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Abstract: Animal toxins present a major threat to human health worldwide, predominantly through
snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only
available treatment against snakebite envenoming is plasma-derived antivenom. However, despite
being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer
from several drawbacks, such as immunogenicity and high cost of production. Consequently,
avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal
antibodies against medically important target toxins through phage display selection, are being
explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to
the well-known immunoglobulin G scaffold, including high stability under harsh conditions and
low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics.
There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives
(e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins),
to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and
pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of
production, associated with many alternative protein scaffolds, present an exciting possibility for the
future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive
overview of the different types of binding protein scaffolds is provided together with a discussion on
their relevance as potential modalities for use as next-generation antivenoms.

Keywords: Snakebite envenoming; next-generation antivenom; toxin neutralization; alternative
binding protein scaffolds; envenoming therapy; recombinant binding proteins; venom neutralization

Key Contribution: This paper provides a brief overview of current envenoming therapy, succinctly
presents considerations towards the use of human antibodies, and discusses alternative protein
scaffolds and their properties in the context of toxin therapeutics.

1. Introduction

Animal toxins have troubled humankind for millennia. These toxic proteins have evolved for
use in prey subduction or as a natural defense mechanism to repel or kill predators by exerting
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hemotoxic, myotoxic, cytotoxic, and/or neurotoxic effects [1]. In turn, these toxicities result in
various discomforting, debilitating, or lethal clinical manifestations in their victims (e.g., dizziness,
ptosis, flaccid paralysis, coagulopathies, and hemorrhage) that often require timely treatment to
prevent permanent damage [1]. For our ancestors an aggressive encounter with a venomous or
poisonous animal would often have resulted in agonizing pain, permanent disability, or even death.
However, intoxication and envenoming are not just a problem of the past. Venomous animals,
including snakes, spiders, scorpions, caterpillars, sea anemones, jellyfish, lizards, fish, cone snails, bees,
and wasps, even today kill over 150,000 people each year with the majority of deaths stemming from
snakebites (81,000 to 138,000 deaths) [2]. The vast majority of snakebite-induced deaths occur in Asia
(>57,600 deaths per year) and sub-Saharan Africa (>32,100 deaths per year) and has been unequivocally
associated with poverty [3]. This has led to its recent reclassification as a Neglected Tropical Disease
(NTD) by the World Health Organization [4]. Notably, the number of snakebite-induced mortalities
in Africa and Asia is double that of all other NTDs combined (e.g., African trypanosomiasis, cholera,
dengue hemorrhagic fever, leishmaniasis, Japanese encephalitis, and schistosomiasis) [2,5].

Currently, animal-derived antivenoms present the only effective treatment against envenoming
from snakes and other species. The production of such antivenoms involves the immunization of
horses or other animals (e.g., sheep and donkeys) with increasing amounts of the target venom(s).
In response to this, the immune system of the production animals will give rise to polyclonal
antibodies against the different venom proteins (of which many are toxins). Upon completion of
the immunization process, the polyclonal antibodies can be isolated from the immunized animal
plasma. Such plasma-derived antivenoms have been instrumental in saving lives and limbs of
envenomed patients for over 120 years, since they were simultaneously developed by Césaire Auguste
Phisalix, Gabriel Bertrand, and Albert Calmette in France in 1894 [6,7]. However, despite their long and
successful clinical track record, the current plasma-derived antivenoms unfortunately present a number
of drawbacks. The use of production animals drives up the cost of the antivenom, since they require
a significant amount of space and costly veterinary care, amongst other things [8]. Consequently,
this complicates the distribution of these antivenoms to the people most in need, since they typically
do not have the economic means to cover the costs of their treatment. Furthermore, the heterologous
nature of current antivenoms can lead to high immunogenicity and, consequently, a significant risk of
adverse reactions (such as serum sickness and anaphylaxis) in treated snakebite victims [9–13].

A limited amount of innovation in envenoming therapy has occurred over the past century.
However, we are now possibly seeing the dawn of the next chapter in the antibody-based therapies
against animal envenomings. The development of human monoclonal antibodies (mAbs) by
Georges Köhler & Cesar Milstein in 1975 dramatically expanded the scope and potential of antibody
therapy [14]. mAbs now play a central role in the treatment of various forms of cancer, autoimmunity,
and infectious disease, and are starting to find their use for toxin neutralization, i.e., in the treatment of
Staphylococcus aureus’ dermonecrotizing alpha toxin [15], Clostridium difficile’s alpha toxin that induces
nosocomial infectious diarrhea [16], the botulism-causing botulinum toxin type A [17], and also
snake toxins [18].

Immunoglobulin G antibodies (IgGs) represent a well-validated and rapidly growing class of
human therapeutics with long serum half-life, bivalency, and immune effector functions [19,20].
Particularly, recombinant IgG-based antivenoms have the potential to be safer and more efficacious
snakebite therapies than current plasma-derived antivenoms. This arises from their compatibility
with the human immune system and the possibility to only include antibodies that target medically
relevant snake venom toxins in the antivenom mixture, rather than against all venom toxins, and other
immunogenic components. However, there are some potential drawbacks connected to the use of IgGs
for envenoming therapy, namely the large size of IgGs (~150 kDa) [21] and their complex structure [22],
which might limit their rate of systemic distribution and require manufacturing processes based on
mammalian cell cultivation [23,24]. As an alternative, small non-antibody scaffolds might be able to
overcome some of the limitations of IgGs, while retaining many of their benefits. Such scaffolds include
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adnectins, affibodies, anticalins, and designed ankyrin repeat proteins (DARPins) among others,
and are small, single-domain proteins that typically lack disulfide bonds, require no post-translational
modifications, and can undergo straightforward multimerization (Figure 1) [25]. They present
promising therapeutic scaffolds for antitoxin development, since their cost of production has the
potential to be lower than the cost of production for IgGs (e.g., through low-cost microbial expression),
and since their high stability could render cold chain unnecessary in their geographical distribution,
which is a significant advantage particularly for envenomation treatment in rural areas where snakebite
antivenom is needed the most [25]. Furthermore, the high levels of engineerability and likely improved
tissue penetration for rapid distribution bear notable therapeutic potential.

Figure 1. Overview of the structure, properties, and additional information of the alternative protein
scaffolds covered in this review. The overview includes the parental proteins to each scaffold,
the randomization strategies, the molecular weight (MW), maximum melting temperature (Tm),
most advanced clinical trial phase (Ct Phase; i.e., the most advanced clinical trial stage undergone
by a particular scaffold), and the year of discovery (YoD). The figure also indicates where certain
information was not available (NA). The figure was inspired by Vazquez-Lombardi et al., 2015 [25],
and the scaffold images sourced from the Protein Databank (https://www.rcsb.org/).

https://www.rcsb.org/
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In this review, we briefly introduce the different types of animal-induced poisonings and
envenomings, discuss the current state-of-the-art in envenoming therapy in the clinic, succinctly
present considerations toward the use of human antibodies, suggest and discuss alternative protein
scaffolds to target toxins, as well as explore their history and properties. Finally, we briefly assess
the potential impact of the implementation of alternative protein scaffolds as therapeutic agents
against envenomings.

2. Poisonings and Envenomings

There are two major modalities by which humans are typically exposed to animal toxins,
namely by poisoning or envenoming. Although the terms “poison” and “venom” are often used
interchangeably, they do in fact have very different meanings and implications (Figure 2). The key
distinguishing factor lies within the toxin delivery method of the animal [26]. Poison is absorbed or
ingested by the affected individual, and therefore a poisonous animal can only deliver toxic compounds
if another animal comes in contact with it or eats it (e.g., puffer fish, poison dart frog, cane toad) [26].
Venom, on the other hand, is always injected and consequently one can find a mechanism (e.g., stingers,
fangs, etc.) to inject toxins directly into another creature in every venomous animal [26]. A further
distinguishing factor, on a molecular level, is that venoms are typically protein-based, whereas poisons
mostly contain small organic molecules [26]. Consequently, antibodies can be raised against venom
toxins, whereas this is typically impossible for small molecules from poisons [18]. Venoms in particular
are very complex, containing polypeptides, high-molecular-weight and low-molecular-weight proteins,
amines, lipids, steroids, amino polysaccharides, quinones, glucosides, nucleosides, and free amino
acids, as well as serotonin, histamine, and other substances [27]. The composition of a venom appears
to reflect its function, resulting in defensive venoms, such as those from fish or bees, typically being
relatively simple and primarily acting as immediate and extreme pain inducers [28–30]. Predatory
venoms, on the other hand, are more complex (sometimes comprising over 100 different proteins) and
often highly variable in composition and physiological effects, since they need to target various
complex biological mechanisms within their prey [27]. Such diversity predisposes the venom
composition of such species to vary even between individuals of the same species through random
and selectively driven mutations. Consequently, such variation can also result in significant variation
in overall venom toxicity and mode of action between closely related taxa [31], populations of a single
species [32,33], sex-related differences in siblings [34], and ontogenetic variations in the lifetime of
an individual [35]. This can have significant consequences for the efficacy of antivenoms for human
therapy; antivenoms specifically developed towards a certain species might be ineffective, if the
venoms used for immunization do not cover geographical and/or environmental variation in venom
composition of that species. Notably, not all toxins in these venoms are of medical importance and need
to be neutralized. Hence, for an effective treatment it is important to identify the clinically relevant
toxins and to ensure that the therapeutic molecule(s) against these toxins can bind and neutralize their
toxicity in the face of potential variation in venom compositions. However, to date, we have mostly
relied on the ingenuity of the mammalian immune system in the context of serotherapy to mitigate
the effects of envenomings; the ability to engineer targeted antibodies against specific toxins has only
recently come within our reach, yet already holds significant promise.
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Figure 2. Venomous as well as poisonous animals produce and/or accumulate toxins. While venom 
toxins are protein based, poison toxins are mostly comprised of small organic molecules. 
Consequently, venoms are only toxic when injected, while poisons are toxic both when injected and 
ingested. 

3. Serotherapy against Intoxication 

Most envenomings and some poisonings (e.g., botulism) are currently treated with serotherapy 
[36,37]. Serotherapy is based on some of the same principles as vaccination, which was first 
developed by Edward Jenner [38]. However, instead of inducing immunity in the patient directly, 
immunity is induced in a production animal and the hyper-immunized serum is transfused into the 
patient, also known as passive vaccination (Figure 3) [36]. A key advantage of this technique is that 
in the case of highly diverse toxin cocktails that are commonly found in venoms, it is not essential to 
know what specific toxins are present, as long as the immune system of the production animal gives 
rise to neutralizing antibodies against all the key toxic components [39]. This approach has proven 
very effective over the last century and has saved countless lives. However, conventional serotherapy 
suffers from many drawbacks. Venom extraction from animals involves a significant danger to the 
personnel handling the venomous animals. Another key issue is the use of production animals, which 
is costly, since keeping production animals and ensuring their well-being is expensive [40,41]. 
Immunization of animals is also a time consuming process with inherent batch-to-batch variation, 
which can have considerable therapeutic implications [42–44]. The presence of non-toxic 
immunogens in the venoms used for immunization is likely to decrease the concentration of 
therapeutically relevant antibodies in an antivenom, as these components may give rise to irrelevant 

Figure 2. Venomous as well as poisonous animals produce and/or accumulate toxins. While venom
toxins are protein based, poison toxins are mostly comprised of small organic molecules. Consequently,
venoms are only toxic when injected, while poisons are toxic both when injected and ingested.

