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Abstract 

Prior research has shown that manipulating stimulus energy by changing both stimulus 

contrast and variability results in confidence-accuracy dissociations in humans. Specifically, 

even when performance is matched, higher stimulus energy leads to higher confidence. The 

most common explanation for this effect is the positive evidence heuristic where confidence 

neglects evidence that disconfirms the choice. However, an alternative explanation is the 

signal-and-variance-increase hypothesis, according to which these dissociations arise from 

low-level changes in the separation and variance of perceptual representations. Because 

artificial neural networks lack built-in confidence heuristics, they can serve as a test for the 

necessity of confidence heuristics in explaining confidence-accuracy dissociations. Therefore, 

we tested whether confidence-accuracy dissociations induced by stimulus energy 

manipulations emerge naturally in convolutional neural networks (CNNs). We found that, 

across three different energy manipulations, CNNs produced confidence-accuracy 

dissociations similar to those found in humans. This effect was present for a range of CNN 

architectures from shallow 4-layer networks to very deep ones, such as VGG-19 and ResNet 

-50 pretrained on ImageNet. Further, we traced back the reason for the confidence-accuracy 

dissociations in all CNNs to the same signal-and-variance increase that has been proposed 

for humans: higher stimulus energy increased the separation and variance of the CNNs’ 

internal representations leading to higher confidence even for matched accuracy. These 

findings cast doubt on the necessity of the positive evidence heuristic to explain human 

confidence and establish CNNs as promising models for adjudicating between low-level, 

stimulus-driven and high-level, cognitive explanations of human behavior. 

Word count: 245  
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Introduction 

Humans have the metacognitive ability to express confidence in their decisions (Koriat, 

2006; Metcalfe & Shimamura, 1994). Although confidence is generally reliable in tracking 

one’s performance (Mamassian, 2016), several kinds of stimulus manipulations have been 

found to cause confidence to dissociate from accuracy (Boldt et al., 2017, 2019; de Gardelle 

& Mamassian, 2015; Desender et al., 2018; Herce Castañón et al., 2019; Koizumi et al., 2015; 

Samaha et al., 2016; Spence et al., 2016, 2018; Zylberberg et al., 2014, 2016).  

 

A particular type of confidence-accuracy dissociations has been induced by stimulus 

manipulations referred to as “energy manipulations” (Gao et al., 2023; Zylberberg et al., 

2012). Specifically, high energy stimuli can be created by simultaneously increasing stimulus 

features that aid recognition (e.g., stimulus contrast, motion coherence, etc.) and stimulus 

features that impede recognition (e.g., variability among several stimuli, strength of 

disconfirming evidence, etc.). For instance, Herce Castañón et al. (2019) manipulated 

stimulus energy by changing the contrast of an array of Gabor patches along with the 

variance of the orientations across the array, with observers having to decide on the overall 

orientation. Similarly, Koizumi et al. (2015) manipulated stimulus energy by increasing the 

contrast of both a target and a non-target superimposed grating, with observers having to 

pick the grating with higher contrast. These and similar types of energy manipulations are 

known to lead to confidence-accuracy dissociations, such that high stimulus energy leads to 

higher confidence in spite of accuracy being matched across energy levels (de Gardelle & 

Mamassian, 2015; Herce Castañón et al., 2019; Koizumi et al., 2015; Samaha et al., 2016; 

Spence et al., 2016; Zylberberg et al., 2014, 2016). For simplicity, in the rest of the paper we 

refer to stimulus features that aid recognition as “contrast” and stimulus features that 
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impede recognition as “variability” because these terms describe well the majority of 

designs we examine in this study. 

 

Explanations of these types of dissociations typically invoke “high-level” mechanisms. The 

most popular explanation is the positive evidence heuristic which assumes that confidence 

neglects evidence that disconfirms the observer’s choice (Maniscalco et al., 2016; Odegaard 

et al., 2018; Peters et al., 2017; Samaha et al., 2016; Zylberberg et al., 2012). The positive 

evidence heuristic predicts higher confidence for high-energy stimuli because high-energy 

stimuli lead to more extreme positive (as well as negative) evidence and confidence ignores 

negative evidence. Alternatively, these dissociations have been explained by assuming that 

humans infer decisions from an incorrect internal model of the task or themselves, which 

can result in suboptimal confidence. Particularly, observers’ internal models have been 

proposed to be either insensitive to stimulus variance (Zylberberg et al., 2014) or “blind” to 

noise arising from one’s own cognitive processes (Herce Castañón et al., 2019). In sum, these 

findings have been taken as evidence for confidence computations being based on a high-

level inference process or heuristics. 

 

On the other hand, a simpler “low-level” explanation for these effects posits that energy 

manipulations lead to changes in low-level perceptual representations, naturally leading to 

higher confidence (Fetsch et al., 2014; Morales et al., 2015; Rahnev et al., 2011, 2012, 2013; 

Zylberberg et al., 2016). Mechanistically, an increase in stimulus energy could lead to greater 

separation between evidence distributions a well as higher overall variability in the observed 

evidence – which we call the signal-and-variance-increase hypothesis. Consequently, a larger 

proportion of this distribution is shifted towards extreme values, thus increasing overall 
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confidence (Gao et al., 2023). Critically, this explanation does not rely on higher-order 

mechanisms for producing the confidence-accuracy dissociations observed with energy 

manipulations.  

 

Despite their importance for understanding the processes that give rise to confidence, it has 

been challenging to adjudicate between the “high-” and “low-” level explanations. The 

reason is that both explanations can fit the data, but there is no direct way of testing the 

assumptions inherent in each explanation.  

 

Here, we use convolutional neural networks (CNNs) to distinguish between the “high-“ and 

“low-“ level explanations of the confidence-accuracy dissociations induced by stimulus 

energy manipulations. CNNs lack the built-in “high-level” cognitive mechanisms that are 

assumed to be responsible for confidence-accuracy dissociations. Therefore, if cognitive 

processes such as the positive evidence heuristic (Koizumi et al., 2015; Maniscalco et al., 

2016; Peters et al., 2017; Samaha et al., 2016; Webb et al., 2023) or inference from 

suboptimal internal models (Herce Castañón et al., 2019; Zylberberg et al., 2014) are indeed 

necessary for these dissociations, these networks should fail to mimic human behavior. On 

the other hand, if confidence-accuracy dissociations arise from a low-level signal-and-

variance increase based on inherent stimulus or task characteristics (Fetsch et al., 2014; 

Morales et al., 2015; Rahnev et al., 2011, 2012, 2013; Zylberberg et al., 2016), we can expect 

neural network models to reproduce human behavior. An additional advantage of CNNs is 

that, unlike humans, we can directly probe the network’s internal representations and 

understand the mechanisms underlying their behavior. 
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In this study, we tested whether three CNN architectures (a custom 4-layer CNN, VGG-19, 

and ResNet-50) produce human-like confidence accuracy dissociations across three types of 

energy manipulations. To anticipate, we found that all networks, like humans, expressed 

higher confidence for higher stimulus energy levels in spite of accuracies being matched. In 

addition, they reproduced another signature of confidence that is popularly regarded as 

evidence for the positive evidence bias (Maniscalco et al., 2016; Webb et al., 2023). Further, 

we show that the confidence increase in the CNNs was due to an increase in separability and 

variance of evidence distributions, which is essentially the signal-and-variance increase 

hypothesis that has been proposed for humans too (Fetsch et al., 2014; Gao et al., 2023; 

