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Abstract

The pathophysiology of ovarian cancer (OV) is complex and depends on multiple

biological processes and pathways. Therefore, there is an urgent need to identify

reliable prognostic biomarkers for predicting clinical outcomes and helping personal-

ize treatment of OV. A long non‐coding RNA (lncRNA)‐based risk score model was

constructed to infer the prognostic efficacy of transcription factors (TFs) based on

the OV dataset from The Cancer Genome Atlas. The risk score model was further

validated in other independent cohorts from Gene Expression Omnibus. Time‐
dependent receiver operating characteristic curves were used to evaluate the sur-

vival prediction performance in comparison with other clinical and molecular vari-

ables. Our results revealed that the top‐ranked TF‐associating lncRNAs were

significantly associated with overall survival, progression‐free survival and disease‐
free survival. Stratification analysis according to clinical variables indicated the prog-

nostic independence of POLR2A‐associating lncRNAs. In comparison, the signature

of POLR2A‐associating lncRNAs was more sensitive and specific than existing clini-

cal and molecular signatures. Functional and experimental analysis suggested that

POLR2A‐associating lncRNAs may be involved in known biological processes and

pathways of OV. Our findings revealed that the lncRNA‐based risk score model can

provide helpful information on OV prognosis stratification and discovery of thera-

peutic biomarkers.
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1 | INTRODUCTION

Ovarian cancer (OV) is the most common and lethal gynaecological

malignant tumour worldwide.1 Most OV patients have already devel-

oped metastases by the time they are first diagnosed. Despite

advances in continuous study and treatment, the prognosis for OV

patients remain unsatisfactory, with only 30% of 5 year survival after

first line treatment.2 Although our understanding of OV is continu-

ously growing, the precise molecular mechanisms underlying this

malignant disease are far from understood. The pathophysiology of

OV tumour development is complex and depends on multiple biolog-

ical processes and pathways. Therefore, there is an urgent need to

identify reliable prognostic biomarkers for predicting clinical out-

comes and personalizing treatment.
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Transcription factors (TFs) perform key functions in controlling

the expression of coding and non‐coding RNAs by binding to

either enhancer or promoter regions. By regulating oncogenes and

tumour suppressors, the differential expression of TFs and their

downstream targets have been found to associate with the pro-

gression of multiple types of cancers.3 The expression of long

non‐coding RNAs (lncRNAs), which are longer than 200 nucleo-

tides, is also under the control of TFs. Emerging evidence has

shown that lncRNAs act as important regulators in diverse physi-

cal and pathological tumour processes4 and associate with the

prognosis of OV patients.5

Previous studies have found that TFs are highly selective in regu-

lating targets across different types of tissues and diseases.6 Thus,

TFs may play different regulatory roles, which can be inferred by

their targets in the context of certain tumour microenvironments.

Despite the importance of TFs and lncRNAs in cancer development

and carcinogenesis, there has only been limited work studying TF‐
lncRNA regulation and further evaluating the effects of these inter-

actions on the prognosis of OV. With matched clinical information

and genome‐wide expression profiles of coding and non‐coding
RNAs, large‐scale lncRNA‐based analysis of TF regulation as possible

prognostic biomarkers is now possible.

In the present study, we aimed to identify expression signatures

that predict the survival of OV patients. The lncRNA‐based risk score

model was constructed to infer the prognostic efficacy of each TF

based on the OV dataset from The Cancer Genome Atlas (TCGA).7

According to the lncRNA‐based risk score, we found that panels of

lncRNAs regulated by the same TFs were significantly associated

with patient survival. The risk score model was further validated in

the Gene Expression Omnibus (GEO) dataset. Our results indicated

that panels of lncRNAs regulated by the same TFs were significantly

associated with overall survival (OS), progression‐free survival (PFS)

and disease‐free survival (DFS) of patients. Further analysis revealed

that the signature of POLR2A‐associating lncRNAs was more

sensitive and specific than the existing clinical and other molecular

signatures in predicting survival. In summary, our findings revealed

that the lncRNA‐based risk score model can provide helpful

information on OV prognosis stratification and discovery of

therapeutic biomarkers.