3. Serotherapy against Intoxication

Most envenomings and some poisonings (e.g., botulism) are currently treated with serotherapy [36,37].
Serotherapy is based on some of the same principles as vaccination, which was first developed by
Edward Jenner [38]. However, instead of inducing immunity in the patient directly, immunity is
induced in a production animal and the hyper-immunized serum is transfused into the patient,
also known as passive vaccination (Figure 3) [36]. A key advantage of this technique is that in the
case of highly diverse toxin cocktails that are commonly found in venoms, it is not essential to know
what specific toxins are present, as long as the immune system of the production animal gives rise
to neutralizing antibodies against all the key toxic components [39]. This approach has proven very
effective over the last century and has saved countless lives. However, conventional serotherapy suffers
from many drawbacks. Venom extraction from animals involves a significant danger to the personnel
handling the venomous animals. Another key issue is the use of production animals, which is costly,
since keeping production animals and ensuring their well-being is expensive [40,41]. Immunization
of animals is also a time consuming process with inherent batch-to-batch variation, which can have
considerable therapeutic implications [42–44]. The presence of non-toxic immunogens in the venoms
used for immunization is likely to decrease the concentration of therapeutically relevant antibodies in
an antivenom, as these components may give rise to irrelevant antibodies of no or low therapeutic
value [12]. In fact, a study on equine scorpion antivenoms demonstrated that only a small percentage
of the antibodies present in the antivenom were able to neutralize important venom toxins [45].
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Raising a significant titer of antibodies against small venom components with low immunogenicity
and high toxicity has been demonstrated to be particularly problematic [46–49]. Furthermore, the
use of non-human antibodies results in a high risk of both early and late adverse reactions [50,51],
such as serum sickness and anaphylactic shock, since these antibodies are immunogenic due to their
heterologous nature. Finally, due to the very minute amounts of venom that can be extracted from
many venomous animals (especially spiders and scorpions), production of antisera is dependent
on laborious venom collection processes, where large numbers of animals need to be milked by
electrostimulation in order to procure enough venom for immunization. Such challenges necessitate
significant technological innovation for the production of safer and more effective antivenoms, as well
as an increase in the economic sustainability of the production process itself, by making it independent
of both venoms and animals [50,52].
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Figure 3. Schematic overview of the production process for current snake antivenoms. First, the venom
needs to be manually extracted from the target species of snake(s); a process commonly known as
“milking”. Thereafter, a small amount of that venom is used to immunize the production animals
(e.g., horses or sheep). After the animals have built up sufficient immunity (high plasma titers
of antibodies) against the target venom, the blood plasma is extracted from the animals, and the
immunoglobulin G antibodies are purified by various protein precipitation techniques. Finally,
the antibodies are formulated and bottled for human use.

4. Human Monoclonal Antibodies

Monoclonal antibodies (predominantly IgGs) are highly specific for their target, and since many
toxins are structurally distinct from the proteins present in the human body [53,54], few adverse
off-target effects can be expected when using mAbs to target these. The nature of mAbs provides
inherent advantages over serotherapy in the context of neutralizing toxins. With a well-defined mAb
preparation, where specificity is predefined and only one immunoglobulin isotype is present, industrial
production can be performed with a low batch-to-batch variation [54]. Additionally, the presence of
only specific antibodies ensures high biological activity per mass of protein [55], lowering both the
cost of treatment, as less material is needed, and the risk of late onset adverse effects [12].

Due to the protein size, IgG-based antivenoms have low volumes of distribution, cycle through
the interstitial space many times, and have long elimination half-lives [56,57]. Importantly though,
the long elimination half-life is especially a result of binding to the neonatal Fc receptor, which reduces
lysosomal degradation and recycles the IgGs [58–61]. Human IgGs have an elimination half-life
of 21–28 days [58–61], chimeric IgGs a half-life of 8–10 days, and murine IgGs 1–3 days [60,62].
For these reasons, full length IgGs have the potential of effectively neutralizing systemically acting
toxins in the intravascular compartment for many days [12]. Besides the neutralizing ability of their
variable regions, IgGs have an Fc region that mediates opsonization and activation of the complement
system [63]. Conversely, antibody formats without the Fc region can be exploited to obtain a larger
distribution volume and faster tissue penetration [58,64–66], though at the cost of a much shorter
half-life of 0.5–30 h [60]. Such formats can be used for neutralizing systemically acting toxins as well
as locally acting toxins. The advantages and disadvantages of various antibody formats for antivenom
development have been thoroughly reviewed elsewhere [12].
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Non-human mAbs are immunogenic and can elicit an immune response when administered
to human recipients [67]. With humanized or human mAbs on the other hand, the adverse
reactions from introducing foreign antibodies in the human body are considerably lowered [54],
and several studies have investigated the use of human mAbs for toxin neutralization. Human
mAbs capable of neutralizing the hemorrhagic metalloproteinase HR1a from Protobothrops flavoviridis
have been developed by Morine et al. and used to map epitope regions on the HR1a toxin [68].
Additionally, the use of human mAbs has been investigated for the neutralization of shiga toxin [69],
Clostridium difficile toxins [70], Staphylococcal enterotoxin [71], ricin toxin [72], anthrax lethal factor [73],
and botulinum toxin [74]. Most recently, a study for the very first time demonstrated the use of
fully human mAbs to neutralize animal toxins in vivo. Additionally, it highlighted the potential of
oligoclonal mixtures of recombinantly expressed fully human mAbs in treatment of envenoming,
by presenting their capability of neutralizing experimental snakebite envenoming [18].

Cost-competitive production of antivenom antibody mixtures affordable even in poor regions
of the developing world is a major challenge [75], but with the rapid growth in clinical use of
mAbs [76,77] it seems possible to achieve in the future. Currently, expression systems based on
Chinese Hamster Ovary cells are the most common choice for the industrial manufacturing of
recombinant monoclonal antibodies [76,77], although microbial expression is also being explored
for the production of various antibody formats [12]. Mammalian cell lines are preferred for the
expression of IgG molecules [76,77], as they enable post-translational glycosylation, and the generation
of antibodies with low immunogenicity, whilst also ensuring the proper folding and secretion of
large proteins. Ultimately, a high yield of functional proteins can be obtained [78,79], and often the
industrial production of IgG yields more than 12 g/L [79]. However, mammalian expression systems
require expensive media, and the cost for disposables and other consumables is typically high [79].
While prokaryotic expression systems in many cases may be used for low-cost manufacture of simpler
proteins, these systems are not yet capable of correctly glycosylating antibodies. Adding to this, the
disulfide bonds of antibodies can usually not be obtained in the reducing environment of the bacterial
cytoplasm, wherein antibodies also tend to fold incorrectly and form insoluble aggregates ultimately
leading to lower expression yields [12,80]. Alternative binding proteins with characteristics such as
small size, stable structure, and lack of disulfide bonds and glycosylation sites might be attractive in
order to properly exploit the simple and cheap prokaryotic expression systems and obtain advantages
such as large volume of distribution and rapid tissue penetration.

5. Alternative Binding Scaffolds

Alternative binding scaffolds offer potential improvements to both the cost and efficacy
of antitoxin therapy versus traditional serotherapy, and even monoclonal antibody formats.
Improvements to cost can be split into three areas (i) facile engineerability to allow for a cheap
and rapid research and development phase, (ii) low production costs at good manufacturing practice
(GMP) quality, and (iii) high stability at elevated temperatures with a low propensity for aggregation
to reduce the need for, and the associated cost of, a cold-chain and storage facilities.

Facile engineerability of a scaffold can be achieved by compatibility with well-established binder
discovery and development techniques, such as phage display, ribosome display, or yeast display.
The libraries that are screened using these display techniques should be of high quality i.e., containing
as diverse a set of potentially functional variants as possible. Knowledge of the binding interface of
a scaffold is useful so that relevant residues/regions can be diversified to alter target binding without
creating a large percentage of inactive variants. Further development and engineering are also greatly
facilitated if the intended final drug format is the one used in the initial discovery stage. Of note here
is the process of IgG antibody discovery, in which phage display of Single-chain variable fragment
(scFv) or Fragment antigen-binding (Fab) molecules is often used, even though the intended final
drug format is often full IgG. Conversion of a binder in the scFv format to an IgG format may not be
trivial with a loss of affinity and activity often being experienced [81–83]. In contrast, the discovery
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processes for all the herein discussed alternative binding scaffolds would use the same molecular
format throughout.

Once a desired antitoxin has been developed, it is necessary to produce it in a monoclonal,
biochemically defined manner, whilst also maintaining low costs at GMP quality. To achieve this
goal, it is desirable for the scaffold to have no requirements for post-translational modification
(e.g., glycosylation, or formation of disulfide bonds), to consist of only a single domain, and to
be expressible in high yield without aggregation in microbial (bacterial or eukaryotic) platforms.
Alongside recombinant expression, it is also worth noting that some of the smaller scaffolds have
already been demonstrated to be compatible with chemical synthesis [84]. Whilst the effect of chemical
synthesis on cost is difficult to predict, its use does allow for the incorporation of moieties that could
provide useful biochemical properties (e.g., D-amino acids for resistance to protease activity) [85].

High-yield recombinant expression is often coupled to a scaffold being highly stable and soluble.
These two characteristics are also fundamental considerations for reducing the cost of future antitoxins
as they could enable therapies to be delivered and stored in resource-poor or remote environments
without the need for a cold chain. In turn, this may potentially allow for such antitoxins to be
used as first-aid treatments, as they could be stable at elevated temperatures in the field setting.
Many alternative scaffolds exhibit higher thermal stability than current antibody formats, with some
even being able to withstand extreme temperatures whilst maintaining functionality (DARPins and
affimers). Data on long-term storage is difficult to attain; however, a notable example does exist with
DARPins that in one case have been shown to retain 97.6% monomeric status in phosphate-buffered
saline at 15 mg/mL after 6 months at 25 ◦C [86].

The use of alternative scaffolds as antitoxins also has the potential to improve both the efficacy
and safety of envenoming therapy. This is notably in relation to immunogenicity, tissue penetration,
and percentage of therapeutically active components, which can all also affect the cost of therapy
due to a requirement for repeated dosing if not optimized (reviewed by [9]). Bearing this in mind,
one important method for improving safety is to minimize the potential immunogenicity of antitoxins.
As such, the use of a scaffold derived from human proteins is attractive because the chance of a patient’s
immune system recognizing the protein as foreign is reduced. To confirm this low immunogenicity,
it is beneficial to see that a scaffold has already been used in the clinical setting and is well-tolerated in
humans over a wide-range of doses in numerous clinical trials. The non-antibody scaffolds that have
so far undergone most testing are nanobodies and DARPins, for which selected molecules are currently
in Phase 3 clinical trials, and the approved Kunitz domain drug Ecallantide [25]. Successful clinical
trials also demonstrate that there are no, or minimal, innate scaffold-specific off-target or undesired
interactions that would jeopardize the safety of a patient. However, the majority of worries surrounding
off-target effects would need to be evaluated on a case-by-case basis, as off-target toxic interactions
would most likely be a characteristic of the individual binding mechanism of the investigated variant
of a scaffold, rather than a general characteristic of the scaffold.

