of MDSCs (NCT01697800) (352). However, another PDE5
inhibitor, Sildenafil, reduced PMN-MDSC function through
downregulation of ARG1, IL4Ra, and ROS expression (248).
PDE5 inhibitors also enabled NK cell antitumor cytotoxicity
and reduced postoperative disease recurrence. These studies
have also shown Treg reduction and enhanced CD4/CD8T cell
function in the TME (248, 306, 352). Phase I/II Clinical Trial
NCT02544880 used tadalafil as a therapy for decreasing MDSCs
and Tregs, improving the antitumor response. The treatment
might also enhance antitumor mucin 1 (MUC1) vaccine efficacy
in patients with resectable and recurrent HNSCC by promoting
a permissive environment (NCT02544880).

All-trans retinoic acid (ATRA) and vitamin A metabolites
(retinol) have been used to treat acute myelogenous leukemia
(353–355). Several studies reported that ATRA inhibited cell
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migration, metastasis, and proliferation, and promoted apoptosis
of tumor cells (356–358). ATRA alone (359–361) or in
combination with a DC vaccine against p53 (360) or IL-
2 administration (361) showed lower MDSC frequencies and
enhanced differentiation of MDSCs (359–361) into mature
DCs, macrophages, and neutrophils (362). ATRA decreased
the expression of immunosuppressive genes through the
downregulation of TGF-β, PD-L1, IL-10, and IDO inMDSCs and
upregulated MHC class I homologs MICA and MICB on tumor
cells, enhancing NK cell activity (363, 364) and cytotoxicity of
T cells (365) in the CD8− and CD4− immune response (362).
In clinical studies, ATRA alone or combined with ipilimumab
significantly reduced the level of circulatingMDSCs in advanced-
stage melanoma patients (366). In a preclinical breast cancer
model, ATRA therapy improved the efficacy of anti-angiogenic
treatments (367).

VEGF is produced by tumor cells in the TME and supports
neo-angiogenesis, metastasis dissemination, and also acts as
a chemoattractant for MDSCs in the tumor site (302, 368,
369). This has been shown in both NSCLC and renal cell
carcinoma patients, especially under hypoxic conditions (370,
371). In a NSCLC model, VEGF attracts MDSCs from the
BM to the periphery, expanding their presence throughout
the individual (372). The binding of VEGF to its receptor is
correlated with increased production ROS via the JAK2/STAT3
activation pathway. MDSCs can also secrete VEGF (Figure 2),
creating, together with the tumor cells, a positive autocrine
feedback loop in the TME (373, 374). Therefore, anti-VEGFR2
reduced the accumulation of intratumoral MDSCs, decreased
hypoxia, and interfered with the formation of tumormicrovessels
through S100A8 (367). Genetic inactivation of VEGFA inMDSCs
improved clearance of senescent tumor cells by NK cells,
inhibited tumor regrowth after chemotherapy and, prevented
cachexia in tumor-bearing mice (375). A phase II clinical trial
evaluated the efficacy and pharmacokinetics of bevacizumab,
an anti-VEGF recombinant human mAb, combined with
capecitabine and paclitaxel chemotherapy in subjects with triple-
negative, metastatic, or locally advanced breast cancer. In 77%
of patients, the therapy showed an objective response rate, with
complete response in 19%, and the median progression-free
survival was 7.6 months (376). Several studies also demonstrated
that MDSCs possess secondary pro-angiogenic mechanisms
involving MMPs, as discussed in Vetsika et al.’ review (162).