Morales et al., 2015; Rahnev et al., 2011, 2012, 2013; Zylberberg et al., 2016). These results 

demonstrate that CNNs exhibit human-like dissociations between confidence and accuracy, 

suggesting that higher-order mechanisms are unnecessary to explain the stimulus energy-

induced effects on confidence. Importantly, these observations highlight the common 

mechanisms underlying the behavior of humans and artificial systems, suggesting that these 

confidence-accuracy dissociations may be driven by external features of the environment, 

without the need for specialized internal cognitive mechanisms.  
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Results 

We tested three CNN architectures (a custom 4-layer CNN, VGG-19, and ResNet-50) on three 

experiments involving two-choice discrimination judgements about the orientation of 

stimuli (Figure 1). The deep CNNs – VGG-19 and ResNet-50 – were pretrained on the 

ImageNet dataset and fine-tuned to perform these tasks. Experiments 1 and 2 have 

previously been shown to generate confidence-accuracy dissociations in humans (Herce 

Castañón et al., 2019; Koizumi et al., 2015), while Experiment 3 involved a novel task 

paradigm that has previously not been tested on either humans or neural networks. In each 

experiment, the energy of the stimulus was manipulated by simultaneously varying two 

independent features: the contrast of the stimulus and either its variability (in Experiments 1 

and 3) or the contrast of the stimulus for the wrong choice (in Experiment 2). For all 

experiments, we trained 25 instances of each network architecture on 10,000 training 

images over a wide range of stimulus parameters and tested them on 1000 images from 

each energy condition. The stimulus parameters were chosen such that increasing energy 

levels resulted in the same average performance level of ~70% across the 25 instances of 

each network architecture.  
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Figure 1. Energy manipulations. In all three experiments, the task involved two-choice 

discrimination between clockwise and counterclockwise oriented stimulus configurations. 

The upper and lower panels show examples of low and high energy stimuli respectively for 

each experiment. In all three examples, the correct choice is “counterclockwise”. (A) Task 

used by Herce Castañón et al. (2019). The stimulus consisted of an array of eight noisy Gabor 

patches with the task involving judgements of mean orientation relative to horizontal. 

Energy manipulations involved jointly changing the contrast of Gabors as well the variability 

of orientations across the array. (B) Task used by Koizumi et al. (2015). The stimulus 

consisted of two superimposed sinusoidal gratings overlaid by a noise mask. The task was to 

determine the orientation of the grating with the higher contrast (dominant grating). 

Increases in energy involved jointly increasing the contrast of the dominant and the non-

dominant gratings. (C) The stimulus was a single Gabor patch overlaid with noise and the 

task was to determine its orientation. Energy was manipulated by jointly changing the 

contrast and noise level in the patch.  

 

CNNs exhibit robust confidence-accuracy dissociations 

We computed the average accuracy and confidence of the 25 network instances for each of 

the three CNN architectures. First, we confirmed that we successfully matched model 

accuracies across the three energy conditions (Figure 2). Indeed, one-way repeated-

measures ANOVAs on model accuracy with energy as factor showed that there were no 

significant differences in accuracy across the three energy conditions for all experiments and 

across all three CNN architectures:  4-layer CNN (Experiment 1: F(2,24) = .07, p = .93; 

Experiment 3Experiment 1 Experiment 2

Low contrast + Low noise

High contrast + High noise

Low contrast + Low tilt variance

High contrast + High tilt variance

Both gratings have low contrast

Both gratings have high contrast

A) B) C)

Low Energy 

stimuli

High Energy 

stimuli
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Experiment 2: F(2,24) = 2.80, p = .07; Experiment 3: F(2,24) = .89, p = .42), VGG-19 

(Experiment 1: F(2,24) = 2.08, p = .14; Experiment 2: F(2,24) = 1.98, p = .15; Experiment 3: 

F(2,24) = .76, p = .47), and ResNet-50 (Experiment 1: F(2,24) = .60, p = .56; Experiment 2: 

F(2,24) = .67, p = .52; Experiment 3: F(2,24) = .48, p = .62).  

 

Figure 2. Confidence-accuracy dissociations in CNNs. For all experiments and networks 

(custom 4-layer CNN, VGG-19 and ResNet-50), accuracy was matched across energy 

conditions but confidence significantly increases with energy levels. Dots refer to individual 

network instances. The violin plots show the kernel density estimates of the data 

distribution. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; n.s., not significant.  

 

Experiment 2

Experiment 1

4-layer CNN VGG-19 ResNet-50

Experiment 3

4-layer CNN VGG-19 ResNet-50

4-layer CNN VGG-19 ResNet-50
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On the other hand, we found that increasing stimulus energy led to significantly higher 

confidence (Figure 2). Indeed, one-way repeated-measures ANOVAs showed highly 

significant differences in model confidence across the three energy conditions for all 

experiments in each of the three network architectures: 4-layer CNN (Experiment 1: F(2,24) 

= 36.27, p < .0001; Experiment 2: F(2,24) = 189.77, p < .0001; Experiment 3: F(2,24) = 51.82, 

p < .0001), VGG-19 (Experiment 1: F(2,24) = 85.60, p < .0001; Experiment 2: F(2,24) = 

155.53, p < .0001; Experiment 3: F(2,24) = 39.15 p < .0001), and ResNet-50 (Experiment 1: 

F(2,24) = 20.75, p < .0001; Experiment 2: F(2,24) = 175.36, p < .0001; Experiment 3: F(2,24) = 

19.85, p < .00001). Further, pairwise comparisons between the low and high energy levels 

showed highly significant increases in confidence for the high energy condition for all 

networks and all three experiments (all p’s < 0.0001; Figure 2). These results mimic the 

findings from human behavior where increasing the energy of the stimulus leads to 

increases in confidence, in spite of accuracies being matched across conditions (Boldt et al., 

2017, 2019; de Gardelle & Mamassian, 2015; Desender et al., 2018; Herce Castañón et al., 

2019; Koizumi et al., 2015; Samaha et al., 2016; Spence et al., 2016, 2018; Zylberberg et al., 

2014, 2016). These findings cast doubt on the necessity of high-level explanations of 

confidence involving the positive evidence and noise-blindness hypotheses and are in-line 

with the predictions of the low-level signal-and-variance-increase hypothesis (Fetsch et al., 

2014; Gao et al., 2023; Morales et al., 2015; Rahnev et al., 2011, 2012, 2013; Zylberberg et 

al., 2016). We note that in most cases, the CNNs exhibit average confidence levels greater 

than 0.9 in spite of mean accuracy being around 70%. These findings are in line with 

observations that neural networks, particularly CNNs, often exhibit overconfidence in their 

responses (Guo et al., 2017; Minderer et al., 2021). 
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Mechanism behind the confidence-accuracy dissociation in CNNs 

While findings of confidence-accuracy dissociations in CNNs support the signal-and-

variance-increase hypothesis (Fetsch et al., 2014; Gao et al., 2023; Morales et al., 2015; 

Rahnev et al., 2011, 2013; Rahnev, Maniscalco, et al., 2012; Zylberberg et al., 2016),a more 

direct test of this hypothesis can be derived from examining how changes in stimulus energy 

affect the CNNs’ internal distributions. Specifically, the signal-and-variance-increase 

hypothesis predicts that increasing stimulus energy leads to greater separation of evidence 

between the two stimulus categories as well as an increase in the variance of evidence. As a 

result of these changes, the evidence distributions shift towards more extreme values, 

leading to higher confidence overall. Therefore, we probed the CNNs’ internal evidence 

representations to examine whether changes in the network’s internal representations are 

consistent with this hypothesis.  