To improve both the safety and reduce the cost of therapy it is desirable to administer the
minimum possible dose of total protein to a patient. This can be achieved by maximizing the
percentage of therapeutically active components in an antivenom. Current approaches (e.g., phage
display) of discovering binders in a monoclonal manner against desired targets enables a rationally
defined mixture of binders to be used in the final therapeutic composition, ensuring a maximal
percentage of active components. All herein discussed scaffolds are compatible with this monoclonal
discovery process. A high affinity interaction engineered/evolved to be significantly better than
current serotherapy affinities could allow for a lower dose of total protein to be administered to the
patient, due to the high percentage of therapeutic content. Thus, scaffolds exhibiting this ability are
highly desirable. As examples, DARPins and nanobodies have been developed to have affinities in the
low picomolar to femtomolar range [87].

The most notable area in which alternative scaffolds can potentially offer improvements to current
antitoxin efficacy is tissue penetration. All scaffolds to be discussed are significantly smaller than
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current IgG or Fab based serotherapy molecules (e.g., bicyclic peptides can be 100-times smaller
than IgG molecules), thus enabling increased tissue penetration and potential improvements to
the efficacy of toxin neutralization [88]. Increased tissue penetration can be a particularly relevant
characteristic for neutralizing toxins that act locally, such as snake venom metalloproteinases and
myotoxic phospholipases A2 (PLA2s) [2]. However, the smaller size of many of the non-antibody
scaffolds places these scaffolds below the glomerular filtration limit (~70 kDa), causing the molecules
to be rapidly removed from circulation unless otherwise modified [89]. Many successful attempts have
already been made to modify several of the different scaffolds to increase their half-lives involving
techniques such as PEGylation (attachment of polyethylene glycol chains), fusion to Human Serum
Albumin (HSA), fusion to the Fc domain of IgGs, or creating a bispecific binder against a target
and HSA or Fc receptors [90–94]. These modifications have dramatically improved the half-lives
of associated proteins from minutes to days. It is worth noting that these improvements are not
solely due to an increase in size, but also address another aspect lacking from non-antibody scaffolds;
the lack of an interaction with the immune system via Fc receptors. Cell-mediated effector functions
are not required for toxin neutralization; however, these scaffolds do lack an important interaction
with the neonatal Fc receptor. This intracellular Fc receptor is responsible for recycling pinocytosed
IgGs and serum albumin back to the bloodstream. Proteins in the bloodstream that do not possess
this interaction are instead subjected to lysosomal degradation in the cells, contributing significantly
to the low half-lives exhibited by the unmodified scaffolds [95]. Thus, fusion to the Fc domain, HSA,
or a binder against either of these molecules or the Fc receptor itself, addresses this issue.

Alternative scaffolds could also enable entirely new efficacies, compared to full IgG antibodies,
to be achieved due to the use of different methods and sterics of binding to a target. Toxins represent
an extremely diverse field of targets, ranging from small molecules that exert their function via
a binding interaction with a target macromolecule, to enzymes that exert their toxic function by
catalyzing a reaction. Whilst neutralizing a toxin that interacts with macromolecules could be achieved
by blocking a surface localized interaction site or altering the toxicokinetics, the specific neutralization
of an enzyme requires binding to an allosteric regulatory site, blocking access to the substrate cleft,
or interaction with a buried active site. Interestingly, heavy-chain antibodies from camels have already
exhibited an increased enzyme-inhibitory profile compared to full IgGs, likely due to the ability
of the long Complementarity-Determining Region 3 (CDR3) loop of their heavy chains to stretch
through a narrow substrate channel before reaching an active site [96]. These channels can be very
long on a molecular level, with 64% of enzymes having a channel greater than 15 angstrom in length,
with the typical being 28 angstrom [97]. An IgG has a diameter of 200-400 angstrom; thus, it cannot
fit into a substrate channel [98]. Small molecules would traditionally be the entities of choice for
enzyme inhibition (such as the PLA2 inhibitor Varespladib), however, protein scaffolds could also be
of use [99]. Notably, the discovery of protein-based enzyme inhibitors could be simpler than small
molecules due to the ability to leverage the power of ultra-high throughput directed evolution for
drug discovery. The scaffolds used should either be extremely small, for instance bicyclic peptides,
or possess a binding interface with a long protuberance from the scaffold as is the case with nanobodies
or LoopDARPins [100].

All of these characteristics will subsequently be discussed and evaluated on an individual
scaffold level.

5.1. Nanobodies

The nanobody technology was developed after the discovery that Camelidae (e.g., camels
and llamas) possess fully functional antibodies that only consist of heavy chains [101,102].
These heavy-chain only antibodies encompass two constant domains (CH2, CH3), and a single variable
domain (VHH), which have antigen binding capacity comparable to human IgGs and have proven
to be very stable. The single-domain antibody consists of 110–136 amino acids, comprising one
variable domain (VH) of a heavy-chain antibody. These single variable domains, with their small size
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and unique structural and functional properties, form the base of a cohort of therapeutic molecules,
which are known as nanobodies (Nbs; Figure 1(1)) [103]. There have been multiple reviews covering
Nbs in depth [104–106], hence, in the following, only key features are briefly introduced.

Nbs are known to possess high affinity and specificity (similar to whole antibodies), good solubility
(20 mg/mL), high thermostability (Tm up to 86 ◦C), higher penetration rate into deep-tissue due to
their small size (12–15 kDa), and low production cost [104,107–110]. Due to their small size and their
extended CDR3 loop, Nbs prove to be adept at neutralizing targets via binding hidden epitopes that are
not accessible to IgGs [111], such as the active sites of enzymes, intracellular targets, G-protein coupled
receptors, and ion channels [105,112,113]. Compared to mAbs, Nbs possess a different pharmacokinetic
behaviour owing to their relatively short half-life (few hours) [111], which can be advantageous in
applications where rapid clearance is required, but which can also be a disadvantage when targeting
animal toxins that have the possibility to reside in a bite wound for a longer period of time. The half-life
can, however, be improved by PEGylation or conjugation to HSA [90], consequently sacrificing its
small size properties and possibly resulting in less tissue penetration. Nonetheless, Nbs are considered
to have very low immunogenicity, because of their homology with human VH sequences, and can also
be humanised by grafting the CDR loops onto a human VH scaffold. Low immunogenicity and efficacy
has led to a significant interest in this scaffold for research, diagnostic, and therapeutic purposes [114].
Over a dozen clinical trials have been carried out using Nbs in multiple areas of therapy, with only
two being terminated prematurely due to adverse effects [106]. It should be noted that these adverse
effects may have been target biology related rather than scaffold-related as the effects were disease
related, e.g., when targeting the AB peptide in Alzheimer’s disease the peptide’s concentration was
seen to increase rather than decrease over time [106]. Due to their good tissue distribution, Nbs are
likely to more easily reach and neutralize toxins in distal tissues compared to mAbs, thus potentially
being capable of neutralizing toxins closer to the depot of the bite wound, responsible for recurrent
symptoms after some snakebites [115].

Phage display is the first choice when it comes to discovery of Nbs due to its robustness [104,107–110].
However, other display techniques have also been employed, such as ribosome or mRNA display, bacterial
or yeast surface display, as well as bacterial two-hybrid screening [115]. In 2013, Richard et al. successfully
isolated high affinity llama VHH’s against the α-cobratoxin (α-Cbtx) from Naja kaouthia. Futhermore, they
were able to completely neutralize the lethal effects of the α-Cbtx (with a ratio of less than one Nb per toxin
molecule), and later on enhance the thermal stability of the discovered VHH’s, by introducing a mutation
and a disulfide bridge [116,117]. Nb antitoxins have also successfully been discovered against toxin fractions
from the desert scorpion, Androctonus australis hector, which showed an advantageous balance between toxin
neutralization capacity and fast renal clearance, resulting in low liver uptake of the nanobody [118–120].

5.2. Affimers

Phytocystatins are small protein inhibitors of cysteine proteases and have been the inspiration
for designing an artificial protein binding scaffold termed adhiron (Figure 1(2)). By generating
a plant-derived consensus phytocystatin protein, Tiede et al., 2014 established a basis from which
the artificial adhiron constructs could be derived [121]. The cystatin structure of adhirons resembles
that of an earlier scaffold based on stefin A [122], and both scaffolds are now collectively referred to
as affimers [123].

The artificial affimer proteins are characterized by a four-stranded antiparallel β-sheet core and
a central α-helix. This is a compact structure with a melting temperature (Tm) of 101 ◦C [121],
which renders it more stable than traditional antibodies [121]. With a small size of around 100 amino acids
(~11 kDa), a high solubility, and a high stability [121], affimers exhibit rapid tissue penetration and rapid
target retention [124]. Furthermore, these small monomeric proteins can be easily multimerized or fused
with other scaffolds to obtain multispecificity or improved pharmacokinetics [124]. No disulfide bonds are
present in affimers [121], enabling them to be properly expressed in reducing intracellular environments.
They also do not contain glycosylation sites that require post-translational modifications, suggesting
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that microbial expression should be achievable on an industrial scale [121,124]. Indeed, with E. coli as
host, purification yields of soluble affimer at 10–100 mg/L can be obtained in an experimental setting,
if a heating step is included [121].

Affimer libraries are generated by replacing four amino acids between the first and second
β-strand and three amino acids between the third and fourth β-strand, with two loops consisting
of nine random amino acids each. The insertion of peptide sequences for molecular recognition in
these loop positions results in libraries with flexible and extended binding regions. These regions are
expected to adapt to a conformation that enables molecular contact with a wide variety of targets,
which in turn enables affimers to interact with protein pockets and surfaces as well as peptides
and small molecules [121]. Affimers selected through phage display have displayed affinities in the
nanomolar range [121]. Also, like that of their phytocystatin parent proteins, affimers have been
developed to have high activity as protease inhibitors [121]. Affimers have successfully been selected
against 350 different targets, including proteins, peptides, organic molecules, and inorganic metallic
nanoparticles [125]. The in vitro discovery platform enables selection against targets that are hard to
raise antibodies against, either due to their low immunogenicity or high toxicity [125], and circumvents
the issue of having to humanize heterologous IgGs.

Recent studies have demonstrated the ability of affimers to inhibit protein–protein interactions [126,127].
While one study demonstrated inhibition of the interaction between the IgG immune complex and the
Fc gamma receptor FcγRIIIa [121,128], another study isolated affimers inhibiting small ubiquitin-related
modifier-dependent protein–protein interactions with isoform-specificity [121,128]. It remains to be fully
investigated whether affimers are suitable for therapeutic purposes, as so far only pre-clinical studies have
been undertaken with a PD-L1 inhibitor, but the properties of the scaffold are attractive [121,128].

5.3. Adnectins (Monobodies)

Adnectins are based on the tenth fibronectin type III domain (10Fn3), which functions as an integrin
binder in humans (Figure 1(3)) [129,130]. The adnectin family constitutes one of the earliest designed
binding proteins, and the scaffold design was instigated by the first constructions of libraries based on
10Fn3 starting in 1998 [129,131,132]. The interest in 10Fn3 was sparked by its structural similarity to
the variable domains of antibodies, its biophysical properties, and its abundance in human blood and
extracellular matrices [129].

Adnectins are small and compact artificial proteins with a molecular size of ≤12 kDa [129,133].
The structure is composed of seven β-strands joined by six loops, forming a two antiparallel β-sheet
fold, where the loops at both poles are accessible for solvents. The monomeric adnectin structure is ideal
for multimerization, where multi-functional binding proteins can be obtained [129]. The diversifiable
loop regions are very similar to the variable domains of antibodies, but the protein sequence is not
homologous to that of immunoglobulins. Adnectins further set themselves apart from antibodies
by not containing any disulfide bonds or free cysteines [129,130], by exhibiting a high Tm of up to
84 ◦C [134–136], and by their ability to retain the high thermostability under reducing conditions,
enabling high protein yields in bacteria [129]. Additionally, adnectins are not glycosylated [91],
which further enhances the ease of cost-efficient production in a bacterial expression system.