Because MDSCs are recruited to the TME by tumor cells,
blocking their migration using a CCR5 antagonist and CCL2
inhibitors seems to be a promising therapeutic approach.
Accumulation of CCR5+ MDSCs with high suppressive activity,
associated with increased concentrations of CCR5 ligands
and tumor progression, has been shown in a tumor-bearing
melanoma study model (377). The upregulation of CCR5+

on CD11b+Gr1+ myeloid cells was induced in vitro by
CCR5 ligands and other inflammatory factors. Blocking the
CCR5/CCR5 ligand interaction improved survival by reducing
the migration and the immunosuppressive functions of MDSCs
in melanoma lesions of tumor-bearing mice (377). This strategy
can also enhance the suppression of MDSCs by NK cells,
as shown in a premetastatic lung animal model (378). CCL2

expression in MDSCs has been elucidated in a lung tumor
model, and anti-CCL2 treatment can decrease peripheral and
intratumoral PMN-MDSCs and M-MDSCs by inhibiting the
ARG1 expression and iNOS (379). The same study showed
enhancement in CD4+ and CD8+ T cell infiltration and
production of IFN-γ in the TME. As a result, anti-CCL2 therapy
increased the survival time of tumor-bearing mice. Anti-CCL2
therapy could be a potential approach to improve NK cell activity
and the efficacy of ICI immunotherapy.

Some studies have shown that COX-2 inhibitors (celecoxib
or nimesulide) reduced the expansion of MDSC subtypes and
decreased cancer progression (380–382). COX-2 inhibitors also
stimulate NKG2D ligand expression on tumor cells, enhancing
NK cell-mediated cytotoxicity (383) and reducing angiogenic
pathways via VEGF (384). A phase II clinical trial showed
that perioperative treatment with a COX-2 inhibitor (etodolac)
in combination with a β-adrenergic antagonist (propranolol)
reduced circulating CD14+ monocytes and improved NK cell
activation (385). Thus, this study supports the rationale for
targeting MDSCs in the perioperative period to enhance clinical
outcomes. A decrease in MDSC COX-2 and PEG2 activity and
NO and ROS production has been shown in animals and humans
after Vitamin D3 or E treatments (386). MDSCs impair NK
cell function through NO production, and clinical trials are
evaluating novel therapies to block this mechanism (228). A
clinical trial using celecoxib, in combination with nivolumab
and ipilimumab, is currently recruiting for the treatment of
colon carcinoma (NCT03026140). A colorectal cancer phase
III trial combining vitamin D3 with standard chemotherapy
and bevacizumab is also ongoing (NCT04094688). Vitamin
E supplementation decreased PGE2 production by inhibiting
COX-2 activity, resulting from decreasedNOproduction, inmice
and humans (386). It also improved the activation of T and
NK cells, increased lymphocyte proliferation, and modulated DC
function (386).

ROS molecules are involved in many pathways, thereby
controlling a wide range of biological events, such as
immunosuppression in the TME (387). Following pathogenic
and inflammatory immune responses, MDSCs release ROS (387).
Although ROS has toxic effects on most cells, MDSCs survive
despite the elevated levels and constant production of ROS in the
TME (388). The production of ROS by MDSCs is upregulated in
many murine tumor models and human cancers (389, 390) and
plays a crucial role in maintaining MDSCs in an undifferentiated
state (387). ROS production is regulated by the nuclear factor
(erythroid-derived 2)-like 2 (Nrf2). Synthetic triterpenoid C-28
methyl ester of 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid
(CDDO-Me; bardoxolone methyl) in an MC38 colon carcinoma
model has been shown to reduce MDSC ROS production via
Nrf2 activation (307) and IL-17D production (391). A phase I
clinical trial showed encouraging results using this therapy (392).
Forcing IL-17D production using Nrf2 agonists can enhance
NK cell activation and recruitment, leading to tumor regression
(391, 393).

The pathological intratumoral accumulation of CXCR2+

PMN-MDSCs impairs the functions of NK cells in mice bearing
oral carcinoma tumors by secreting TGF-β, NO, and ROS (394).
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CXCR1/2 inhibitors (SX-682) significantly abrogated MDSCs
trafficking within a tumor and improved tumor infiltration,
activation, and therapeutic efficacy of adoptively transferred
murine NK cells in the HNSCC preclinical model (394), and in
combination with anti-PD-1, they improved ICI therapy (395).