 

We accessed the CNNs’ internal representations by aggregating the activations generated in 

the networks’ output layer in response to images for each stimulus category separately for 

each energy condition. We then plotted these activations for each stimulus category (�� for 

counterclockwise stimuli and �� for clockwise stimuli) and observed how the characteristics 

of these distributions vary across energy levels. We quantified the separation between the 

two stimulus categories as the distance between their means (���
� ���

; where ���
 refers to 

the mean of the evidence distribution for stimulus category �) and the spread of 

distributions as the average standard deviation (SD) of the two evidence distributions. The 

separation between distributions and the average SD was computed separately for each of 

the 25 network instances.  
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We found that increasing energy levels led to larger separation between the �� and �� 

evidence distributions as well as an increase in the variance of these distributions (Figure 3). 

Indeed, one-way repeated measures ANOVAs showed highly significant differences in the 

separation between the two distributions between the three energy conditions for all 

experiments and networks: 4-layer CNN (Experiment 1: F(2,24) = 320.83, p < .0001; 

Experiment 2: F(2,24) = 342.21, p < .0001; Experiment 3: F(2,24) = 92.32, p < .0001), VGG-19 

(Experiment 1: F(2,24) = 169.78 p < .0001; Experiment 2: F(2,24) = 177.81, p < .0001; 

Experiment 3: F(2,24) = 160.13, p < .0001), and ResNet-50 (Experiment 1: F(2,24) = 444.34, p 

< .0001; Experiment 2: F(2,24) = 121.60, p < .0001; Experiment 3: F(2,24) = 54.37, p < 

.00001). Further, pairwise comparisons showed a significant increase in the separation 

between the distributions for the two stimulus categories from the low- to high-energy 

conditions for all experiments and networks (all p’s < 0.0001). 
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Figure 3. Energy manipulations increase both the separability and variance of the 

networks’ internal activations. For all three experiments, the separability between the 

distributions of internal evidence for the two stimulus categories, as well as the variance of 

the evidence distributions, increased with energy levels For each network, the figure shows 

the distance between the S� and S� evidence distributions and their standard deviations 

(SD) across the 25 model instances. The kernel density plots show the distribution of 

activations aggregated across all 25 network instances. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001; n.s., not significant. 

 

Experiment 3

4-layer CNN VGG-19 ResNet-50

Experiment 1

VGG-19 ResNet-50

Experiment 2

4-layer CNN VGG-19 ResNet-50

4-layer CNN
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Parallel to the results on separability, we found that higher stimulus energy also led to 

increases in the variance of the internal evidence distributions (Figure 3). Indeed, one-way 

ANOVAs on the average SD of evidence distributions also yielded highly significant 

differences between the three energy conditions for all experiments and networks: 4-layer 

CNN (Experiment 1: F(2,24) = 408.38, p < .0001; Experiment 2: F(2,24) = 284.13, p < .0001; 

Experiment 3: F(2,24) = 120.15, p < .0001), VGG-19 (Experiment 1: F(2,24) = 140.25, p < 

.0001; Experiment 2: F(2,24) = 108.84, p < .0001; Experiment 3: F(2,24) = 177.82 p < .0001), 

and ResNet-50 (Experiment 1: F(2,24) = 229.60, p < .0001; Experiment 2: F(2,24) = 

108.84.38, p < .0001; Experiment 3: F(2,24) = 69.99, p < .00001). Further, pairwise 

comparisons across low and high energy conditions revealed significant increases in the 

average SD of activations for all networks and across all three experiments (all p’s < 0.0001).  

 

The concurrent increase in separation between the two stimulus categories and the 

variability of evidence ensures that the network’s overall stimulus sensitivity remains 

constant between the three energy conditions. Specifically, any improvement in sensitivity 

yielded by the increased separation between the evidence distributions for the two 

categories is counteracted by the evidence itself becoming more variable. Nevertheless, 

confidence differences still emerge between conditions because the higher variance and 

separation between these distributions results in larger proportions of evidence being 

pushed towards extreme values that get assigned higher confidence. These findings show 

that the signal-and-variance-increase mechanism indeed underlies the confidence-accuracy 

dissociations produced by the CNNs.  
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Different stimulus features selectively influence the separability and spread of internal 

evidence distributions 

While changes in characteristics of the stimulus distributions can explain the differences in 

confidence between energy conditions, it is still unclear why energy manipulations affect 

these characteristics. To address this question, we compared the networks’ internal 

representations during energy manipulations to the representations resulting from 

manipulations of contrast and variability (Experiments 1 and 3) or contrast of the correct vs. 

incorrect grating (Experiment 2). For conciseness, we refer to manipulations of both 

variability and the contrast of the incorrect grating as manipulations of variability. For these 

analyses, we only focus on the activations of the simplest network – the 4-layer CNN – 

although we expect these results to generalize across other network architectures. For each 

experiment, we investigated the network’s activations separately for manipulations of 

contrast and manipulations of variability.  

 

We first examined the effects of contrast and variability manipulations on the separability of 

the internal evidence distributions. We found that while increasing stimulus contrast 

increased the separation between stimulus categories, increasing variability led to a 

decrease in their separation (Figure 4A). Indeed, there were significant mean differences in 

evidence separability for both manipulations of contrast (Experiment 1: F(2,24) = 233.44, p < 

.0001; Experiment 2: F(2,24) = 283.89, p < .0001; Experiment 3: F(2,24) = 239.62, p < .0001) 

and manipulations of variability (Experiment 1: F(2,24) = 57.75, p < .0001; Experiment 2: 

F(2,24) = 324.00, p < .0001; Experiment 3: F(2,24) = 763.58, p < .0001). Pairwise comparisons 

showed that contrast significantly increased separability between stimulus categories (all p’s 

< .0001, paired t-tests comparing the lowest and highest contrast levels), while variability 
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significantly decreased this separation (all p’s < .0001, paired t-tests comparing the highest 

and lowest contrast levels). These results suggest that the increase in separability between 

evidence distributions observed during energy manipulations is primarily driven by changes 

in stimulus contrast. 