2 | MATERIALS AND METHODS

2.1 | Clinical and expression OV dataset

The RNA‐sequencing expression profile and related clinical infor-

mation of 399 serous ovarian carcinoma patients were obtained

from the TCGA data portal,7 which included 29 250 mRNAs and

10 412 lncRNAs (GENCODE v19). Another three independent OV

datasets, GSE26193 (n = 107), GSE9891 (n = 278) and GSE63885

(n = 75) were downloaded from the publicly available Gene

Expression Omnibus (GEO) database. Patients with well annotated

follow‐up information were retained. For GEO dataset, all profiles

were performed based on the same microarray platform

(Affymetrix HG‐U133_Plus_2.0 array). To obtain lncRNA expres-

sion, probes were remapped to the human genome GENCODE

reference (v19) using a previously published pipeline.8 SeqMap

tool was used to map probes to mRNA and lncRNA sequences.9

We performed the “seqmap” command by using default parame-

ters. Probes that were uniquely mapped with no mismatches were

retained for further analysis. For probes that mapped to the same

gene, the arithmetic mean expression value was used. For mRNAs,

a number of 31 811 probes were uniquely mapped. For lncRNAs,

a number of 4167 probes were uniquely mapped. Finally, a total

of 16 345 mRNAs and 3308 lncRNAs were identified from the

microarray data.

2.2 | Identification of TF‐lncRNA regulatory
interactions

TF‐lncRNA interactions were derived from our previous studies,10,11

which identified TF binding sites of lncRNAs from 690 ChIP‐Seq
datasets across different cell lines and tissues. Furthermore, Pear-

son's correlation coefficients were calculated for each of the poten-

tial TF‐lncRNA pairs based on their expression in TCGA OV patients.

We used a Pearson's coefficient >0 and false discovery rate (FDR)

<0.05 as the thresholds to identify a link between TFs and lncRNAs.

Finally, 4399 potential TF‐lncRNA interactions among 145 TFs and

1234 lncRNAs were identified.

2.3 | Statistical analysis

Univariate and multivariate Cox regression analyses were performed

to evaluate the association between survival and expression of

lncRNAs in each OV cohort. In the lncRNA‐based risk score model,

the risk score for each patient was calculated according to the linear

combination of the expression values weighted by the coefficient

from univariate Cox regression analysis:

RiskScore ¼ ∑
n

i¼1
βiExpðlnciÞ (1)

where βi is the Cox regression coefficient of a lncRNA and n is

the number of lncRNAs regulated by the same TF. Exp(lnci) is the

expression value of lncRNA i in the corresponding patient. The

median risk score was used as a cut‐off point to divide the

patients into high and low risk groups. Kaplan‐Meier survival

curves were plotted for patients in different risk groups, and sta-

tistical significance was assessed by the log‐rank test (P < 0.05).

Patients with censor values were plotted as mark “+.” In survival

analysis, the PFS is the length of time during and after the treat-

ment of a cancer that a patient lives with the disease but it does

not get worse. The DFS is the length of time after primary treat-

ment for a cancer ends that the patient survives without any

signs or symptoms of that cancer. Student's t test was used to

identify differentially expressed lncRNAs between different groups.

All statistical analyses were accomplished based on R framework

(v3.4).
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2.4 | Functional analysis

The Enrichr web‐based tool (http://amp.pharm.mssm.edu/Enrichr/)

was used to perform functional annotation of lncRNAs.12,13 Gene

Ontology (GO) terms and Kyoto Encyclopaedia of Genes and

Genomes (KEGG) pathways with FDR <0.05 were considered to be

significantly enriched. The Cytoscape plugin software, Enrich-

mentMap, was used for visualization and interpretation of functional

annotations.14

2.5 | Ovarian cancer cell line and tissues

The SKOV3 cell line of OV was maintained in Roswell Park Memorial

Institue‐1640 medium supplemented with 10% fetal bovine serum

(FBS; Ausbian, Austria) at 37°C in 5% CO2 and routinely passage at 2‐
to 3‐day intervals. A number of eight OV tissues were collected from

eight patients with 5‐year follow‐up information under surgery at the

First Affiliated Hospital of Harbin Medical University after written

informed consent was obtained from each patient. In addition, three

F IGURE 1 Workflow of the lncRNA‐based risk score model for evaluating the prognostic ability of TFs
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pairs of OV and normal ovary tissues were also collected. The study

was approved by the Ethics Committee of the First Affiliate Hospital

of Harbin Medical University. Tissues from all patients were without

chemotherapy before operation. Both OV and normal tissues were

immediately frozen in liquid nitrogen for subsequent experiments.