HIF-1α, released in the TME from tumor cells, is another
protein that has a crucial role in MDSC differentiation
toward TAMs (178, 396). Some progress has been achieved
targeting hypoxia using hypoxia-activated prodrugs (TH-302)
(Figure 3), hypoxia-modulator drugs (modulating expression,
DNA-binding, transcriptional activity, and degradation of HIF
proteins), drugs directly modulating HIF mRNA (antisense
oligonucleotides), and inhibiting pathways involved in the
control of HIF-1α mRNA (397). Combination therapy of TH-
302 with gemcitabine in a phase II clinical trial for advanced
or metastatic pancreatic cancer (NCT01144455) (398) or with
doxorubicin in a phase III trial for advanced soft tissue
sarcoma (NCT01440088) (399) showed encouraging results. The
combination of TH-302 therapy with anti-CTLA-4 and PD-1
cured more than 80% of tumors in a mouse prostate cancer
model by reducing MDSCs and granulocytic subsets and driving
T cell migration into the hypoxic tumor sites (400). Innovative
combinatorial approaches, such as drugs targeting hypoxia used
with current cancer therapies, including immunotherapy and
MDSCs targeting, may improve antitumor response efficacy.

IL-18 and IL-33 are involved in CD11b− BM progenitor
cell differentiation to M-MDSCs (192) and PMN-MDSCs (401),
respectively. Targeting of CD11b− BM treated with anti-IL-18 or
IL-33 has been shown to enhance T cell proliferation and IFN-γ
secretion (192, 401). OtherMDSCmolecules targeting aminoacyl
tRNA synthetase complex interacting multifunctional protein 1,
TLR agonists, tumor-derived exosome-associated HSP72, and
inflammasome component NLR family pyrin domain containing
3 have also been shown to contribute to MDSC differentiation
and have been reviewed previously (402). MDSCs can be blocked
by combining ICIs (anti-PD-1, PD-L1, and CTLA-4) with anti-
IL-18 (192), inhibitors of FATP2 (339), long non-coding RNA
Pvt1 (403), downregulation of the pseudogene Olfr29-ps1 (404),
or deletion of the nuclear factor 1A gene (405).

PRE-ACTIVATED NK CELL PRODUCTS
FOR CANCER IMMUNOTHERAPY

Cancer immunotherapy strategies have focused on T-cell-based
immunotherapy using expanded tumor-specific CD8+ CTLs
from tumor-infiltrating lymphocytes (TILs) (406). Adoptive
transfer of TILs following lymph-depleting strategies have shown
promising effectiveness in metastatic melanoma studies (407–
409), but short-lived responses (410) and side effects, such as
vitiligo, uveitis, and retinitis, have been reported (407, 411).

Pre-clinically and clinically, studies have identified several
cytokines and other novel soluble factors that increase NK cell
numbers, function, and persistence. The two most common
strategies are pretreating NK cells with cytokines (before
the adoptive transfer) or in vivo cytokine administration.
IL-2 (412), IL-15 (413), IL-12 (414, 415), IL-18 (416, 417),

IL-21, their combinations, and administrations with other
immunotherapeutic agents have all been described in the
context of regulating NK cell function, maturation, survival, and
improving activation and cytotoxicity (Figure 3). Results are
expected from clinical trials evaluating the safety and efficacy of
combining IL-21 with other immunotherapeutic mediators:
IL-21/anti-PD-1 against solid tumors (NCT01629758)
and IL-21/ipilimumab against melanoma (NCT01489059).
Cytokine analogs of IL-15, such as IL-15 superagonist
ALT-803 (NCT03228667, NCT03127098, NCT03022825,
NCT02384954, NCT02138734, NCT02890758, NCT02559674,
and NCT03520686) and NKTR-255, are under investigation.
Furthermore, multiple ongoing clinical trials are evaluating the
safety and efficacy of several other immune cytokines alone
or in combination with other therapeutic strategies, such as
immune checkpoint inhibitors (NCT03209869, NCT03386721,
NCT02627274, and NCT02350673) (Figure 3).