 

Figure 4. Changes in the separation and spread of internal evidence distributions induced 

by energy, contrast, and variability manipulations. The plots show A) the average distance 

between the mean activations for S� and S� stimuli (left) and B) the average standard 

deviation (SD) of activations (right) in the final layer of the shallow CNNs for Experiments 1-3 

in response to changes in stimulus energy, contrast and variability. Note that the energy 

results in both panels are equivalent to the 4-layer CNN results from Figure 3. For all 

experiments, increasing energy and contrast levels increases the separation between the 

two stimulus categories, while increasing variability decreases the separability between the 

two stimulus categories. On the other hand, increasing stimulus energy and variability 

increases the spread of evidence distributions, while increasing contrast decreases the 

spread of evidence. These results suggest contrast and noise changes selectively drive 

changes in separation and variance of evidence distributions respectively. The violin plots 

show the kernel density estimates of the data distribution. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001; n.s., not significant.  
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We then examined the effects of contrast and variability manipulations on the spread of the 

internal evidence distributions. We found that increasing stimulus contrast decreased the 

variance of evidence distributions, while increasing variability increased their variance. 

Indeed, there were significant differences in the spread of evidence distribution for both 

manipulations of contrast (Experiment 1: F(2,24) = 56.03, p < .0001; Experiment 2: F(2,24) = 

21.71, p < .0001; Experiment 3: F(2,24) = 113.61, p < .0001) and manipulations of variability 

(Experiment 1: F(2,24) = 388.45, p < .0001; Experiment 2: F(2,24) = 48.16, p < .0001; 

Experiment 3: F(2,24) = 53.28, p < .0001). Pairwise comparisons showed that variability 

significantly increased the spread of distributions (paired t-tests comparing the highest and 

lowest contrast levels; all p-values < .0001) while contrast significantly decreased their 

spread (paired t-tests comparing the highest and lowest contrast levels; all p-values < 

.0001). These results suggest that the increase in variability of evidence observed during 

energy manipulations is primarily driven by changes in stimulus variability (Figure 4; right). 

Overall, these results demonstrate that manipulations of stimulus contrast and variability 

have opposite effects on the separability and spread of internal activations, such that 

contrast manipulations have a larger effect on separability and variability manipulations 

have a larger effect on spread. Thus, combining both manipulations in a single “energy” 

manipulation leads to both increased separability and spread of the internal evidence 

distributions. 

 

CNNs can reproduce dissociations between type-1 and type-2 sensitivity typically regarded 

as evidence for the positive evidence mechanism 
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So far, our results have shown that CNNs, in spite of lacking the positive evidence 

mechanism, can produce human-like confidence-accuracy dissociations that have typically 

been attributed to the positive evidence heuristic. Another feature of confidence that has 

been attributed to the positive evidence mechanism is the observation that under certain 

conditions, an observer’s type-1 and type-2 sensitivities are found to dissociate from each 

other (Maniscalco et al., 2016; Webb et al., 2023). Here, type-1 sensitivity (d’) refers to the 

amount of information available for the primary stimulus judgement, whereas type-2 

sensitivity (meta-d’) reflects the amount of information underlying confidence judgements. 

Typically, an increase in type-1 sensitivity translates into a proportional increase in type-2 

sensitivity. However, Maniscalco et al. (2016) found that under certain task paradigms, 

these two measures can dissociate from each other. More specifically, the paradigm 

consists of a two-choice discrimination task, where the contrast of one stimulus category 

(��) is held constant while the contrast of the other stimulus is allowed to vary over discrete 

levels (��). Under these conditions, meta-d’ decreases with d’ for trials where the observer 

responds “��,” but meta-d’ increases with d’ for trials where the observer responds “��.” 

Importantly, this effect was explained by a model incorporating the positive evidence 

mechanism, whereas a competing model that assumed equal weights for positive and 

negative evidence failed to account for this behavior (Maniscalco et al., 2016). These 

findings are typically regarded as evidence for the existence of the positive evidence 

mechanism for confidence. 

 

To further test the necessity of the positive evidence mechanism in explaining confidence, 

we assessed whether CNNs lacking this mechanism can also reproduce the dissociation 

observed in Maniscalco et al. (2016). We simulated the above task paradigm for our 
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previously trained 4-layer CNNs across the three experiments (as done by Webb et al., 2023) 

and found that for Experiments 1 and 3, the networks were indeed able to reproduce a clear 

dissociation between meta-d’ and d’ (Figure 5). Specifically, meta-d’ increases with d’ for 

trials with "��" responses (where the contrast of �� varies across trials), but meta-d’ 

decreases with d’ for trials with "��" responses (the contrast of "�� remaining fixed across 

trials), producing the distinct cross-over signature shown by Maniscalco et al. (2016). 

However, for Experiment 2, while meta-d’ increased steeply with d’ for trials where the 

observer responds “��,” meta-d’ also showed a slight increase with d’ for trials where the 

observer responds “�� .” These results suggest that unlike the confidence-accuracy 

dissociations, the meta-d’/d’ dissociations may be more sensitive to the specific 

characteristics of the stimuli. Overall, our findings demonstrate that for at least for some 

stimulus manipulations, low-level mechanisms are sufficient to explain effects that have 

typically been taken as evidence for a positive evidence mechanism.  

 

Figure 5. Dissociations between meta-d’ and d’ in 4-layer CNNs. We tested the 4-layer 

CNNs on the task paradigm from Webb et al. (2023) which demonstrated a dissociation 

between d’ and meta-d’ under certain conditions. The contrast of one stimulus category 

	S�
 remains fixed while the contrast of the other stimulus is increased in discrete steps 

	S�
. Meta-d’ increases with d’ as expected for trials in which the observer responds 

"S�", but meta-d’ decreases with d’ while for trials where the observer responds "S�". This 

behavioral effect is predicted by a model incorporating the positive-evidence bias. Here, we 

simulated this task paradigm for Experiments 1-3. The responses generated by our 4-layer 

CNNs show that these networks can indeed generate the meta-d’-d’ dissociations observed 

in humans for Experiments 1 and 3. The network fails to reproduce this behavior for 

Experiment 1 Experiment 2 Experiment 3
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Experiment 2, suggesting that these dissociations may depend on the specifics of the stimuli 

used for the tasks.  

 

Confidence accuracy dissociations in CNNs generalize across stimulus paradigms but do not 

always mimic human behavior  

Our results demonstrate that CNNs can produce human-like confidence-accuracy 

dissociations where confidence increases with increasing stimulus energy levels. However, 

when using color stimuli, energy manipulations have been found to decrease confidence 

while accuracy remains matched across conditions (Boldt et al., 2017; de Gardelle & 

Mamassian, 2015; Desender et al., 2018; Spence et al., 2016, 2018). These findings have 

been explained by assuming a mechanism of “robust averaging” where highly atypical 

stimuli are down-weighted in the final decision (Boldt et al., 2024; De Gardelle & 

Summerfield, 2011).  

 

Our previous findings establish that low-level changes in perceptual representations can 

explain human behavior that has typically been attributed to high-level cognitive 

mechanisms. Here, we sought to further test whether the “robust averaging” mechanism 

can also be realized through low-level mechanisms.  

 

Following the same procedure as done previously, we tested our CNNs on the task from 

Boldt et al. (2017) where subjects identified whether the mean color across an array of eight 

colored patches was closer to red or blue (Figure 6A). Energy manipulations involved jointly 

increasing the intensity of the color (“blueness” or “redness” of stimuli) and the variance of 

color across the eight patches. The stimulus parameters were chosen such that we obtained 

matched average accuracy levels of ~70% across the three energy levels. A one-way 
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repeated measures ANOVA showed no significant mean differences in accuracy between 

the three energy conditions for all three networks – 4-layer CNN (F(2,24) = .78, p = .47), 

VGG-19 (F(2,24) = .31, p = .74) and ResNet-50 (F(2,24) = .15, p = .86).  