2.6 | RNA isolation, reverse transcription PCR, and
real‐time PCR

Total RNA was extracted from normal/tumour tissues and cell line

using the TRIzol reagent (Invitrogen, USA). The total RNA was used

only if the A260/280 ratio of the absorbances ranged between 1.8

and 2.2 as determined by spectrophotometry. Real‐time quantifica-

tion lncRNA was performed in a 20 mL SYBR reaction system with

the SYBR premix ExTaqTM II kit (TAKARA, Japan), and the cycle

threshold (Ct) of each gene was recorded. All quantifications were

performed with GAPDH as the internal standard and calculated

using the 2−ΔΔCt method (ΔCt = Cttarget gene − Ctinternal control). The

real‐time polymerase chain reaction (PCR) conditions were as fol-

lows: 95°C 10 minutes; 40 cycles of 95°C 30 seconds, 60°C 1 min-

ute, and 95°C 1 minute, 55°C 30 seconds, 95°C 30 seconds. Each

sample was measured in triplicate. Primer sequences used in our

study are listed in Table S1.

2.7 | Cell proliferation assay

Cell proliferation was assessed by the Cell Counting Kit‐8
(CCK‐8; Dojindo, Japan). Cells were seeded in 96‐well plates

(4000 cells per well) after 48 hours post‐transfection with 100 μL

full culture medium. The cells were transfected with si‐NC,

si‐KIF25‐AS1, si‐LINC01355 and si‐AC092171.2 for 48 hours.

10 μL of CCK‐8 solution was added to each well, and the plates

were incubated for 4 hours in 37°C. Absorbance was read at a

wavelength of 450 nm by a microplate reader (ELX800;

Bio‐Tek, Ameria). Three independent experiments were performed

triplicate.

F IGURE 2 Application of the lncRNA‐based risk score model on TFs. (A) Bar plot of prognostic P‐values for TFs before
application of the lncRNA‐based risk score model. (B) Bar plot of prognostic P‐values for TFs after application of the lncRNA‐based risk
score model. P‐values were transformed as ‐log10. (C) Kaplan‐Meier survival analysis for each of the top 10 ranked TFs based on the
TCGA dataset
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2.8 | Wound healing assay

Cells transfected with si‐NC, si‐KIF25‐AS1, si‐LINC01355 and

si‐AC092171.2 were seeded into six‐well culture plates with

serum‐containing medium and were cultured until the cell

density reached 90%‐95% confluence. An artificial homoge-

neous wound was created by scratching the monolayer with a

sterile 200 μL pipette tip. After scratching, the cells were

washed with PBS, and then the cells were cultured with

serum‐free RPMI‐1640 media for 48 hours. Images of cells

migrating into the wound were captured at 0 and 48 hours

using a microscope (EVOS, USA). The assay was performed in

triplicate.

2.9 | Transient transfection

The si‐KIF25‐AS1, si‐LINC01355 and si‐AC092171.2 and negative

control siRNA (NC) were obtained from RiboBio (Guangzhou, China).

The SKOV3 cells were plated onto a six‐well plate and allowed to

adhere overnight. Then, the OV cells were transfected with each

siRNA using the riboFectTM CP transfection kit (RiboBio) according

to manufacturer's instructions for 48 hours used for subsequent

experiment.

3 | RESULTS

3.1 | Construction of the lncRNA‐based risk score
model

A total of 399 OV samples from the TCGA dataset were used for

model construction. The TF‐lncRNA regulations were derived from

our previous studies,10,11 in which we developed an integrated pipe-

line to predict functional TF‐lncRNA regulatory interactions. In co‐
expression analysis, the Pearson's coefficient >0 and FDR <0.05

were used as thresholds to identify links between TFs and lncRNAs.

Consequently, we obtained 4399 potential TF‐lncRNA interactions

among 145 TFs and 1234 lncRNAs. The major concept of our

lncRNA‐based risk score model is to evaluate the prognostic effi-

ciency of a set of lncRNAs, which were regulated by the same TF.

There were three general steps in the workflow of the lncRNA‐based
risk score model (Figure 1A‐C). In step 1, univariate Cox regression

analysis was performed for the lncRNAs regulated by a TF (Fig-

ure 1A). In step 2, a risk score formula was developed by integrating

the expression values and corresponding coefficients of these

lncRNAs (Figure 1B). Based on this formula, each patient was given

a risk score. In step 3, the 399 OV patients were ranked by their risk

scores and divided into two risk groups by the median risk score.