Combination therapies of PD-1 blockade and IL-15
stimulation and also IL-15 and IL-15RaFc have been reported
as safe in mouse models (418) and patients with NSCLC (419).
IL-15 stimulation increases the expression of the activating
receptors CD16 and NKG2D on NK cells and increases the
activation, proliferation, cytotoxic activity, and survival of NK
cells and CTLs (420). One of our preclinical studies found that
the combination of PD-1 blockade and IL-15 signaling resulted
in eradication of transplanted lung adenocarcinoma (LUAD)
cells in about one-half of treated LUAD-SIS-PDX mice, while the
other half presented with a partial response. Notably, IL-15 alone,
without PD-1 blockade, significantly reduced tumor burden in
all treated LUAD-SIS-PDX animals (418). PD-1 blockade alone
transiently prevented tumor growth, but tumors grew at a similar
rate to untreated control tumors after 2 weeks. The addition
of IL-15 to PD-1 blockade completely abrogated tumor escape
from ICI, resulting in a powerful additive therapeutic effect
capable of tumor eradication. These findings support a key role
for adjuvant IL-15 treatment to induce an immune cell-mediated
tumor attack, which can prevent tumor escape from checkpoint
blockade therapy, as shown using our novel LUAD-SIS-PDX
model (418).

In addition to cytokine stimulation, mAb can be used to
block the activity of NK cell inhibitory receptors. The ligation
of inhibitory KIRs by HLA molecules triggers NK cell inhibition
(64), and anti-KIR antibodies are under investigation to improve
NK cell cytotoxicity in cancer (421). Because the expression of
NK cell-expressed inhibitory KIRs and PD-1 correlate in patients
with solid tumors (e.g., NSCLC), combining anti-KIR antibodies
with anti-PD-1 treatments to avoid immune escape of tumors
in these patients may be an effective treatment strategy (422).
Several clinical trials are currently evaluating anti-KIR antibodies
against solid tumors combined with other immune treatments
(NCT03341936, NCT03203876, and NCT03347123).

NK CELL SOURCES

NK cells do not need prior activation to target tumor cells.
The fine-tuning of NK cell functions occurs during their
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maturation and instills a form of tolerance. NK cells are
“educated” to recognize healthy MHC-I-expressing cells with
KIR receptors, resulting in inhibitory signals and preventing
NK cell activation. In addition to KIRs, NK cells also
express two other types of inhibitory receptors (423): leukocyte
immunoglobulin-like receptors (LILRs) (424) and C-type lectin
receptors (NKG2A/CD94). The balance of inhibitory and
activating signals expressed on target cells mediate NK cell
activation and response (425–427).

NK cells can kill tumor target cells through a variety of
mechanisms, as discussed previously in this review. Since NK
cells represent an important defense against tumors, NK cell
infusion products have been evaluated as a possible cancer
immunotherapy. Different NK cell sources have been tested in
patients with tumors combined with chemotherapy (428) and,
allogeneic NK cells have been selected in many studies for their
increased alloreactivity, achieved by mismatching of inhibitory
KIRs and tumor HLA (429) (Figure 3). This is referred to as a
haploidentical or half-matched setting. Haploidentical NK cells
aremore reactive against recipient tumor cells because of reduced
KIR-mediated inhibition (429). NK cells for adoptive transfers
can be obtained from five different sources: autologous NK cells,
allogeneic NK cells (430), umbilical cord-derived NK cells, NK
cell lines, and embryonic stem cell-derived/induced pluripotent
stem cell (ES/iPSC)-derived NK cells (431) (Figure 3), allowing
for a multitude of choices to match or mismatch KIR-HLA
receptor pairings.