 

However, the ANOVA revealed highly significant increases in confidence between the three 

energy levels for all three networks (4-layer CNN: F(2,24) = 152.50, p < .0001; VGG-19: 

F(2,24) = 57.72, p < .0001; and ResNet-50: F(2,24) = 68.71, p < .0001; pairwise comparisons 

between low and high energy levels: all p’s < 0.0001; Figure 6B). Further, these behavioral 

effects were associated with increases in both the separability and variance of evidence 

distributions (all pairwise comparisons between low and high energy levels < .002; Figure 

6C), in line with the signal-and-variance-increase effect. While these results are consistent 

with findings from Experiments 1-3, they fail to replicate human behavior suggesting that 

low-level explanations cannot account for all types of confidence-accuracy dissociations, 

particularly, the ones attributed to a process of “robust averaging”. Future studies must 

investigate whether incorporating the robust averaging mechanism can restore human-like 

confidence behavior in CNNs. Nevertheless, these results while establishing the 

generalizability of the mechanisms underlying confidence-accuracy dissociations in CNNs 

also reveal how stimulus-specific interactions can constrain the similarities between humans 

and CNNs. Understanding the conditions that separate the behavior of humans and CNNs 

can guide future work on building metacognitive systems for AI.  
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Figure 6. Confidence-accuracy dissociations in a color discrimination task. A) The stimulus 

consisted of an array of eight colored circles. The task was to determine whether the mean 

color across the eight patches was more blue or red. In this example, the mean color is more 

blue than red. Energy manipulations involved joint changes to the intensity of color (the 

amount of “blueness” or “redness” of the patches as well the variance in color across the 

array. (B) The separability between the stimulus categories as well as the variance of the 

evidence distributions increased with energy levels for all three networks. The panels on the 

top-left for each network show the average distance between the S�   and S� evidence 

distributions  across the 25 model instances. The panels on the bottom-left show the 

average standard deviation (SD) across the two distributions across all model instances. The 

panels on the right show the distribution of activations aggregated across all 25 network 

instances. *p<0.05; 250 **p<0.01; ***p<0.001, ****p<0.0001; n.s., not significant. 

 

4-layer CNN VGG-19 ResNet-50
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Discussion 

We found that convolutional neural networks (CNNs) robustly produce human-like 

confidence-accuracy dissociations in response to stimulus energy manipulations. In humans, 

these dissociations have been taken as evidence for high-level, cognitive mechanisms such 

as the positive evidence heuristic (Koizumi et al., 2015; Odegaard et al., 2018; Samaha et al., 

2016)and noise blindness (Herce Castañón et al., 2019; Zylberberg et al., 2014). Since CNNs 

lack such built-in cognitive mechanisms, their ability to mimic human confidence behavior 

implies that these popular theories are unnecessary to explain energy-induced confidence-

accuracy dissociations. Our findings support the alternative, signal-and-variance increase 

hypothesis which posits that such dissociations naturally emerge from low-level changes in 

perceptual representations. Indeed, we find that in CNNs, these dissociations are explained 

by their internal representations becoming more separable as well as variable with higher 

stimulus energy. These findings highlight how the behavior of both artificial and biological 

systems could be driven by common, stimulus-driven processes and demonstrate the 

usefulness of CNNs in distinguishing between low- and high-level explanations of behavior. 

 

Implications for the positive evidence bias in confidence  

The positive evidence (PE) heuristic is one of the most popular proposals regarding the 

computations underling confidence (Koizumi et al., 2015; Maniscalco et al., 2016; Odegaard 

et al., 2018; Peters et al., 2017; Samaha et al., 2016; Webb et al., 2023; Zylberberg et al., 

2012). Despite its popularity, however, findings from recent studies suggest that the positive 

evidence bias may not be necessary to explain confidence (Rausch et al., 2020; Shekhar & 

Rahnev, 2023).  
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Firstly, the previous studies that found support for the PE bias did not perform extensive 

model comparisons. Rather, the PE model was typically compared to a model which 

assumed that confidence is based on a balance of evidence between the two choice options 

(Maniscalco et al., 2016; Peters et al., 2017; Webb et al., 2023). Importantly, in this model 

stimulus manipulations were assumed to have no effect on the variance of the internal 

distributions of evidence. Further, the PE model has rarely been compared to other recently 

developed models of confidence in the literature (Bang et al., 2019; Boundy-Singer et al., 

2023; Fleming & Daw, 2017; Guggenmos, 2022; Li & Ma, 2020; Mamassian & de Gardelle, 

2021; Maniscalco & Lau, 2016; Rausch et al., 2020; Shekhar & Rahnev, 2021). When such 

model comparisons have been performed, the PE model usually ranks poorly relative to 

models that allow suboptimalities in confidence to manifest via other mechanisms such as 

metacognitive noise or the visibility heuristic (Rausch et al., 2020; Shekhar & Rahnev, 2023).  

 

Secondly, behavioral evidence for the PE bias mainly rests on two observed patterns in 

confidence – increase in confidence with stimulus energy despite matched accuracies 

(Koizumi et al., 2015; Odegaard et al., 2018; Samaha et al., 2016) and the dissociation 

between d’ and meta-d’ under a certain stimulus paradigm (Maniscalco et al., 2016; Webb 

et al., 2023). However, these studies have not considered the existence of alternative 

mechanisms that can explain these behavioral effects. Here, we show that CNNs, which lack 

any confidence-specific mechanisms, can produce both these signatures via changes in their 

evidence representations. This result thus questions whether such behavioral findings can, 

by themselves, be taken as evidence for the positive evidence mechanism.  

 

Implications for other high-level theories of confidence 
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Findings of energy-induced confidence-accuracy dissociations have also been interpreted as 

evidence for other cognitive processes. For instance, Herce Castañón et al. (2019) argued 

that a range of suboptimal behaviors arise from noise blindness, such that observers neglect 

to account for the noise arising from their own cognitive computations when integrating 

across variable evidence samples. This noise blindness results in observers failing to adjust 

their responses to increasing levels of uncertainty. In addition to being over-confident for 

high-energy stimuli, Herce Castañón et al. report that observers neglect stimulus base rates 

in the high-energy condition and thus fail to appropriately shift their decision criterion in 

favor of the more frequent stimulus. However, the signal-and-variance-increase hypothesis 

is sufficient to explain both the suboptimal behaviors they report. According to the signal-

and-variance-increase hypothesis, when the separation between the distributions and their 

variance is high, a criterion shift of same magnitude will have a smaller effect on choice 

probabilities compared to when the distributions have low separation and variance, thus 

appearing as if the observers have failed to shift their criteria appropriately. Indeed, 

simulations of criterion shifts under the signal-and-variance-increase hypothesis reproduced 

their reported effects (Supplementary Figure 1). 