F IGURE 3 OS analysis for POLR2A‐lncRNAs based on other independent datasets. (A) The OS curves for GSE26193. (B) The OS curves for
GSE9891. (C) The OS curves for GSE63885. (D‐F) The distribution of risk scores (normalized by minus median value) and survival time in low
and high risk groups of patients
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Further survival analysis was performed to evaluate the prognostic

significance between two risk groups (Figure 1C).

3.2 | Application of the lncRNA‐based risk score
model

Before application of the lncRNA‐based risk score model, we per-

formed univariate Cox regression analysis on each of the 145 TFs.

We found that only five TFs (CBX3, FOXA1, PAX5, SIX5 and TAL1)

were significantly associated with the prognosis of patients (Fig-

ure 2A). Some TFs, such as STAT3 and CTCF, which have been

reported as OV prognostic factors,15,16 were not significantly associ-

ated with prognosis. Then, we applied the lncRNA‐based risk score

model to these 145 TFs. Through the model, each TF was given a

risk score by evaluating the prognostic efficiency of its regulating

lncRNAs. Based on the risk score, we found that most TFs were sig-

nificantly associated with patient prognosis after application of the

lncRNA‐based risk score model (Figure 2B). Some known OV‐asso-
ciated TFs, such as CTCF and POLR2A, were ranked among the top

10 TFs based on P‐values (Table S2). POLR2A, which was the top‐
ranked TF, was found to be significantly associated with prognosis

(HR = 1.68, 95% CI = 1.50‐1.87). Furthermore, we performed sur-

vival analysis for each of the top 10 TFs based on the risk scores

resulting from the risk model. Then, 399 TCGA OV patients were

assigned into a high risk group (n = 199) or a low risk group

(n = 200) by using the median risk score as the cut‐off point. The

result of Kaplan‐Meier analysis showed significant differences in

patient OS between high and low risk groups (log‐rank test

P < 1.0E‐5, Figure 2C). These results indicated that our lncRNA‐
based model effectively evaluated the prognostic efficacy of TFs.

3.3 | Validation of the lncRNA‐based risk model in
other independent cohorts

To further evaluate the prognostic efficacy of the lncRNA‐based risk

score model, we applied it on another three independent OV data-

sets: GSE26193 (n = 107), GSE9891 (n = 278) and GSE63885

(n = 75). LncRNAs regulated by the same TFs were used to calculate

the risk score. Through the same model construction as for the

TCGA dataset, patients in these independent datasets were given

risk scores and classified into high or low risk groups. LncRNAs regu-

lated by POLR2A, which was the top‐ranked TF in the TCGA data-

set, were found to be significantly associated with prognosis in

GSE26193 (HR = 1.48, 95% CI = 1.26‐1.72, P = 1.08E‐6), GSE9891
(HR = 1.77, 95% CI = 1.46‐2.15, P = 5.73E‐9) and GSE63885 (HR =

1.29, 95% CI = 1.16‐1.43, P = 4.02E‐6). Based on the median risk

score of POLR2A target lncRNAs, patients in the three GEO datasets

were divided into high and low risk groups, respectively. Significant

association between the risk score and OS was observed in all three

independent datasets (Figure 3A‐C). The distribution of patient risk

scores and survival status is shown in Figure 3D‐F. Furthermore, we

used the same cut‐off point identified from TCGA dataset to divide

GEO datasets for the purpose of validation. All of the three indepen-

dent datasets could be significantly divided into high and low risk

F IGURE 4 PFS or DFS analysis for
POLR2A‐lncRNAs based on the TCGA and
GEO datasets. (A) The PFS for TCGA. (B)
The PFS for GSE26193. (C) The PFS for
GSE9891. (D) The DFS for GSE63885

GUO ET AL. | 1845



groups (Figure S1A‐C). In this step, we used a z‐score normalization

method to normalize the risk scores in different dataset. Patients

with higher risk scores tended to have shorter survival time, whereas

patients with lower risk scores tended to have longer survival time.

Cox regression hazards and Kaplan‐Meier survival curves for

lncRNAs regulated by the top 10 TFs were shown in Table S2 and

Figure S2. We found that most TFs could significantly divided

patients into different risk groups. These observations were consis-

tent with the findings in the TCGA dataset.