CHIMERIC ANTIGEN RECEPTOR–NK
CELLS FOR CANCER IMMUNOTHERAPY

One currently promising strategy is redirecting NK cells with
chimeric antigen receptors (CARs) (Figure 3). Autologous CAR-
T cell successes in patients with leukemia and lymphoma (432)
have raised considerable interest in using immune cells as a
cancer treatment. The advantage of a CAR strategy is that
one CAR can be applied for many tumor types expressing the
matching ligands. Modification with CAR is also proposed for
reprogramming NK cells to improve their cytotoxicity. CAR-NK
cells represent an exciting approach for cancer immunotherapy.
NK cells can be targeted with CARs against surface molecules
expressed by tumor cells and might avoid some of limitations
or side effects of CAR-T cells. While conventional T cells are
HLA-restricted, CAR-T cells are designed to recognize their
target antigens independent of HLA expression and deliver their
costimulatory signal. However, CAR-T cells are expensive and
labor-intensive to generate (433), and the application of CAR-
T cell therapy is often limited by intrinsic risks, such as graft-
vs.-host disease (GvHD) (434). Also, off-target effects, cytokine
release syndrome, and other side effects restrict their clinical
applications. CAR-T cell therapy has been successful in treating
blood cancers. However, a significant obstacle for the treatment
of solid tumors is an extremely immunosuppressive TME that
decreases the ability of immune cells to infiltrate tumors (435).
CAR-T cell functions are often suppressed in solid tumors due
to T cell expression of PD-1 and PD-L1 expression in the

TME. These data may explain why the use of CAR-T cells has
not been as useful for treating solid tumors as it has been to
treat hematological malignancies (436). However, PD-1 levels
expressed by NK cells are substantially lower, making NK cells
good candidates for eradicating solid tumors (437).

Allogeneic NK cell transplantation rarely induces GvHD
(438) and has the potential to become “off-the-shelf ” products,
making CAR-NK cell therapies a possible widespread product
(433). Large-scale culture and genetic modification of allogenic
human NK cells are feasible and could readily be used to
treat a broad range of cancer patients. NK cell-expressed CARs
typically include a single-chain variable fragment from a mAb,
a transmembrane hinge region, and a costimulatory signaling
domain, such as CD28, CD3-zeta, 4-1BB (CD137), or 2B4
(CD244) heterodimers (439, 440). These main signaling domains
frequently have been derived from TCR moieties (441). Four
generations of CARs are currently under development (442).
The first generation of CARs usually contains only the CD3ζ
activation signaling domain (443). In the second and the third
generations of CARs, costimulatory molecules like CD28, 4-
1BB, and CD134 are also included to increase NK cell activation
(444). The fourth generation of CARs is engineered to secrete
transgenic cytokine-like IL-12, which should help to remodel the
tumor environment to promote therapeutic success (442, 445).
Once CAR-modified NK cells recognize their specific targets,
such as CD19−, CD20−, or CD138− cells, the CAR receptors
trigger an intracellular signaling cascade that activates CAR-NK
cells to kill the antigen-expressing target cell.

Methods to generate CAR-NK cells that target solid tumors
include lentiviral transduction or electroporation of the NK-92
NK-like cell line (438), primary NK cells, and the differentiation
of NK cells from modified pluripotent stem cells (431). NK cells
express NKG2D, an activating receptor triggered by MICA/B
and UL binding protein (ULBPs) expressed on the surface of
stressed cells upon DNA damage, hypoxia, or viral infection
(446). NKG2D ligands are often overexpressed on solid tumors
and tumor-infiltrating cells like MDSCs (447). However, the
NKG2D cytotoxic adapter molecule, DNAX-activation protein
10 (DAP10), is downregulated by suppressive molecules like
TGF-β, which is abundantly expressed in the TME (448).
NK cells and CAR-NK cells expressing the native NKG2D
receptors are thus downmodulated in the TME due to the
reduction in DAP10 expression. To overcome the repressive
effects of the solid TME on NKG2D functions, one group
(449) established a gene-modified NK cell bearing a chimeric
receptor in which the activating receptor NKG2D is fused to
the cytotoxic ζ-chain of the T-cell receptor (NKG2D.ζ) (450).
This specific CAR has been designed to target MDSCs in the
TME of solid tumors, which are refractory to other types of
immunotherapy. The NKG2D.ζ-NK cells are cytotoxic against
MDSCs, but unmodified NK cells are not. They also showed that
NKG2D.ζ-NK cells generated from patients with neuroblastoma
successfully killed autologous MDSCs in the TME, which were
capable of suppressing CAR-T functions (449). CAR-NK cells
have been established and engineered against several antigens
for solid tumors, including epidermal growth factor receptor,
human epidermal growth factor receptor-2 (HER2), egeria,