 

However, it must be noted that overconfidence and base-rate neglect both arise from the 

observers’ failure to scale their decision and confidence criteria in response to low-level 

perceptual changes. In that sense, this effect might reflect a blindness to changes in low-

level representations at the decision stage. Nevertheless, this mechanism is distinct from 

the one proposed by Herce Castañón et al. (2019) because in their model the blindness is 
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towards noise arising from the observers’ own internal cognitive processes, rather than 

towards noise arising from stimulus-driven changes in internal representations. 

 

Evidence for the signal-and-variance-increase hypothesis 

The notion that confidence can be influenced by low-level changes in internal evidence 

representations is not new. Stimulating lower (Rahnev et al., 2012, 2013) and mid-level 

visual areas (Fetsch et al., 2014) have been found to affect confidence, independent of 

changes in accuracy. These effects were captured well by models where stimulation 

increased the variance of internal representations. Other task manipulations involving 

attention (Morales et al., 2015; Rahnev et al., 2011) and evidence volatility (Zylberberg et 

al., 2016) also produced similar dissociations in confidence that were accounted by changes 

in the trial-by-trial variance of sensory evidence. Our current findings corroborate these 

findings and extend them by adding energy manipulations to the list of factors that can 

produce confidence-accuracy dissociations via the signal-and-variance-increase mechanism.  

 

CNNs as models for understanding human vision 

Several recent studies have argued that deep neural networks can provide meaningful 

insights into the goals and constraints that have shaped human perception (Blauch et al., 

2021; Cao & Yamins, 2021; Dobs et al., 2022; Doerig et al., 2023; Gomez-Villa et al., 2019; 

Kell et al., 2018; Kell & McDermott, 2019; Richards et al., 2019; Wichmann & Geirhos, 2023). 

Indeed, our findings support this argument as they carry implications about the external 

constraints that may have shaped visual processing. For instance, if it is indeed true that the 

signal-and-variance-increase mechanism underlies the behavior of both humans and CNNs, 

this fact can reveal how common behaviors (due to common mechanisms of visual 
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processing) can emerge in artificial and biological neural networks due to external, stimulus-

defined constraints. Another critical advantage of CNNs is that they can allow us isolate 

bottom-up visual processes from the top-down mechanisms that serve cognition, since 

visual processing in standard CNNs occurs in the absence of specialized top-down influences. 

In addition, they can inform us about the possible stimulus and task representations that 

underlie such bottom-up stimulus processing (Green et al., 2024).  

 

Other types of confidence-accuracy dissociations 

In the current study, we tested CNNs on a specific type of confidence-accuracy dissociation 

induced by energy manipulations. However, prior research has found that an abundance of 

factors can cause confidence to dissociate from accuracy. Some of these include motor 

preparation and execution (Fleming et al., 2015; Gajdos et al., 2019; Wokke et al., 2020), 

transcranial magnetic stimulation (Rahnev et al., 2012, 2016; Rounis et al., 2010; Shekhar & 

Rahnev, 2018; Xue et al., 2023), differences in pre-stimulus brain activity Bahdo, et al., 2012; 

Samaha et al., 2017), confidence history (Aguilar-Lleyda et al., 2021; Rahnev et al., 2015), 

attention (Rahnev et al., 2011; Wilimzig et al., 2008), arousal (Allen et al., 2016), and 

stimulus visibility (Rausch et al., 2018, 2020). However, in this study, we only chose to test 

energy-induced confidence accuracy dissociations as these manipulations can be readily 

applied to CNNs unlike those involving motor preparation, transcranial magnetic 

stimulation, attention, arousal, etc. Future studies can test the proposed mechanisms 

underlying other kinds of confidence-accuracy dissociations against suitable low-level 

explanations to gain insight into the true mechanisms of confidence. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.01.578187doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

Importantly, beyond the examples of high-energy stimuli leading to high confidence 

examined in this paper, there are two kinds of stimuli that break that rule. For these stimuli, 

energy manipulations lead to confidence that decreases with energy levels. Firstly, Spence 

et al. (2016, 2018) observed this effect for random dot motion stimuli. It is possible to 

explain this effect by assuming that increasing the variance of motion direction may deliver 

high-level cues regarding task difficulty. In turn, subjects may use these difficulty cues to 

decrease their confidence. Since our CNNs do not work on dynamic, dot motion stimuli, we 

could not test them on these stimuli. Secondly, Boldt et al. (2017, 2019) and Desender et al. 

(2018) found a similar effect for arrays of colored dots. When we tested our CNNs on these 

color stimuli (Figure 6), we found that low-level mechanisms cannot account for these 

effects, and thus it is likely that these manipulations engage high-level cognitive 

mechanisms. Indeed, these color tasks have been proposed to trigger “robust averaging” 

where observers down-weight highly atypical evidence samples (De Gardelle & 

Summerfield, 2011). Since high-energy stimuli generate more extreme evidence, ignoring 

(or down-weighting) them leads to a lower overall estimate of evidence for confidence. 

Future studies should test whether incorporating high-level cues about task difficulty and 

the robust averaging mechanism into CNNs can indeed generate this effect. 

 

Conclusion 

In this study, we demonstrate that CNNs can generate human-like confidence-accuracy 

dissociations in response to stimulus energy manipulations via changes in the variance and 

separability of their internal evidence distributions. These findings cast doubt on the 

necessity of invoking high-level, cognitive explanations for this phenomenon – particularly 

the popular assumption that confidence is derived from a positive-evidence heuristic. Our 
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results highlight the necessity of disentangling low- and high-level explanations of behavior 

and establish CNNs as promising models for generating and testing hypotheses about the 

mechanisms underlying human behavior.   
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Methods 

Stimuli and task 

We tested several convolutional neural networks on three main experiments. The task 

paradigms for Experiments 1 and 2 were adapted from Herce Castañón et al. (2019) and 

Koizumi et al. (2015). Both of these papers found confidence-accuracy dissociations in 

humans where confidence was found to increase with stimulus energy levels. To test the 

generality of our findings, we also included a novel task paradigm as Experiment 3 that has 

not been previously tested on humans but nevertheless uses the same kind of energy 

manipulations.  

 

In Experiment 1, the stimuli (90 x 90 pixels) consisted of an array of eight noisy, oriented 

Gabor patches. Each individual Gabor patch in the array spanned 30 x 30 pixels. The task 

was to decide whether the average tilt across the 8 patches was clockwise (CW) or 

counterclockwise (CCW) from the horizontal (Figure 1A). For each image, the average 

orientation of the Gabor patches across the eight patches was selected from a Gaussian 

distribution. The energy of the stimulus was manipulated across three levels by 

simultaneously varying two features of the array – the contrast of individual gratings and 

the variability of orientations across the gratings. While increasing the contrast of the 

gratings allowed better stimulus visibility and made the task easier, increasing the variability 

of orientations increased the uncertainty regarding the mean orientation across the 

patches, thus making the task harder.  