3.4 | Prognostic performance of top‐ranked TFs on
PFS/DFS

Moreover, we evaluated the prognostic performance of the top‐
ranked TFs on PFS and DFS. PFS analysis was performed on the

TCGA dataset (n = 399), GSE26193 (n = 107) and GSE9891

(n = 275), while the DFS analysis was performed on GSE63885

(n = 75). In this step, three patients with missing follow‐up values in

GSE9891 dataset were excluded. The POLR2A‐associated lncRNAs

(POLR2A‐lncRNA) signature was found to be significantly associated

with patient PFS in the dataset of TCGA (HR = 1.63, 95% CI = 1.45‐
1.84, P = 1.11E‐15), GSE26193 (HR = 1.54, 95% CI = 1.31‐1.81,
P = 1.29E‐7) and GSE9891 (HR = 1.84, 95% CI = 1.54‐2.20,
P = 1.56E‐11). In GSE63885, the POLR2A‐lncRNA signature was sig-

nificantly associated with patient DFS (HR = 1.48, 95% CI = 1.24‐
1.77, P = 1.59 E‐5). Significant association between risk scores and

PFS/DFS was observed in all four datasets (Figure 4A‐D). Further-

more, we used the cut‐off point identified from TCGA dataset to

divide GEO datasets for PFS and DFS analysis. All of the three inde-

pendent datasets could also be significantly divided into high and

low risk groups (Figure S3A‐C). The POLR2A‐lncRNA signature

successfully divided the OV patients into high and low risk groups.

For each of the top 10 TFs, Cox regression hazards and Kaplan‐
Meier survival curves of PFS/DFS are shown in Table S3 and Figures

S4‐S7. All 10 TFs were significantly associated with patient PFS/DFS

(P < 0.01).

3.5 | Independence of POLR2A‐lncRNA signature
from clinical variables

To test whether the POLR2A‐lncRNA signature was independent of

other clinical variables, multivariate Cox regression analyses were

performed in each OV cohort. The POLR2A‐lncRNA signature and

other clinical and pathological variables such as patient age, tumour

stage, tumour grade, residual tumour diameter and lymph node

metastasis were analysed (Table 1). The POLR2A‐lncRNAs signature

was significantly correlated with survival of patients in TCGA

(P = 1.26E‐7), GSE26193 (P = 6.22E‐5), GSE9891 (P = 7.46E‐8) and

GSE63885 (P = 6.40E‐5). In addition, we found that two clinical vari-

ables, patient age and tumour grade, were also significantly associ-

ated with survival in at least two OV cohorts. Thus, further

stratification analysis according to patient age and tumour grade

were performed. The patients in the TCGA and GSE9891 datasets

were stratified into younger and older groups according to the med-

ian value. We found that the POLR2A‐lncRNA signature significantly

subdivided the patients at different age levels into different risk sub-

groups in the TCGA dataset (Figure 5A,B) and the GSE9891 dataset

(Figure 5C,D). For tumour grade, patients in the GSE63885 and

GSE9891 datasets were stratified into a low grade (G1/G2) and a

high grade (G3/G4) group. In the GSE63885 dataset, the POLR2A‐
associating lncRNAs signature significantly subdivided the high grade

patients into different risk subgroups (Figure 5E,F). In GSE9891, both

TABLE 1 Univariate and multivariate Cox regression analysis of the POLR2A‐lncRNA signature and other clinical variables

Datasets Variables

Univariate analysis Multivariate analysis

HR (95% CI) P values HR (95% CI) P values

TCGA Age 1.016 (1.004‐1.028) 1.05E‐02 1.017 (1.004‐1.030) 8.63E‐03

Stage (I/II/III/IV) 1.309 (0.982‐1.745) 6.66E‐02 1.348 (0.979‐1.855) 6.71E‐02

Grade (G1/G2/G3/G4/GX) 1.056 (0.805‐1.385) 6.93E‐01 0.976 (0.751‐1.267) 8.53E‐01

Residual diameter 1.398 (1.164‐1.678) 3.29E‐04 1.295 (1.068‐1.571) 8.59E‐03

Lymph node metastasis 1.048 (0.868‐1.266) 6.23E‐01 0.903 (0.739‐1.104) 3.21E‐01

POLR2A‐lncRNAs 1.675 (1.501‐1.870)) 0 1.965 (1.530‐2.525) 1.26E‐07

GSE9891 Age 2.152 (1.49‐3.109) 4.44E‐05 2.195 (1.444‐3.336) 2.32E‐04

Stage (I/II/III/IV) 0.961 (0.895‐1.031) 2.69E‐01 1.092 (0.783‐1.522) 6.04E‐01

Grade (G1/G2/G3) 1.025 (1.005‐1.046) 1.22E‐02 1.022 (1.001‐1.043) 3.68E‐02

POLR2A‐lncRNAs 1.774 (1.463‐2.152) 5.73E‐09 1.724 (1.413‐2.102) 7.46E‐08

GSE26193 Stage (I/II/III/IV) 1.207 (0.829‐1.759) 3.26E‐01 2.004 (1.44‐2.789) 3.79E‐05