The three loops at one pole in 10Fn3 are structural analogues of the H1, H2, and H3 CDRs
of antibodies, and are of highest interest when generating artificially diversified surfaces for
target-binding in adnectin libraries [137,138]. Diversification might result in lower thermostability
and solubility, but the very high stability of the wild type scaffold ensures that even destabilized
variants retain sufficient stability to be exploited therapeutically [133,139–141]. When the scaffold
structure is retained, and variations in sequence and length are only introduced in the variable loop
regions, structural stability and binding affinities in the sub-nanomolar range can be obtained [91].
Their small size, soluble nature, and great stability already suggests a high volume of distribution and
rapid tissue penetration, but as their small size will also result in a rapid clearance by the kidneys [91],
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ensuring prolonged half-life by improved pharmacokinetics might be of relevance for their use in
envenoming therapy.

The therapeutic potential of adnectins remains unstudied for toxin neutralizing purposes, but at
least three separate molecules have been investigated in clinical trials up to Phase II for other
indications, e.g., in oncology [25,129]. Additionally, some studies have investigated their ability to bind
soluble proteins. One target is the protein convertase subtilisin/kexin type 9 (PCSK9) enzyme that is
commonly targeted to decrease low density lipoprotein (LDL) in cardiovascular disease. Adnectins
binding the PCSK9 enzyme have successfully been discovered with sub-nanomolar affinity to sterically
prevent interactions with LDL receptors [91]. Furthermore, PEGylation of the adnectins did not hamper
this competitive inhibition [91]. Another study describes the generation of an adnectin that was capable
of binding immobilized interleukin 23 (IL-23) with a dissociation constant (Kd) of 2 nM, and which
inhibited IL-23 from binding its receptor. Furthermore, the adnectin demonstrated a half maximal
inhibitory concentration (IC50) of 1 nM in a biochemical competition assay with the IL-23 receptor [130].

5.4. Affibodies

Affibodies are a type of protein scaffold that was first developed in 1997 and is based on the
Fc-binding B domain of the staphylococcal protein A (SPA; Figure 1(4)) [142]. An affibody consists
of a single engineered Z domain, which is a 58 amino acid residue variant (~6 kDa) of a consensus
SPA B domain, forming a three-α-helix-bundle structure [142] with a Tm of 75 ◦C [143]. Affibodies
with high affinity to their target proteins are selected using phage display from combinatorial libraries,
where 13 surface-located residues on helix 1 and 2 have been randomized [142]. Affibodies have
shown affinities in the range from micromolar to low picomolar dissociation constants and can be
improved by affinity maturation [144,145].

One major challenge to overcome for affibodies is rapid renal clearance. One strategy employed
to prolong serum half-life and impede renal excretion has been to fuse affibodies to an HSA-binding
domain [144].

The affibody scaffold has been widely applied within bioseparation, diagnostics, functional
inhibition, viral targeting, and in vivo tumor imaging/targeting [144]. Affibodies have been used as
target-specific probes that bind with high affinity to several cancer-associated targets. Preclinical and
clinical studies have shown that affibodies are devoid of toxicity and immunogenicity [146], indicating
that their non-mammalian origin might not be of particular concern. However, when one of the
affibodies was fused was fused with a radiometal, the renal accumulation clearly exceeded that of the
tumor, hindering safe therapeutic applications.

5.5. Affitin (Nanofitins)

Affitins (commercial name Nanofitins) are artificial proteins able to selectively bind antigens
(Figure 1(5)). They originate from the DNA binding protein 7d (Sac7d) found in various Archaea,
such as Sulfolobus, Acidianus, and Metallosphaera genera. Sac7d consists of one protein chain of
~66 amino acids (~7 kDa) folded in an oligonucleotide/oligosaccharide-binding-fold, which is formed
by a β-barrel capped by a C-terminal α-helix, lacking disulfide bridges [147].

Affitins were discovered and developed by Mouratou et al. in 2007, yielding small and stable
intracellular inhibitors with no disulfide bridges and the ability to be produced at high levels in
E. coli [148]. Their affinity can be engineered as desired through randomization of amino acids on
the binding surface and subjecting the resulting protein library to ribosome display selection [148].
Having already been used as specific inhibitors for enzymes, it is possible that affinity can be directed
towards a wide range of targets, including peptides, proteins, viruses, and bacteria [149,150].

Affitins are extremely heat resistant (up to 90 ◦C) [151], originating from a thermophile
organism, and can have up to 18 of their amino acids mutated (27% of total), providing them with
tolerance towards several randomization schemes, while conserving both their fold and advantageous
properties [150]. Additionally, affitins have the potential to cover and/or deeply penetrate active
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sites [149]. In order to further improve on the properties of affitins, Aho7c originating from
Acidianus hospitalis, possessing picomolar affinities (Kd of 110 pM), high stability (up to 74 ◦C; pH 0–12),
and a 10% smaller size (60 compared to 66 amino acids) has been characterized [152]. However, despite
the constant development of the small-size affitins, they have yet to undergo significant clinical testing
to evaluate their safety and efficacy.

5.6. Anticalins

Anticalins are single polypeptides of 150–180 residues, artificially engineered from lipocalins to
bind ligands with high affinity in a deep complementary pocket, resembling that of the antigen-binding
site of antibodies [153–155], and were first described in 1999 (Figure 1(6)) [153–155].

Since initial discovery [156], lipocalins have been found to exist in many organisms with more
than 15 isotypes found in humans alone [154]. As small, secreted proteins of less than 20 kDa, lipocalins
often function as transport or storage proteins for hydrophobic and/or chemically sensitive organic
compounds, e.g., vitamins, lipids, and steroids. Lipocalins share a structurally highly conserved
β-barrel composed of eight antiparallel β-strands around a central core. Four structurally variable
loops form the entrance to the ligand-binding pocket that resembles the hypervariable region that
forms the antigen binding site of antibodies [155].

Lipocalins are endogenous human plasma proteins [157] and are rather stable with Tm reaching
almost 79 ◦C [158]. Anticalins engineered from lipocalins have affinities in a range comparable to
antibodies and, when optimized, Kd values of approximately 1 nM and 800 pM have been achieved
for fluorescein and digoxin, respectively [155]. Additionally, anticalins have the advantages associated
with small sized proteins and simple molecular structure with four variable loops that are less complex
than the CDRs of antibodies and thus require less manipulation [157]. To identify ligand binders,
anticalin libraries are created with targeted random mutagenesis of 16–24 amino acids at exposed
positions, which is primarily the tips of the four loops [159]. Subsequently, phage display selection
and microculture screening in combination with ELISA is used for identification of lead anticalin
candidates [157]. To prolong the inherently short plasma half-life or to generate multispecific fusion
proteins offering novel therapeutic modalities, a free cysteine residue or the N or C-terminal can
be used for site-specific covalent attachment. Anticalins do not have constant Fc regions, for which
reason undesired immunological effector functions may be avoided [155,157]. They can be effectively
produced in microbial expression systems, e.g., E. coli, as many naturally lack glycosylation and can be
engineered to be free of the one or two disulfide bonds they often contain. [155,157].

Currently, anticalin-based biopharmaceuticals for the areas of oncology and inflammation are in
development by the company Pieris [157]. To date, five drug candidates have passed early clinical
development, where they have demonstrated tolerability and stability. Two drug candidates are in
Phase I clinical trials, three have completed Phase I clinical trials, and one of these is now in Phase II
clinical trial. All of these drug candidates are based on human lipocalin scaffolds in order to reduce
the risk of immunogenicity in patients upon repeated dosing [157]. One example is the PRS-050
anticalin protein that targets and tightly binds vascular endothelial growth factor A (VEGF-A) with
a Kd ~20 pM, thereby preventing receptor binding and subsequent activation. VEGF-A is a key factor
in tumor-initiated angiogenesis and ocular diseases. To extend the plasma half-life in vivo, the anticalin
was engineered with site-directed PEGylation [92].

Another example is the anticalin PRS-080, which targets hepcidin that plays a major role in iron
metabolism, especially for patients with functional iron deficiency anemia, as hepcidin blocks iron
export from the storage cells in the body. Prolonged circulation is achieved by site-specific PEGylation
by addition of a 30 kDa PEG polymer [157]. Furthermore, anticalins have shown promising short-term
efficacy as an antidote against digoxin intoxication in rats [160].
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5.7. Armadillo Repeat Proteins

In 1980, Nüsslein-Volhard and Wieschaus reported the development of a line of Drosophila melanogaster
that had an altered segmental patterning, depending on specific mutations [161]. By 1989, Riggleman et al.
reported that mutations in the armadillo (arm) gene conferred this segment polarity [162], which later was
discovered to be encoding β-catenin. β-catenin was shown to contain what was then called an armadillo
repeat (ArmR), and proteins containing these were later found in many eukaryotes, where they mediate
signaling, nuclear transport, and cell adhesion (reviewed in Tewari et al. 2010 [163]). These naturally
occurring armadillo repeats proteins are termed nArmRPs, in contrast to designed dArmRPs.

An ArmR domain consists of 42 amino acids with an approximate molecular mass of 4.6 kDa,
which compose three helices (H1, H2, and H3; Figure 1(7)). These domains stack together in repeats of
4-12, creating ArmRPs having the structure of a right-handed superhelix [164]. As the ArmRs stack
together, their H3 motifs form a concave binding pocket, containing an interaction site that can bind
a target in an extended confirmation, meaning for instance an unstructured peptide region [164,165].
Importantly, the target extended peptide surface has to have certain negatively or positively charged
residues (depending on ArmRP subfamily) in order for the ArmRP to bind [164,166]. Binding proceeds
in an antiparallel fashion in regard to the ArmRP, resulting in an asymmetric double helix [164].

The stacked motifs have been reported to achieve nanomolar dissociation constants, indicating
strong binding to their interaction partner. ArmRPs have conserved residues in the hydrophobic core
of the protein, conferring stability [164]. Furthermore, conserved asparagine residues contribute
to protein-protein interactions together with other residues at the binding interface, which can
be engineered to achieve specificity [164,166,167]. In the final ArmRP library, a diversity greater
than 1011 was achieved, of which almost all were stable [164,168]. In this final library, and after
significant engineering efforts [164,165,169,170], six randomization positions per repeat could be
achieved, conferring a theoretical diversity of 9.9 × 106 per repeat [168], and by stacking of the repeats,
target specificity is obtained. As target specificity was obtained by stacking of this modular system,
the system has the potential to allow for generation of preselected repeats for certain short pieces of
target peptide that can be custom designed and assembled on demand into a new protein that can
bind a prescribed, extended peptide [171].

However, as only peptides without conformation can be targeted by the ArmRPs, the proteins may
have limitations in therapeutic applications. Additionally, off-target effects may merit pre-evaluation of
risk through a homology scan of native, endogenous peptides. Conversely, mutations in nArmRPs (or
ArmR-containing proteins) have been linked to a number of diseases, such as Parkinson’s disease [172],
neuroblastoma progression [173], and Bilateral macronodular adrenal hyperplasia [174]. Also, designing
preselected repeats may have the drawback that significant deviations occur in the ArmRP’s curvature
upon changes in environment, such as specific solutions, making it more difficult to design for larger target
peptides [171]. Another obstacle is the expected rapid clearance from the circulatory system, which may
prevent the ArmRPs to efficiently exert their effects, although it is yet to be tested in vivo. However, as with
other small size molecules, this might be possible to mitigate by conjugation or fusion to a targeting domain,
or by fusion to a carrier protein.

dArmRPs have thus far been reported to recognize alternating lysine and arginine residues with
affinities in the picomolar range [169]. No clinical trials have been reported, making evaluation of
potential immunogenicity or toxicity difficult.