 

In Experiment 2, the stimuli (100 x 100 pixels) consisted of two noisy, sinusoidal gratings 

(oriented either 45° CCW or CW to the vertical) superimposed on each other. The two 
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gratings were always oriented orthogonally to each other and one of the gratings had a 

higher contrast (referred to as the dominant grating). The task was to determine whether 

the dominant grating was oriented CCW or CW to the vertical (Figure 1B). The energy of the 

stimulus was manipulated by simultaneously varying the contrast levels of the dominant 

and the non-dominant grating across three levels. Increasing the contrast of the dominant 

grating contributed positive evidence making the task easier, while increasing the contrast 

of the non-dominant grating increased the level of contradictory or “negative evidence” 

making the task harder.  

 

In Experiment 3, the stimulus consisted of a single noisy Gabor patch (100 x 100 pixels) 

oriented 45° either CCW or CW to the vertical (Figure 1C). The task was to identify the 

direction of tilt (CCW/CW). The energy of the stimulus was manipulated by varying both 

contrast and noise of the gratings. While increasing contrast makes the task easier, 

increasing noise degraded the stimulus, making the task harder. 

 

Generating the training and validation sets 

For each experiment, we trained the networks on a set of 10,000 images. To allow the 

networks to learn generalizable representations of the stimuli, we generated images by 

sampling the stimulus parameters uniformly within a range. In Experiment 1, we sampled 

mean orientation of the gratings from the interval 1°, 10°�, the variability of orientations 

from the interval [1°,20°], and stimulus contrast from the interval [0.01,1]. In Experiment 2, 

we sampled the orientation of the gratings from the interval 1°, 45°�, the contrast of the 

dominant grating from the interval .01, 1� and the difference in contrast between the 

dominant and non-dominant gratings from the interval .01, �� where � refers to the 
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contrast of the dominant grating which sets an upper bound on the contrast of the non-

dominant grating. In Experiment 3, we sampled the contrast of the Gabor patch from the 

interval .01, 1�, and noise (in units of standard deviation) from the interval .01, 2�. Training 

was validated on a set of 1000 images generated using the same stimulus parameter 

distributions as the training set.  

 

Network architectures 

We tested three CNN architectures – a 4-layer CNN, VGG-19, and ResNet-50 – on the 

experiments described above. The networks receive inputs in the form of an image 

consisting of n x n pixels (n = 90 for Experiment 1 and n = 100 for Experiments 2 and 3) and 

outputs a binary category label corresponding to the identity of the stimulus (CCW or CW).  

 

The 4-layer CNN model consisted of two convolutional layers (with kernels of size 3 x 3 

pixels) paired with two max pooling layers (pooling performed over 2 x 2 pixel windows), one 

flat layer, and two fully connected layers (consisting of 64 units and 1 unit respectively). A 

rectified linear unit (ReLu) activation function transformed the outputs of each convolutional 

layer and the 64-unit fully connected layer, whereas a sigmoid activation function was 

applied to the output of the final layer.  

 

We also trained two deep CNNs using the standard VGG-19 and ResNet-50 model variants. 

The VGG-19 model consists of 16 convolutional layers, 3 fully connected layers, 5 max pool 

layers, and 1 softmax layer. The ResNet-50 model consists of 48 convolutional layers, 1 max 

pool layer, and 1 average pool layer. The top layer of these networks was modified for binary 
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classification by adding a fully connected layer consisting of a single unit with a sigmoid 

activation function. 

 

Training the networks  

We trained networks on 10,000 images from each of the three experiments to achieve a 

classification accuracy > 89% on all tasks. Model performances were assessed on a validation 

set consisting of 1000 images. The 4-layer CNNs were trained for 25 epochs with a batch size 

of 32, using the binary cross-entropy loss function and Adam optimizer with a learning rate = 

0.001, weight decay = 0 and � = 10��. As the tasks were relatively simple, to prevent 

overfitting, we used early stopping with a patience of 10 epochs.  

 

The deep CNNs (VGG-19 and ResNet-50) were trained on these tasks using transfer learning 

and fine-tuning. We first instantiated the base model pretrained on the ImageNet dataset 

(provided in Keras Applications at https://keras.io/api/applications/) and froze the model’s 

weights. The classification layer at the top was excluded to enable feature extraction. Next, 

we added a global average pooling layer to convert the features extracted from each image 

into a single vector. Finally, we added a classification head with a single unit to convert these 

features into binary predictions. To prevent overfitting, we also included a drop-out layer 

with a drop-out rate of 0.2. Using a base learning rate of 0.001 for the Adam optimizer, we 

trained this model initially on 10 epochs on binary cross-entropy loss. We found that these 

networks generally showed poor classification performance (~60%), and therefore trained 

them further by unfreezing and fine-tuning the top layers of the network. For fine-tuning, 

training was continued for a further 10 epochs. The models were fine-tuned on binary cross-

entropy loss using a lower learning rate (0.0001) for the RMSprop optimizer. Fine-tuning 
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improved the models’ performances considerably with all models now achieving a 

classification accuracy of at least 89%.  

 

For each type of network and each experiment, we determined the optimal number of 

layers to fine-tune by incrementing the number of fine-tuning layers in steps and assessing 

model performance. We chose the model that gave us the highest accuracy while minimizing 

the number of layers to fine-tune. For VGG-19, the best models consisted of 8 fine-tuned 

layers for Experiments 1 and 2 and 5 fine-tuned layers for Experiment 3. For ResNet-50, the 

best models consisted of 40 fine-tuned layers for Experiments 1 and 2 and 10 fine-tuned 

layers for Experiment 3.  

 

Finally, to allow for individual differences in learning, we trained 25 instances of each of the 

three models separately for each experiment using a different random seed to initialize the 

network’s weights before training.  

 

Determining stimulus parameters for energy manipulations 

To induce confidence-accuracy dissociations, we need to jointly manipulate the signal 

strength and variability/negative evidence (“energy”) of the stimulus such that the 

network’s accuracies are matched across conditions. Therefore, we need to determine the 

stimulus parameters that will allow us to obtain matched network performances across the 

three conditions. To do so, we first performed a coarse search by fixing the stimulus along 

the “contrast” dimension for each energy condition (contrast of the Gabor patches for 

Experiments 1 and 3 and contrast of the dominant grating for Experiment 2) and varying it 

along the “noise” dimension (variability of orientations for Experiment 1, contrast of the 
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non-dominant grating for Experiment 2 and noise in Experiment 3) in relatively large steps. 

Next, for each energy level, we determined a range of noise values that gave us a target 

accuracy between 65-75% and performed a fine-grained search within this range for the 

parameters that resulted in an accuracy of 70%.  

 

The search yielded stimulus parameter estimates that resulted in matched accuracy levels of 

70% across the three energy conditions for each of the three types of networks. Specifically, 

we obtained the following parameters for the 4-layer CNNs (Experiment 1: contrast = [.2, 

.25, .3], orientation variance = [7.35°, 21.28°, 27.28°]; Experiment 2: dominant contrast = 

[0.2, 0.4, 0.6], non-dominant contrast = [0.168, 0.375, 0.575]; Experiment 3: contrast = [.05, 

.1, .15], noise = [.42, .82, 1.21]), VGG-19 (Experiment 1: contrast = [.4, .5, .6] and orientation 

variance = [21.42°, 25.28°, 27°]; Experiment 2: dominant contrast = [0.2, 0.4, 0.6] and non-

dominant contrast = [0.13, 0.358, 0.56]; Experiment 3: contrast = [.05, .1, .15] and noise = 

[.32, .54, .715]), and ResNet-50 (Experiment 1: contrast = [.4, .5, .6] and orientation variance 

= [17°,18.5°, 20°]; Experiment 2: dominant contrast = [0.2, 0.4, 0.6] and non-dominant 

contrast = [0.13, 0.358, 0.555]; Experiment 3: contrast = [.05, .1, .15] and noise = [.29, .46, 

.607]). Using these parameters, for each of the three energy levels, we generated stimulus 

sets consisting of 1000 images to test the CNNs for confidence-accuracy dissociations.  