Frontiers in Immunology | www.frontiersin.org 14 May 2021 | Volume 12 | Article 633205

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zalfa and Paust NK-MDSC Interactions in the TME

disialoganglioside, epithelial cell adhesion molecule, mesothelin,
and tyrosine-protein kinase transmembrane receptor ROR1, with
promising results in preclinical or clinical studies (39). In a
recently published phase I/II clinical trial, HLA-mismatched anti-
CD19 CAR-NK cells were administered to 11 patients with
relapsed or refractory CD19-positive cancers. The majority of
treated patients showed a response to treatment with anti-
CD19 CAR-NK cells without developing significant toxic side
effects (451). The phase I/II trial was approved for B-cell
lymphoma in 2017 (NCT03056339). In another study, NK
cells derived from umbilical cord blood were transfected with
a CAR containing inducible caspase 9/IL-15 (iC9/CAR.19/IL-
15) (452). They produce IL-15, which supports CAR-NK cell
survival, and are engineered to express the inducible suicide gene
caspase 9 for their pharmacologically induced elimination. Liu
and coworkers showed efficient iC9/CAR.19/IL-15 cell killing
of CD19-expressing tumor cell lines in vitro and improved
clinical outcome in a xenograft Raji lymphoma murine model
(452). In the clinical trial, iC9/CAR.19/IL-15 cells were used
to treat patients with relapsed/refractory CD19+ B lymphoid
malignancies. This cell therapy was applied with high-dose
chemotherapy (NCT03579927).

An alternative approach for the generation of CAR-NK cells
is the use of iPSC as a platform to generate CAR-NK cells (453)
(Figure 3). In 2018, a NK cell line was established from human
iPSCs that expresses a CAR containing the transmembrane
domain of NKG2D, the 2B4 costimulatory domain, and the
CD3ζ signaling domain able to mediate strong antigen-specific
NK cell signaling (iPSC-CAR-NK cells) (453). The combination
of NKG2D-2B4ζ in this CAR construct conferred strong
upregulation and activation of phospholipase C gamma, Syk-
vav1-Erk, and NF-κB pathways, improving iPSC-CAR-NK cell
activation, proliferation, and antitumor activity. This cell line
maintains the same NK cell phenotype as wild-type cells but
enhanced antitumor activity compared to CAR-T cells, iPSC-NK
cells, or non-CAR PB-NK cells. In an ovarian cancer xenograft
model, iPSC-CAR-NK cells significantly inhibited tumor growth
and improved survival in mice and showed less toxicity than
CAR-T cells (453).

A pilot study investigated the use of NKG2D ligand targeted
CAR-NK cells in patients with metastatic colorectal cancer and
evaluated the safety and feasibility of CAR-NK cell treatment
against solid metastatic tumors (454). For these studies,
autologous or allogeneic NK cells were transfected by mRNA
electroporation to generate CAR-NK cells with transiently
enhanced specificity and activity against NKG2D ligand-
expressing cancer cells. This approach has also been used in a
clinical trial involving solid metastatic tumors (NCT03415100).

About 200 clinical trials are currently using CAR-T cells,
and only 20 clinical trials so far are utilizing CAR-NK cells
(http://www.clinicaltrials.gov). For these trials, CAR-NK
cell products are derived from either primary NK cells
or NK cell lines. Only five clinical trials were conducted
to evaluate the safety of CAR-NK-92 infusion products,
while 15 trials evaluated CAR-NK cells from other sources.
CD7 (NCT02742727), CD19 (NCT02892695), and CD33
(NCT02944162) targeted blood cancer (455); HER2 targeted
glioblastoma (NCT03383978); co-stimulating conversion

receptors targeted NSCLC (NCT03656705); and MUC1 targeted
multiple refractory solid tumors, including hepatocellular
carcinoma, NSCLC, pancreatic tumors, and triple-negative
metastatic breast tumors (NCT02839954) (455).