5.8. Avimers

In 2005, Silverman et al. developed a new class of binding proteins called avimers, short for
‘avidity multimers’ (Figure 1(8)) [175]. These proteins were developed based on a large family of
217 known A-domains in human extracellular receptors [175].

Each A domain is ~35 amino acids (~4 kDa) and has 6 conserved cysteines, forming three disulfide
bridges, and also 6 conserved acidic residues that coordinate calcium binding, together conferring
structural integrity [176]. This leaves ~30 non-conserved residues per A-domain that can be designed by
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exon shuffling to achieve specificity to a desired target molecule and selected by phage display [93,175].
Furthermore, connecting A-domains by linkers led to the ability of designing multimers (avimers)
that achieve avidity by the individual A-domains’ summed affinity to different epitopes in the target
molecule, or cross-reactivity by linkage of A-domains with different specificities [175].

Avimers have been reported to have high thermostability and will still be active after 2 weeks
incubation time at −80 ◦C to 50 ◦C, and after 5 days at 90% human serum at 37 ◦C [93,175]. Multimeric
A-domains of up to 8-mers have been expressed in bacterial high-density fermentation production,
with yields of more than 1.4 g/L [93,175].

Two to three-mer avimers have been reported to obtain an avidity in the sub-nanomolar range,
binding strongly to their target molecules [175]. As avimer libraries have been based only on amino
acids at the various positions from naturally occurring human A-domains, there is a bias towards
hydrophilic residues, which contribute to solubility at concentrations of greater than 70 mg/mL [175].

In terms of application, in 2018, Hulme et al. [177] used phage display selection to identify
A domains with subnanomolar avidity and specificity to type II collagen. Fusion of the avimer to
anti-IL-1Ra ensured access to the extracellular matrix, whilst tethering the therapeutic close to its
target (IL-1 receptor). This extended the residence time, and thus increased the therapeutic efficiency,
while no immunogenicity was reported. Silverman et al. demonstrated in 2005 the ability of the
tetrameric avimer, C326 (AMG220), to specifically bind IL-6 with picomolar affinity, thus preventing
IL-6 mediated inflammation [175]. The avimer consisted of fused A-domains with specificity to IgG,
which prolonged serum half-life, and three other domains with specificity to IL-6, together providing
the protein with high avidity. C326 (AMG220) did enter phase I clinical trials in Australia but the study
has been put on hold (clinical trial ID: NCT00353756).

5.9. β-Hairpin Mimetics

β-hairpin mimetics consist of a single β-hairpin motif, i.e., two antiparallel β-strands that are
connected by a loop (Figure 1(9)). These motifs are frequently found at protein-protein interaction
interfaces, and thus, by mimicking these motifs, one can inhibit or activate a desired molecular target.
By designing a synthetic β-hairpin to replicate native protein epitopes, Fasan et al. demonstrated
the ability to mimic the HDM2 binding loop of p53, as it binds to HDM2. When this interaction
occurs, it can further activate tumor suppressor genes in cancerous cells, as p53 is a tumor suppressor
protein [178,179]. This β-hairpin was 15 amino acids long (1.8 kDa), containing an 8-residue variable
loop, preorganized by D-Pro-L-Pro [180], which achieved an IC50 to HDM2 of 1.1 µM.

In 2013, Karpova et al. demonstrated the use of a protein epitope mimetic (PEM) for antagonizing
C-X-C chemokine receptor type 4 to mobilize hematopoietic stem cells for therapy by direct cellular
targeting [181]. The PEM, POL5551, was well tolerated up to 100 mg/kg in mice studies, indicating
low toxicity, which may thus be the case for other PEMs as well [181]. POL5551 exhibited a clearance
of more than 90% after 4 h, but has yet to be tested in clinical trials. Therefore, off-target effects and
immunogenicity remain unknown, but due to the molecular size of the mimetics, rapid clearance
would also be expected for other PEMs. This could, however, be dealt with by fusion to a carrier
protein, or by linkage to a targeting-protein, in order to bind a serum protein for increased half-life.
It is also worth noting that this scaffold is compatible with chemical synthesis [182].

5.10. Bicyclic peptides

Polycyclic peptides are naturally occurring (e.g., in soil bacteria, venom from cone snail, etc.),
however, it is only since 2009 that the bicyclic peptides have been investigated in a therapeutic
context (Figure 1(10)) [183–185]. Bicyclic peptides are highly constrained and approximately 2 kDa
(9 to 15 amino acids) in size [186]. These peptides are highly soluble and provide manufacturing
and formulation flexibility. In comparison to their monocyclic counterparts, the bicyclic peptides
harbor increased conformational rigidity due to their two rings, rendering each ring smaller, and thus
providing increased stability. This extra rigidity can result in molecules with high target specificity and
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affinity [183]. Because of their simplicity, they can be chemically synthesized, significantly lowering
the cost of manufacture [183].

Owing to their properties, bicyclic peptides have proven to be a promising candidate for
therapeutic applications. They can be engineered to serve as therapeutics against a diverse set of
targets, and their proteolytic stability with improved plasma stability (relative to linear peptides) makes
them highly relevant for targeting soluble antigens. This high proteolytic stability is exemplified by
a bicyclic peptide against streptavidin that retained 96% of its activity even after 24 h of incubation with
chymotrypsin [187]. However, their small size does result in rapid clearance from the kidneys [183].

Bicyclic peptides have only recently been investigated as drug candidates by the company Bicycle
Therapeutics. Bicycle Therapeutics are focusing on Bicycle Drug Conjugates, a format in which a potent
toxin is conjugated to a bicyclic peptide designed to bind tumor antigens, thus mediating targeted
cytotoxicity. Notably, the conjugation of toxin to bicyclic peptide is via a tumor microenvironment
specific cleavable linker. The linker and coupling chemistry hold the attached toxin inert until the
conjugate is localized within the tumor microenvironment. This strategy limits the body’s exposure to
the conjugated toxin, reducing the risk of potential damage in normal tissues. Their lead compound,
BT1718, currently in phase I/IIa, targets MT1, which is an antigen present in many solid tumors,
including breast, lung, ovarian, and colon cancer, responsible for breaking down the proteins usually
surrounding the cell, allowing cancer to grow and spread [188].

5.11. DARPins

Designed Ankyrin Repeat Proteins (DARPins) are an artificial protein scaffold based on Ankyrin
Repeat (AR) proteins, which mediate diverse protein-protein interactions in nearly all species
(Figure 1(11)) [189,190]. The majority of natural AR proteins contain 4–6 AR domains stacked onto each
other [190], whereas DARPins contain 2-3 internal ARs sandwiched between the N and C-terminal
capping repeats. Each internal AR module consists of up to 27 defined framework residues and
6 potential protein-binding residues that form a β-turn, followed by two antiparallel helices and
a loop connecting to the β-turn of the next repeat [190]. DARPins thus retain a relatively large binding
interface, able to bind a wide range of targets down to the picomolar range [94].

DARPins exhibit some highly desirable traits, including a small size (15–18 kDa), high thermostability
(Tm between 66–90 ◦C) [190], and high expression levels in E. coli (up to 200 mg/L shake flask culture,
or 15 g/L with fermentation) [86,94]. DARPins also present many highly desirable traits specifically
relevant to therapy, such as high tissue penetration, adjustable pharmacokinetics depending on their
modification (e.g., PEGylation), high stability and solubility, as well as ease of production. Particularly
their stability could allow them to be applied not just intravenously, but also topically, orally, through nasal
administration, or inhalation. [191]. Furthermore, DARPins can be expressed multimerically at high yield,
enabling bi-(or higher) specifics to be made, thus making targeted delivery or other therapeutic modalities
possible [86]. Similar to other discussed scaffolds, small size decreases the half-life of DARPins, which can,
however, be extended through PEGylation or conjugation to HSA [94,192]. Nonetheless, DARPins are
promising candidates for broad therapeutic application, since they combine many desirable features into
one molecule family [94,191].

To this date, at least four separate DARPin molecules have undergone clinical trials, with one
(Abicipar pegol) already in Phase III [25]. Through multiple studies, DARPins have proved themselves
strong candidates when it comes to targeted delivery. Therapeutics employing targeted delivery using
DARPins have demonstrated an ability to reduce tumor growth, without causing fatal hepatoxicity,
supporting their safety of use [193]. Finally, outside of clinical trials, DARPins have been demonstrated
to be able to bind and neutralize the effect of soluble proteins, indicating that they may be promising
modalities for toxin neutralization [194–196].
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5.12. Fynomers

In 1989, Cooke and Perlmutter reported that amino acid residues 83–156 of the ~7 kDa Src-homology 3
domain of FYN tyrosine kinases contain two anti-parallelβ-sheets, connected by two flexible, ligand-binding
loops [197]. These loops can be engineered to obtain, or screened to discover, desired, ligand-binding
specificity. This highly thermostable scaffold (Tm of 70 ◦C) was named a fynomer (Figure 1(12)) [198–200].
As fynomers are conserved across different species, including humans, mice, rats, and gibbons [93,201],
they are non-immunogenic and can thus be utilized for therapeutic purposes. By fusing them with the Fc
region, one can increase circulation half-life [93,202]. Other fusions might also lead to increased half-life,
but are yet to be tested. Furthermore, they are easily recombinantly expressed in bacteria [198].

Unfused fynomers of ~7 kDa are expected to have good tissue penetration ability, as observed
with nanobodies [104], adnectins [91], affitins [149], DARPins [191], and avimers [177], but even in
its fused form, the molecular size is relatively small (depending on the fusion partner). This confers
short circulation half-time, which may need to be addressed by increasing the molecular size by
conjugation to e.g., HSA or targeting the fynomer to a serum protein by fusion to a targeting domain.
This domain could be another fynomer connected by a linker or an Fc region with a linker to increase
the molecular size. Furthermore, previous studies by Silacci et al. [199] showed that the longest linker
tested between an IL-17A-targeting fynomer and an Fc domain showed the most efficient inhibition of
IL-17A-mediated inflammation in vivo with an IC50 value of 21 pM.

Fynomers have been engineered as a bispecific format by fusion to antibodies, termed a “Fynomab”,
enabling a reduced molecular size in comparison to a bispecific IgG, seeing as the fynomer can be fused
directly to different antibody termini [203]. Fynomabs were demonstrated by targeting human epidermal
growth factor receptor 2 (HER2)-overexpressing cancerous cells with a fynomer, while simultaneously
recruiting T-cells via fusion to an anti-CD3 antibody [203]. The fynomer, targeting HER2, was selected
specifically to only bind high-density HER2, and thereby not HER2 in low density on normal cells,
demonstrating the strong engineerability of the approach. Later, in 2016, Silacci et al. developed a FynomAb
(COVA332) which was able to simultaneously inhibit TNF & IL-17A [204]. This construct entered clinical
trials (clinical trial ID: NCT02243787), but was later discontinued due to its safety profile.