 

Behavioral analyses 

Accuracy and confidence of the networks 

The final layer of the network consists of a single unit whose activation 	�
 arises from a 

sigmoid activation function. The network’s responses (�) were generated such that, 
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� � ��� , �� � � 0.5
�� , �� � � 0.5�  and decision confidence (�) was generated as,  � � �1 � �, �� � � 0.5

�, �� � � 0.5�   

where �  0,1�.  
 

We computed the average accuracy and confidence separately for each of the 25 network 

instances and for each energy condition.  

 

Measures of type-1 and type-2 sensitivity  

An observer’s type-1 or perceptual sensitivity (d’) is a measure derived from signal detection 

theory (SDT) which quantifies the observer’s ability to discriminate between the two 

stimulus categories (Green, D.M. and Swets, 1966). Type-1 sensitivity (d’) is defined as, 

!� � "��	#$
 � "��	%&$
 where HR and FAR refer to the observed hit rate and false 

alarm rates, respectively, when the stimulus category �� is treated as the target, and "�� is 

the inverse of the cumulative standard normal distribution that transforms cumulative 

probabilities into z-scores. 

 

Type-2 or metacognitive sensitivity (meta-d’) is a measure derived from SDT-modelling of 

the observer’s decision and confidence responses which quantifies the information 

underlying the metacognitive judgement (Maniscalco & Lau, 2012). Intuitively, it can be 

thought of as a measure of the observer’s ability to distinguish between their own correct 

and incorrect responses using confidence responses.   

 

Assessing the networks’ internal activations 
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To understand the effect of energy manipulations on the internal representations of the 

network, we studied how the distribution of the network’s activations change with energy 

levels. Each time an image is presented to the network, it produces an activation in the 

output layer. We aggregated these activations across all instances of the network separately 

for all images from each energy condition. We then visualized the distributions of these 

activations separately for images from each stimulus category using kernel density plots.  

 

To quantify changes in the characteristics of these distributions, we computed two 

measures – the difference in means of the �� and �� distributions (which quantifies the 

separation in evidence between the two categories) and standard deviation of these 

distributions averaged across the two distributions (which quantifies the degree of 

uncertainty associated with identity of the stimulus). We computed these measures 

separately for each network instance and energy condition, and averaged across network 

instances.  

 

Simulating the task paradigm for generating meta-d’-d’ dissociations 

It has been previously demonstrated that a certain task paradigm can induce dissociations 

between observers’ meta-d’ and d’ (Maniscalco et al., 2016; Webb et al., 2023). Particularly, 

in a two-choice task involving discrimination between two stimulus categories (�� and ��), 

when the contrast of one stimulus category (��) is held fixed while the contrast of the other 

category is allowed to vary across trials (��), meta-d’ is found to increase with d’ on trials 

where the observer responds “��” and found to decrease with d’ on trials where the 

observer responds “�� .”  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.01.578187doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38

We simulated this paradigm for Experiments 1-3 by fixing the stimulus contrast for one of 

the stimulus categories (CCW) and allowing the contrast of the stimuli from the other 

category (CW) to vary discretely across five levels. Specifically, in Experiment 1, the CCW 

stimulus was fixed at .225 and the CW-tilted stimuli was varied along the range [.05, .135, 

.225, .3125, .4]. In Experiment 2, the CCW was fixed at .21 and the CW tilted stimuli was 

varied along the range [.2, .205, .21, .215, .22]. Finally, in Experiment 3, the CCW was fixed 

at .1 and the CW tilted stimuli was varied along the range [.05, .075, .1, .125, .15]. The 

contrast levels of the stimuli were chosen via simulations such that the network’s 

perceptual sensitivity (d’) spanned a range of meaningful values (1 to 3.5) while avoiding 

floor or ceiling effects.  We generated test sets of 1000 images for each contrast level 

assumed by �� and obtained the decision and confidence responses from our previously 

trained networks.  

 

We computed d’ and meta-d’ separately for each contrast level of ��. For response-specific 

assessment of meta-d’, we computed meta-d’ separately for trials conditioned on each type 

of network response (�� vs �� responses) and contrast level. 

 

Color discrimination experiment 

The task paradigm for the color discrimination experiment was adapted from Desender et 

al. (2018). This task was previously shown to produce confidence-accuracy dissociations in 

humans where confidence decreased with stimulus energy levels (Boldt et al., 2017, 2019; 

Desender et al., 2018; Spence et al., 2016, 2018), in contrast with previous findings where 

confidence increased with energy levels.  
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The stimuli (90 x 90 pixels) consisted of an array of eight colored circular patches. Each 

individual color patch in the array spanned 30 x 30 pixels. The task was to decide whether 

the average color across the 8 patches was more blue or red (Figure 6A). For each image, 

the mean color across the eight patches was selected from a uniform distribution with a 

mean color intensity of � and an interval of width '. The stimulus parameter �  0,1� 

controlled the intensity of “redness” or “blueness” along a continuous range such that � � 0 

yielded a completely red patch and � � 1 yielded a completely blue patch and values in-

between resulted in patches containing a mixture of red and blue with varying proportions 

of each color. In general, a patch with � � .5, contained more red and a patch with � ( .5 

contained more blue. The parameter ' controlled the variance of color in these patches 

with higher values of ' resulting in more variable colors within an array. The energy of the 

stimulus was manipulated across three levels by simultaneously varying these two features 

of the array – the color intensity and the spread of color intensity. While increasing the color 

intensity made it easy to identify the “blueness” or “redness” of the color and made the task 

easier, increasing the color variance increased the uncertainty regarding the mean color 

across the patches and made the task harder. 

 

As in our main analyses, we trained 25 instances of the three networks (4-layer CNN, VGG-

19 and ResNet-50) using the same procedure outlined above. We determined the stimulus 

parameters that would allow us to obtain matched network performances across the three 

energy conditions. The search yielded stimulus parameter estimates that resulted in 

matched accuracy levels of 70% across the three energy conditions for each of the three 

types of networks – 4-layer CNNs (color intensity = [.493, .492, .49], color variance = [.4, 

.494, .626]), VGG-19 and ResNet-50 (contrast = [.4, .3, .2], color variance = [.85, .95, .97]). 
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Using these parameters, for each of the three energy levels, we generated stimulus sets 

consisting of 1000 images and tested the accuracy and confidence of each of the 25 

instances on these images. Finally, as before, we examined the separability and spread of 

the internal representations of evidence. 

 

Data and code availability 

Codes for training the models and performing all analyses are publicly available at 

https://osf.io/e5d96/. 
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