Additional preclinical or clinical trials targeting CD19−

(NCT03690310) or CD22− expressing (NCT03692767) cells are
ongoing, and bivalent CD19/22 (NCT03824964) CAR-NK cell
products are also being examined in patients with relapsed and
refractory B cell lymphoma (456). One clinical trial targeting
CD19-positive cells is testing CD19-CAR-NK cell infusions in a
pediatric setting (NCT00995137), using irradiated K562-mb15-
41BBL expanded PB-derived NK cells transfected with CD19-
41BBz-CAR (455).

Roundabout homolog 1 (ROBO1), a member of the axon
guidance receptor family (Robo1–4), is a potential target for
immunotherapy (457). ROBO1 modulates the chemotaxis of T
cells and tumor angiogenesis to counteract the tumor growth
(458–460). Some solid tumors, such as pancreatic cancer, have
increased expression of ROBO1 (461). Three clinical trials are
currently studying CAR-NK cells directed against ROBO1, using
CAR-NK (NCT03940820), bi-chimeric antigen receptor-NK cell
BiCAR-NK (NCT03941457), and bi-chimeric antigen receptor-
NK cell or T cell BiCAR-NK/T (NCT03931720) cells on patients
with solid tumors (456).

Additional strategies for optimizing NK cell-mediated
cytotoxicity have been employed. ADCC is a potent mechanism
of cytotoxicity used by NK cells. An increasing number of
mAbs are currently being examined in preclinical and clinical
studies for their ability to improve antitumor ADCC (462).
Limiting shedding of CD16 from NK cell membranes also
enhances ADCC, and iPSC-NK cells modified to overexpress
a non-cleavable version of CD16 showed improved ADCC in
vitro and in vivo in a human B-cell lymphoma model (463).
iPSC can also be modified to improve in vivo persistence of
iPSC-NK cells. Furthermore, the deletion of cytokine-inducible
SH2-containing protein (CISH) in iPSC differentiated NK
cells improved persistence and enhanced antitumor activity
in a leukemia xenograft model (464). Other relevant strategies
to strengthen NK killing potential use antibody therapy to
target NK cell checkpoints that inhibit NK cell activity in the
TME, such as PD-1 (465), T cell immunoreceptor with Ig and
ITIM domains (466), and single Ig IL-1-related receptor (467).
These findings provide some flexibility in the combining of
therapeutic approaches. NK cells can be modified to express
CARs and/or be used in combination with ICI or additional
antibody immunotherapy. While significantly more work is
needed to optimize these approaches, these data nevertheless
demonstrate the potential for “off-the-shelf ” NK cell platforms
for treating solid tumors and hematological malignancies.
Further research needs to be done to identify and understand
possible CAR-NK exhaustion mechanisms after transplantation
in preclinical and clinical studies.

CONCLUSION

The TME plays a critical role in regulating NK cell antitumor
functions and regulating NK cell trafficking, persistence,
proliferation, and activation. MDSCs are one of the critical

Frontiers in Immunology | www.frontiersin.org 15 May 2021 | Volume 12 | Article 633205

http://www.clinicaltrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zalfa and Paust NK-MDSC Interactions in the TME

players inducing and regulating the immunosuppressive
environment of the TME. MDSCs interact with numerous innate
immune cells, modulating their functions and suppressing strong
tumor-specific immunity. As such, MDSCs represent an essential
target in oncology. While NK cell-MDSC interactions have been
investigated, few studies have evaluated how NK cell cytotoxicity
can be exploited to attack both the immunosuppressive TME
as well as the tumor. We have provided an updated review of
several current prospective therapies for targeting the MDSC–
Treg axis and improving antitumor NK cell functions (several
mechanisms are summarized in Figure 3). These pathways
have substantial implications for the tumor and are currently
under investigation. The combinatorial treatments that target
these pathways have been showing promising results. More

work is needed to fully exploit NK cell functions to eradicate
hematological malignancies and solid tumors.
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