6. Outlook

Plasma-derived antivenoms have historically been an effective treatment option for otherwise
intractable envenomings. Today, however, there is an opportunity for innovation in the field via the
application of technologies and approaches already well established in other fields. The development
of recombinant, monoclonal, protein-based binders against pre-defined toxin targets through phage
display selection is already underway and could be adapted to address the challenges seen for
plasma-derived antivenoms (e.g., undefined polyclonality and low content of therapeutically active
antibodies). Alternative scaffolds that exhibit significantly different properties to the more commonly
used IgG scaffold are examples of promising therapeutic modalities, worthy of investigation in relation
to next-generation envenoming therapies. There are now many different alternative protein-based
binders, based upon bacterial or plant proteins (e.g., affibodies), non-antibody human proteins
(e.g., DARPins) and antibody proteins themselves (e.g., nanobodies). These alternative binding
proteins all exhibit different biochemical and pharmacokinetic profiles, which may be useful for
future antitoxin development efforts. Some properties, such as high thermostability and low costs
of production, are likely to be highly beneficial characteristics for future envenoming therapies that
are to be distributed in impoverished regions of the developing world, while others (e.g., size and
half-life) may need engineering before an optimal therapy can be derived. Furthermore, it may be
the case that a combination of different scaffolds, such as oligoclonal mixtures of individual scaffolds
from different classes or fusion proteins based on two or more different scaffold classes, will be of
use in neutralizing whole venoms, as different toxins have different toxicokinetics, possibly requiring
differential neutralization strategies. Consequently, it might become necessary to evaluate how
different scaffolds interact with each other in solution, as this may affect their overall stability and
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efficacy. Alongside the current development of monoclonal antibody-based recombinant antivenoms,
the inclusion of alternative binding protein scaffolds in the future of envenoming therapy deserves
further investigation.

Author Contributions: All authors contributed to writing and editing the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Sunagar, K.; Casewell, N.R.; Varma, S.; Kolla, R.; Antunes, A.; Moran, Y. Deadly Innovations:
Unraveling the Molecular Evolution of Animal Venoms. In Venom Genomics and Proteomics; Springer:
Dordrecht, The Netherlands, 2014; pp. 1–23.

2. Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming.
Nat. Rev. Dis. Primer 2017, 3, 17063. [CrossRef] [PubMed]

3. Harrison, R.A.; Hargreaves, A.; Wagstaff, S.C.; Faragher, B.; Lalloo, D.G. Snake Envenoming: A Disease of
Poverty. PLoS Negl. Trop. Dis. 2009, 3, e569. [CrossRef]

4. Chippaux, J.-P. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins
Incl. Trop. Dis. 2017, 23, 38. [CrossRef] [PubMed]

5. World Health Organization. Sustaining the Drive to Overcome the Global Impact of Neglected Tropical Diseases:
Second WHO Report on Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2013;
ISBN 978-92-4-156454-0.

6. Calmette, A. L’immunisation artificielle des animaux contre le venin des serpents, et la thérapeutic
expérimentale des morsures venimeuses. C. R. Soc. Biol. 1894, 46, 120–124.

7. Phisalix, C.A.; Bertrand, G. Sur la propriété antitoxique du sang des animaux vaccinés contre le venin de
vipère. C. R. Soc. Biol. 1894, 46, 111–113.

8. Habib, A.G.; Brown, N.I. The snakebite problem and antivenom crisis from a health-economic perspective.
Toxicon 2018, 150, 115–123. [CrossRef] [PubMed]

9. Laustsen, A.H.; Engmark, M.; Milbo, C.; Johannesen, J.; Lomonte, B.; Gutiérrez, J.M.; Lohse, B. From Fangs
to Pharmacology: The Future of Snakebite Envenoming Therapy. Curr. Pharm. Des. 2016, 22, 5270–5293.
[CrossRef] [PubMed]

10. Laustsen, A.H.; Solà, M.; Jappe, E.C.; Oscoz, S.; Lauridsen, L.P.; Engmark, M. Biotechnological Trends in
Spider and Scorpion Antivenom Development. Toxins 2016, 8, 226. [CrossRef] [PubMed]

11. Knudsen, C.; Laustsen, A.H. Recent Advances in Next Generation Snakebite Antivenoms. Trop. Med. Infect. Dis.
2018, 3, 42. [CrossRef] [PubMed]

12. Laustsen, A.H.; María Gutiérrez, J.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.;
Jürgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Øhlenschlæger, M.; et al. Pros and cons of different
therapeutic antibody formats for recombinant antivenom development. Toxicon 2018, 146, 151–175.
[CrossRef] [PubMed]

13. Laustsen, A.H. Guiding recombinant antivenom development by omics technologies. New Biotechnol. 2018,
45, 19–27. [CrossRef] [PubMed]

14. Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature
1975, 256, 495–497. [CrossRef] [PubMed]

15. Tkaczyk, C.; Hua, L.; Varkey, R.; Shi, Y.; Dettinger, L.; Woods, R.; Barnes, A.; MacGill, R.S.; Wilson, S.;
Chowdhury, P.; et al. Identification of anti-alpha toxin mAbs that reduce severity of Staphylococcus aureus
dermonecrosis and exhibit a correlation between affinity and potency. Clin. Vaccine Immunol. 2012, 19,
377–385. [CrossRef] [PubMed]

16. Leav, B.A.; Blair, B.; Leney, M.; Knauber, M.; Reilly, C.; Lowy, I.; Gerding, D.N.; Kelly, C.P.; Katchar, K.;
Baxter, R.; et al. Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile
infection (CDI). Vaccine 2010, 28, 965–969. [CrossRef] [PubMed]

17. Stanker, L.H.; Merrill, P.; Scotcher, M.C.; Cheng, L.W. Development and partial characterization of
high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich
ELISA. J. Immunol. Methods 2008, 336, 1–8. [CrossRef]

http://dx.doi.org/10.1038/nrdp.2017.63
http://www.ncbi.nlm.nih.gov/pubmed/28905944
http://dx.doi.org/10.1371/journal.pntd.0000569
http://dx.doi.org/10.1186/s40409-017-0127-6
http://www.ncbi.nlm.nih.gov/pubmed/28804495
http://dx.doi.org/10.1016/j.toxicon.2018.05.009
http://www.ncbi.nlm.nih.gov/pubmed/29782952
http://dx.doi.org/10.2174/1381612822666160623073438
http://www.ncbi.nlm.nih.gov/pubmed/27339430
http://dx.doi.org/10.3390/toxins8080226
http://www.ncbi.nlm.nih.gov/pubmed/27455327
http://dx.doi.org/10.3390/tropicalmed3020042
http://www.ncbi.nlm.nih.gov/pubmed/30274438
http://dx.doi.org/10.1016/j.toxicon.2018.03.004
http://www.ncbi.nlm.nih.gov/pubmed/29534892
http://dx.doi.org/10.1016/j.nbt.2017.05.005
http://www.ncbi.nlm.nih.gov/pubmed/28552814
http://dx.doi.org/10.1038/256495a0
http://www.ncbi.nlm.nih.gov/pubmed/1172191
http://dx.doi.org/10.1128/CVI.05589-11
http://www.ncbi.nlm.nih.gov/pubmed/22237895
http://dx.doi.org/10.1016/j.vaccine.2009.10.144
http://www.ncbi.nlm.nih.gov/pubmed/19941990
http://dx.doi.org/10.1016/j.jim.2008.03.003


Toxins 2019, 11, 53 19 of 28

18. Laustsen, A.H.; Karatt-Vellatt, A.; Masters, E.W.; Arias, A.S.; Pus, U.; Knudsen, C.; Oscoz, S.; Slavny, P.;
Griffiths, D.T.; Luther, A.M.; et al. In vivo neutralization of dendrotoxin-mediated neurotoxicity of black
mamba venom by oligoclonal human IgG antibodies. Nat. Commun. 2018, 9, 3928. [CrossRef]

19. Presta, L.G. Molecular engineering and design of therapeutic antibodies. Curr. Opin. Immunol. 2008, 20,
460–470. [CrossRef] [PubMed]

20. Nelson, A.L.; Dhimolea, E.; Reichert, J.M. Development trends for human monoclonal antibody therapeutics.
Nat. Rev. Drug Discov. 2010, 9, 767–774. [CrossRef] [PubMed]

21. Zhang, L.; English, A.M.; Bai, D.L.; Ugrin, S.A.; Shabanowitz, J.; Ross, M.M.; Hunt, D.F.; Wang, W.-H. Analysis
of Monoclonal Antibody Sequence and Post-translational Modifications by Time-controlled Proteolysis and
Tandem Mass Spectrometry. Mol. Cell. Proteom. 2016, 15, 1479–1488. [CrossRef] [PubMed]

22. Rouet, R.; Lowe, D.; Christ, D. Stability engineering of the human antibody repertoire. FEBS Lett. 2014, 588,
269–277. [CrossRef]

23. Birch, J.R.; Racher, A.J. Antibody production. Adv. Drug Deliv. Rev. 2006, 58, 671–685. [CrossRef] [PubMed]
24. Rouet, R.; Lowe, D.; Dudgeon, K.; Roome, B.; Schofield, P.; Langley, D.; Andrews, J.; Whitfeld, P.; Jermutus, L.;

Christ, D. Expression of high-affinity human antibody fragments in bacteria. Nat. Protoc. 2012, 7, 364–373.
[CrossRef] [PubMed]

25. Vazquez-Lombardi, R.; Phan, T.G.; Zimmermann, C.; Lowe, D.; Jermutus, L.; Christ, D. Challenges and
opportunities for non-antibody scaffold drugs. Drug Discov. Today 2015, 20, 1271–1283. [CrossRef] [PubMed]

26. Gupta, P.K. Poisons of animal origin. In Fundamentals of Toxicology; Gupta, P.K., Ed.; Academic Press:
Cambridge, MA, USA, 2016; pp. 311–325. ISBN 978-0-12-805426-0.

27. Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty
of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [CrossRef] [PubMed]

28. Church, J.E.; Hodgson, W.C. The pharmacological activity of fish venoms. Toxicon 2002, 40, 1083–1093.
[CrossRef]

29. De Graaf, D.C.; Aerts, M.; Danneels, E.; Devreese, B. Bee, wasp and ant venomics pave the way for
a component-resolved diagnosis of sting allergy. J. Proteom. 2009, 72, 145–154. [CrossRef]

30. Peiren, N.; Vanrobaeys, F.; de Graaf, D.C.; Devreese, B.; Van Beeumen, J.; Jacobs, F.J. The protein composition
of honeybee venom reconsidered by a proteomic approach. Biochim. Biophys. Acta BBA Proteins Proteom.
2005, 1752, 1–5. [CrossRef]

31. Mackessy, S.P. Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis
sensu lato): Toxicity vs. tenderizers. Toxicon 2010, 55, 1463–1474. [CrossRef]

32. Glenn, J.L.; Straight, R. Mojave rattlesnake Crotalus scutulatus scutulatus venom: Variation in toxicity with
geographical origin. Toxicon 1978, 16, 81–84. [CrossRef]

33. Calvete, J.J.; Sanz, L.; Cid, P.; de la Torre, P.; Flores-Díaz, M.; Dos Santos, M.C.; Borges, A.; Bremo, A.;
Angulo, Y.; Lomonte, B.; et al. Snake Venomics of the Central American Rattlesnake Crotalus simus and the
South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend
along Crotalus Dispersal in South America. J. Proteome Res. 2010, 9, 528–544. [CrossRef]

34. Menezes, M.C.; Furtado, M.F.; Travaglia-Cardoso, S.R.; Camargo, A.C.M.; Serrano, S.M.T. Sex-based
individual variation of snake venom proteome among eighteen Bothrops jararaca siblings. Toxicon 2006, 47,
304–312. [CrossRef] [PubMed]

35. Andrade, D.V.; Abe, A.S. Relationship of Venom Ontogeny and Diet in Bothrops. Herpetologica 1999, 55,
200–204.

36. World Health Organization. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins;
WHO Technical Report Series; WHO: Geneva, Switzerland, 2018; p. 964.

37. Williams, D.; Gutiérrez, J.M.; Harrison, R.; Warrell, D.A.; White, J.; Winkel, K.D.; Gopalakrishnakone, P.
The Global Snake Bite Initiative: An antidote for snake bite. Lancet 2010, 375, 89–91. [CrossRef]

38. Jenner, E. An Inquiry into the Causes and Effects of the Variolae Vaccinae, a Disease Discovered in Some of the
Western Counties of England, Particularly Gloucestershire, and Known by the Name of the Cow Pox; Sampson Low:
London, UK, 1798.

39. León, G.; Vargas, M.; Segura, Á.; Herrera, M.; Villalta, M.; Sánchez, A.; Solano, G.; Gómez, A.; Sánchez, M.;
Estrada, R.; et al. Current technology for the industrial manufacture of snake antivenoms. Toxicon 2018, 151,
63–73. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41467-018-06086-4
http://dx.doi.org/10.1016/j.coi.2008.06.012
http://www.ncbi.nlm.nih.gov/pubmed/18656541
http://dx.doi.org/10.1038/nrd3229
http://www.ncbi.nlm.nih.gov/pubmed/20811384
http://dx.doi.org/10.1074/mcp.O115.056721
http://www.ncbi.nlm.nih.gov/pubmed/26621848
http://dx.doi.org/10.1016/j.febslet.2013.11.029
http://dx.doi.org/10.1016/j.addr.2005.12.006
http://www.ncbi.nlm.nih.gov/pubmed/16822577
http://dx.doi.org/10.1038/nprot.2011.448
http://www.ncbi.nlm.nih.gov/pubmed/22301775
http://dx.doi.org/10.1016/j.drudis.2015.09.004
http://www.ncbi.nlm.nih.gov/pubmed/26360055
http://dx.doi.org/10.1016/j.tree.2012.10.020
http://www.ncbi.nlm.nih.gov/pubmed/23219381
http://dx.doi.org/10.1016/S0041-0101(02)00126-5
http://dx.doi.org/10.1016/j.jprot.2009.01.017
http://dx.doi.org/10.1016/j.bbapap.2005.07.017
http://dx.doi.org/10.1016/j.toxicon.2010.02.028
http://dx.doi.org/10.1016/0041-0101(78)90065-X
http://dx.doi.org/10.1021/pr9008749
http://dx.doi.org/10.1016/j.toxicon.2005.11.007
http://www.ncbi.nlm.nih.gov/pubmed/16373076
http://dx.doi.org/10.1016/S0140-6736(09)61159-4
http://dx.doi.org/10.1016/j.toxicon.2018.06.084
http://www.ncbi.nlm.nih.gov/pubmed/29959968


Toxins 2019, 11, 53 20 of 28

40. Brown, N.; Landon, J. Antivenom: The most cost-effective treatment in the world? Toxicon 2010, 55, 1405–1407.
[CrossRef]

41. Williams, D.J.; Gutiérrez, J.-M.; Calvete, J.J.; Wüster, W.; Ratanabanangkoon, K.; Paiva, O.; Brown, N.I.;
Casewell, N.R.; Harrison, R.A.; Rowley, P.D.; et al. Ending the drought: New strategies for improving the
flow of affordable, effective antivenoms in Asia and Africa. J. Proteom. 2011, 74, 1735–1767. [CrossRef]

42. Segura, A.; Herrera, M.; Villalta, M.; Vargas, M.; Gutiérrez, J.M.; León, G. Assessment of snake antivenom
purity by comparing physicochemical and immunochemical methods. Biol. J. Int. Assoc. Biol. Stand. 2013, 41,
93–97. [CrossRef]

43. Herrera, M.; Paiva, O.K.; Pagotto, A.H.; Segura, A.; Serrano, S.M.T.; Vargas, M.; Villalta, M.; Jensen, S.D.;
León, G.; Williams, D.J.; et al. Antivenomic characterization of two antivenoms against the venom of the
taipan, Oxyuranus scutellatus, from Papua New Guinea and Australia. Am. J. Trop. Med. Hyg. 2014, 91,
887–894. [CrossRef]

44. Rawat, S.; Laing, G.; Smith, D.C.; Theakston, D.; Landon, J. A new antivenom to treat eastern coral snake
(Micrurus fulvius fulvius) envenoming. Toxicon 1994, 32, 185–190. [CrossRef]

45. Pucca, M.B.; Carlos, J.; Roncolato, E.C.; Bertolini, T.B.; Fossa, C.M.; Varanda, W.A.; Arantes, E.C.; Barbosa, J.E.
Monoclonal antibody (Scfv) against the venom of the scorpion Tityus serrulatus, produced by phage display
technic, is capable to recognize and inhibit the action of the ts1 toxin. Epeq/Fafibe 2011, 1, 18–23.

46. Laustsen, A.H.; Engmark, M.; Clouser, C.; Timberlake, S.; Vigneault, F.; Gutiérrez, J.M.; Lomonte, B.
Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and
phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus. PeerJ 2017, 5, e2924.
[CrossRef] [PubMed]

47. Leong, P.K.; Fung, S.Y.; Tan, C.H.; Sim, S.M.; Tan, N.H. Immunological cross-reactivity and neutralization of
the principal toxins of Naja sumatrana and related cobra venoms by a Thai polyvalent antivenom (Neuro
Polyvalent Snake Antivenom). Acta Trop. 2015, 149, 86–93. [CrossRef] [PubMed]

48. Tan, C.H.; Tan, K.Y.; Lim, S.E.; Tan, N.H. Venomics of the beaked sea snake, Hydrophis schistosus:
A minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms. J. Proteom. 2015,
126, 121–130. [CrossRef] [PubMed]

49. Tan, K.Y.; Tan, C.H.; Fung, S.Y.; Tan, N.H. Neutralization of the Principal Toxins from the Venoms of Thai
Naja kaouthia and Malaysian Hydrophis schistosus: Insights into Toxin-Specific Neutralization by Two
Different Antivenoms. Toxins 2016, 8, 86. [CrossRef] [PubMed]

50. Rodríguez, E.R.R.; Umbarila, L.R.; Possani, L.D.; Becerril, B. Recombinant Neutralizing Antibodies, A New
Generation of Antivenoms. In Scorpion Venoms; Springer: Dordrecht, The Netherlands, 2015; pp. 139–159.

51. Chippaux, J.-P. Emerging options for the management of scorpion stings. Drug Des. Dev. Ther. 2012, 6,
165–173. [CrossRef] [PubMed]

52. Bermúdez-Méndez, E.; Fuglsang-Madsen, A.; Føns, S.; Lomonte, B.; Gutiérrez, J.M.; Laustsen, A.H.
Innovative Immunization Strategies for Antivenom Development. Toxins 2018, 10, 452. [CrossRef] [PubMed]

53. Chow, S.-K.; Casadevall, A. Monoclonal Antibodies and Toxins—A Perspective on Function and Isotype.
Toxins 2012, 4, 430–454. [CrossRef]

54. Saylor, C.; Dadachova, E.; Casadevall, A. Monoclonal antibody-based therapies for microbial diseases.
Vaccine 2009, 27, G38–G46. [CrossRef] [PubMed]

55. Lang, A.B.; Cryz, S.J.; Schürch, U.; Ganss, M.T.; Bruderer, U. Immunotherapy with human monoclonal
antibodies. Fragment A specificity of polyclonal and monoclonal antibodies is crucial for full protection
against tetanus toxin. J. Immunol. 1993, 151, 466–472.

56. Ho, M.; Silamut, K.; White, N.J.; Karbwang, J.; Looareesuwan, S.; Phillips, R.E.; Warrell, D.A. Pharmacokinetics
of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma,
in Thailand. Am. J. Trop. Med. Hyg. 1990, 42, 260–266. [CrossRef] [PubMed]

57. Ismail, M.; Abd-Elsalam, M.A.; Al-Ahaidib, M.S. Pharmacokinetics of 125I-labelled Walterinnesia aegyptia
venom and its distribution of the venom and its toxin versus slow absorption and distribution of IGG,
F(AB’)2 and F(AB) of the antivenin. Toxicon 1998, 36, 93–114. [CrossRef]

58. Keizer, R.J.; Huitema, A.D.R.; Schellens, J.H.M.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic
monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.toxicon.2010.02.012
http://dx.doi.org/10.1016/j.jprot.2011.05.027
http://dx.doi.org/10.1016/j.biologicals.2012.11.001
http://dx.doi.org/10.4269/ajtmh.14-0333
http://dx.doi.org/10.1016/0041-0101(94)90107-4
http://dx.doi.org/10.7717/peerj.2924
http://www.ncbi.nlm.nih.gov/pubmed/28149694
http://dx.doi.org/10.1016/j.actatropica.2015.05.020
http://www.ncbi.nlm.nih.gov/pubmed/26026717
http://dx.doi.org/10.1016/j.jprot.2015.05.035
http://www.ncbi.nlm.nih.gov/pubmed/26047715
http://dx.doi.org/10.3390/toxins8040086
http://www.ncbi.nlm.nih.gov/pubmed/27023606
http://dx.doi.org/10.2147/DDDT.S24754
http://www.ncbi.nlm.nih.gov/pubmed/22826633
http://dx.doi.org/10.3390/toxins10110452
http://www.ncbi.nlm.nih.gov/pubmed/30400220
http://dx.doi.org/10.3390/toxins4060430
http://dx.doi.org/10.1016/j.vaccine.2009.09.105
http://www.ncbi.nlm.nih.gov/pubmed/20006139
http://dx.doi.org/10.4269/ajtmh.1990.42.260
http://www.ncbi.nlm.nih.gov/pubmed/2316795
http://dx.doi.org/10.1016/S0041-0101(97)00062-7
http://dx.doi.org/10.2165/11531280-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/20608753


Toxins 2019, 11, 53 21 of 28

59. Raghavan, M.; Bonagura, V.R.; Morrison, S.L.; Bjorkman, P.J. Analysis of the pH Dependence of the Neonatal
Fc Receptor/Immunoglobulin G Interaction Using Antibody and Receptor Variants. Biochemistry 1995, 34,
14649–14657. [CrossRef]

60. Tabrizi, M.A.; Tseng, C.-M.L.; Roskos, L.K. Elimination mechanisms of therapeutic monoclonal antibodies.
Drug Discov. Today 2006, 11, 81–88. [CrossRef]

61. Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics.
Clin. Pharmacol. Ther. 2008, 84, 548–558. [CrossRef] [PubMed]

62. Deng, R.; Jin, F.; Prabhu, S.; Iyer, S. Monoclonal antibodies: What are the pharmacokinetic and
pharmacodynamic considerations for drug development? Expert Opin. Drug Metab. Toxicol. 2012, 8,
141–160. [CrossRef]

63. Berry, J.D.; Gaudet, R.G. Antibodies in infectious diseases: Polyclonals, monoclonals and niche biotechnology.
New Biotechnol. 2011, 28, 489–501. [CrossRef] [PubMed]

64. Harmsen, M.M.; De Haard, H.J. Properties, production, and applications of camelid single-domain antibody
fragments. Appl. Microbiol. Biotechnol. 2007, 77, 13–22. [CrossRef] [PubMed]

65. Wu, A.M.; Chen, W.; Raubitschek, A.; Williams, L.E.; Neumaier, M.; Fischer, R.; Hu, S.; Odom-Maryon, T.;
Wong, J.Y.C.; Shively, J.E. Tumor localization of anti-CEA single-chain Fvs: Improved targeting by
non-covalent dimers. Immunotechnology 1996, 2, 21–36. [CrossRef]

66. Wu, A.M. Anti-carcinoembryonic antigen (CEA) diabody for rapid tumor targeting and imaging.
Tumor Target. 1999, 4, 47–58.

67. Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J.T. The safety and side effects of monoclonal
antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [CrossRef] [PubMed]

68. Morine, N.; Matsuda, S.; Terada, K.; Eto, A.; Ishida, I.; Oku, H. Neutralization of hemorrhagic snake venom
metalloproteinase HR1a from Protobothrops flavoviridis by human monoclonal antibody. Toxicon 2008, 51,
345–352. [CrossRef] [PubMed]

69. Krautz-Peterson, G.; Chapman-Bonofiglio, S.; Boisvert, K.; Feng, H.; Herman, I.M.; Tzipori, S.; Sheoran, A.S.
Intracellular Neutralization of Shiga Toxin 2 by an A Subunit-Specific Human Monoclonal Antibody.
Infect. Immun. 2008, 76, 1931–1939. [CrossRef] [PubMed]

70. Koon, H.W.; Shih, D.Q.; Hing, T.C.; Yoo, J.H.; Ho, S.; Chen, X.; Kelly, C.P.; Targan, S.R.; Pothoulakis, C. Human
monoclonal antibodies against Clostridium difficile toxins A and B inhibit inflammatory and histologic
responses to the toxins in human colon and peripheral blood monocytes. Antimicrob. Agents Chemother. 2013,
57, 3214–3223. [CrossRef] [PubMed]

71. Drozdowski, B.; Zhou, Y.; Kline, B.; Spidel, J.; Chan, Y.Y.; Albone, E.; Turchin, H.; Chao, Q.; Henry, M.;
Balogach, J.; et al. Generation and characterization of high affinity human monoclonal antibodies that
neutralize staphylococcal enterotoxin B. J. Immune Based Ther. Vaccines 2010, 8, 9. [CrossRef] [PubMed]

72. Slyke, G.V.; Sully, E.K.; Bohorova, N.; Bohorov, O.; Kim, D.; Pauly, M.H.; Whaley, K.J.; Zeitlin, L.; Mantis, N.J.
Humanized Monoclonal Antibody That Passively Protects Mice against Systemic and Intranasal Ricin Toxin
Challenge. Clin. Vaccine Immunol. 2016, 23, 795–799. [CrossRef] [PubMed]

73. Albrecht, M.T.; Li, H.; Williamson, E.D.; LeButt, C.S.; Flick-Smith, H.C.; Quinn, C.P.; Westra, H.; Galloway, D.;
Mateczun, A.; Goldman, S.; et al. Human Monoclonal Antibodies against Anthrax Lethal Factor
and Protective Antigen Act Independently To Protect against Bacillus anthracis Infection and Enhance
Endogenous Immunity to Anthrax. Infect. Immun. 2007, 75, 5425–5433. [CrossRef]

74. Adekar, S.P.; Takahashi, T.; Jones, R.M.; Al-Saleem, F.H.; Ancharski, D.M.; Root, M.J.; Kapadnis, B.P.;
Simpson, L.L.; Dessain, S.K. Neutralization of Botulinum Neurotoxin by a Human Monoclonal Antibody
Specific for the Catalytic Light Chain. PLoS ONE 2008, 3, e3023. [CrossRef]

75. Laustsen, A.H.; Johansen, K.H.; Engmark, M.; Andersen, M.R. Recombinant snakebite antivenoms:
A cost-competitive solution to a neglected tropical disease? PLoS Negl. Trop. Dis. 2017, 11, e0005361.
[CrossRef]

76. Walsh, G. Biopharmaceutical benchmarks 2014. Nat. Biotechnol. 2014, 32, 992–1000. [CrossRef]
77. Grilo, A.L.; Mantalaris, A. The Increasingly Human and Profitable Monoclonal Antibody Market.

Trends Biotechnol. 2019, 37, 9–16. [CrossRef] [PubMed]
78. Chadd, H.E.; Chamow, S.M. Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 2001, 12,

188–194. [CrossRef]

http://dx.doi.org/10.1021/bi00045a005
http://dx.doi.org/10.1016/S1359-6446(05)03638-X
http://dx.doi.org/10.1038/clpt.2008.170
http://www.ncbi.nlm.nih.gov/pubmed/18784655
http://dx.doi.org/10.1517/17425255.2012.643868
http://dx.doi.org/10.1016/j.nbt.2011.03.018
http://www.ncbi.nlm.nih.gov/pubmed/21473942
http://dx.doi.org/10.1007/s00253-007-1142-2
http://www.ncbi.nlm.nih.gov/pubmed/17704915
http://dx.doi.org/10.1016/1380-2933(95)00027-5
http://dx.doi.org/10.1038/nrd3003
http://www.ncbi.nlm.nih.gov/pubmed/20305665
http://dx.doi.org/10.1016/j.toxicon.2007.10.009
http://www.ncbi.nlm.nih.gov/pubmed/18061641
http://dx.doi.org/10.1128/IAI.01282-07
http://www.ncbi.nlm.nih.gov/pubmed/18285498
http://dx.doi.org/10.1128/AAC.02633-12
http://www.ncbi.nlm.nih.gov/pubmed/23629713
http://dx.doi.org/10.1186/1476-8518-8-9
http://www.ncbi.nlm.nih.gov/pubmed/21176153
http://dx.doi.org/10.1128/CVI.00088-16
http://www.ncbi.nlm.nih.gov/pubmed/27466351
http://dx.doi.org/10.1128/IAI.00261-07
http://dx.doi.org/10.1371/journal.pone.0003023
http://dx.doi.org/10.1371/journal.pntd.0005361
http://dx.doi.org/10.1038/nbt.3040
http://dx.doi.org/10.1016/j.tibtech.2018.05.014
http://www.ncbi.nlm.nih.gov/pubmed/29945725
http://dx.doi.org/10.1016/S0958-1669(00)00198-1


Toxins 2019, 11, 53 22 of 28

79. Frenzel, A.; Hust, M.; Schirrmann, T. Expression of Recombinant Antibodies. Front. Immunol. 2013, 4, 217.
[CrossRef] [PubMed]

80. Wetzel, S.K.; Settanni, G.; Kenig, M.; Binz, H.K.; Plückthun, A. Folding and unfolding mechanism of highly
stable full-consensus ankyrin repeat proteins. J. Mol. Biol. 2008, 376, 241–257. [CrossRef] [PubMed]

81. Steinwand, M.; Droste, P.; Frenzel, A.; Hust, M.; Dübel, S.; Schirrmann, T. The influence of antibody fragment
format on phage display based affinity maturation of IgG. mAbs 2014, 6, 204–218. [CrossRef] [PubMed]

82. Xiao, X.; Douthwaite, J.A.; Chen, Y.; Kemp, B.; Kidd, S.; Percival-Alwyn, J.; Smith, A.; Goode, K.; Swerdlow, B.;
Lowe, D.; et al. A high-throughput platform for population reformatting and mammalian expression of
phage display libraries to enable functional screening as full-length IgG. mAbs 2017, 9, 996–1006. [CrossRef]
[PubMed]

83. Mazor, Y.; Van Blarcom, T.; Carroll, S.; Georgiou, G. Selection of full-length IgGs by tandem display on
filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening: Selection of
IgG by tandem phage panning-FACS. FEBS J. 2010, 277, 2291–2303. [CrossRef]

84. Feldwisch, J.; Tolmachev, V.; Lendel, C.; Herne, N.; Sjöberg, A.; Larsson, B.; Rosik, D.; Lindqvist, E.; Fant, G.;
Höidén-Guthenberg, I.; et al. Design of an Optimized Scaffold for Affibody Molecules. J. Mol. Biol. 2010, 398,
232–247. [CrossRef]

85. Weinstock, M.T.; Francis, J.N.; Redman, J.S.; Kay, M.S. Protease-resistant peptide design-empowering nature’s
fragile warriors against HIV. Biopolymers 2012, 98, 431–442. [CrossRef]

86. Binz, H.K.; Bakker, T.R.; Phillips, D.J.; Cornelius, A.; Zitt, C.; Göttler, T.; Sigrist, G.; Fiedler, U.;
Ekawardhani, S.; Dolado, I.; et al. Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF
DARPin® drug candidate. mAbs 2017, 9, 1262–1269. [CrossRef]

87. Zahnd, C.; Wyler, E.; Schwenk, J.M.; Steiner, D.; Lawrence, M.C.; McKern, N.M.; Pecorari, F.; Ward, C.W.;
Joos, T.O.; Plückthun, A. A Designed Ankyrin Repeat Protein Evolved to Picomolar Affinity to Her2.
J. Mol. Biol. 2007, 369, 1015–1028. [CrossRef] [PubMed]

88. Li, Z.; Krippendorff, B.-F.; Sharma, S.; Walz, A.C.; Lavé, T.; Shah, D.K. Influence of molecular size on tissue
distribution of antibody fragments. mAbs 2016, 8, 113–119. [CrossRef] [PubMed]

89. Hamano, Y.; Grunkemeyer, J.A.; Sudhakar, A.; Zeisberg, M.; Cosgrove, D.; Morello, R.; Lee, B.; Sugimoto, H.;
Kalluri, R. Determinants of Vascular Permeability in the Kidney Glomerulus. J. Biol. Chem. 2002, 277,
31154–31162. [CrossRef] [PubMed]

90. Holt, L.J.; Herring, C.; Jespers, L.S.; Woolven, B.P.; Tomlinson, I.M. Domain antibodies: Proteins for therapy.
Trends Biotechnol. 2003, 21, 484–490. [CrossRef] [PubMed]

91. Mitchell, T.; Chao, G.; Sitkoff, D.; Lo, F.; Monshizadegan, H.; Meyers, D.; Low, S.; Russo, K.; DiBella, R.;
Denhez, F.; et al. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative
to PCSK9 antibodies for low-density lipoprotein lowering. J. Pharmacol. Exp. Ther. 2014, 350, 412–424.
[CrossRef] [PubMed]

92. Gille, H.; Hülsmeyer, M.; Trentmann, S.; Matschiner, G.; Christian, H.J.; Meyer, T.; Amirkhosravi, A.;
Audoly, L.P.; Hohlbaum, A.M.; Skerra, A. Functional characterization of a VEGF-A-targeting Anticalin,
prototype of a novel therapeutic human protein class. Angiogenesis 2016, 19, 79–94. [CrossRef] [PubMed]

93. Weidle, U.H.; Auer, J.; Brinkmann, U.; Georges, G.; Tiefenthaler, G. The Emerging Role of New Protein
Scaffold-based Agents for Treatment of Cancer. Cancer Genom. Proteom. 2013, 10, 155–168.

94. Plückthun, A. Designed ankyrin repeat proteins (DARPins): Binding proteins for research, diagnostics,
and therapy. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 489–511. [CrossRef]

95. Roopenian, D.C.; Akilesh, S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007, 7,
715–725. [CrossRef]

96. Lauwereys, M. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 1998,
17, 3512–3520. [CrossRef]
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