Grade (G1/G2/G3) 2.057 (1.546‐2.738) 7.54E‐07 0.683 (0.458‐1.016) 6.00E‐02

POLR2A‐lncRNAs 1.475 (1.262‐1.724) 1.08E‐06 1.375 (1.177‐1.608) 6.22E‐05

GSE63885 Stage (II/III/IV) 2.315 (1.239‐4.323) 8.45E‐03 1.57 (0.803‐3.069) 1.87E‐01

Grade (G2/G3/G4) 1.707 (1.129‐2.582) 1.13E‐02 1.558 (1.028‐2.362) 3.68E‐02

POLR2A‐lncRNAs 1.287 (1.156‐1.432) 4.02E‐06 1.257 (1.124‐1.406) 6.40E‐05
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low grade patients (log rank P = 9.91E‐4) and high grade patients

(log rank P = 1.05E‐2) were subdivided into different risk subgroups

by the signature (Figure 5G,H). Similar results were also observed in

stratification analysis of stage and residual tumour diameter variables

(Figure 5I‐L).

3.6 | Comparison with established clinical and
molecular variables

To assess the sensitivity and specificity of OS prediction between

our lncRNA‐based risk score model and other clinical and molecular

variables, we performed Time‐dependent receiver operating charac-

teristic (ROC) curve analysis. ROC curves of the POLR2A‐lncRNA

signature and other clinical variables including patient age, FIGO

stage and tumour grade were compared. ROC curves were also com-

pared with other established risk models including a panel of seven

lncRNAs signature (BC037530, AK021924, AK094536, BC062365,

AK130460, BC007937 and BC004123),17 a panel of eight lncRNAs

signature (RP4‐799P18, PTPRD‐AS1, RP11‐57P19, RP11‐307C12,
RP11‐254I22, RP11‐80H5, RP1‐223E5 and GACAT3)18 and a single

lncRNA MNX1‐AS1.19 The median survival time was used as a cut‐
off threshold to identify positive and negative cases. By comparing

the area under the curve (AUC) of ROC, we found that the predic-

tive value of POLR2A‐lncRNA signature was higher than other clini-

cal and molecular variables (Figure 6A‐D). In GSE63885, the

POLR2A‐lncRNA signature reached the highest AUC value of 0.832.

These observations indicate that our model was more sensitive and

specific than existing clinical and molecular signatures in predicting

the survival of OV patients.

3.7 | Functional prediction of POLR2A‐lncRNA

Furthermore, we explored the functions of POLR2A‐lncRNA by using

the Enrichr tool,12,13 which performs a comprehensive gene set

F IGURE 5 Survival analysis of patients with available clinical information. (A, B) Kaplan‐Meier curves for patients with younger (A) and
older (B) age in TCGA. (C, D) Kaplan‐Meier curves for patients with younger (C) and older (D) age in GSE9891. (E, F) Kaplan‐Meier curves for
patients with lower (E) and higher (F) grade in GSE63885. (G, H) Kaplan‐Meier curves for patients with lower (G) and higher (H) grade in
GSE9891. (I, J) Kaplan‐Meier curves for patients with stage I/II (I) and III/IV (J). (K, L) Kaplan‐Meier curves for patients with residual tumour
diameter ≤10 mm (K) and >10 mm (L)
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enrichment analysis based on different functional contexts such as

GO and KEGG pathways (Table S4). We found that a series of GO

terms associating with positive regulation of cell adhesion processes

were significantly enriched (Figure 7A). Cell adhesion processes have

been found to be involved in metastasis progression and are associ-

ated with clinical outcomes of OV patients.20,21 In pathway analyses,

phenylalanine metabolism and other pathways were enriched (Fig-

ure 7B). Previous studies have found significant changes in pheny-

lalanine catabolism in metastatic OV tumours.22

3.8 | Experimental validation of prognostic lncRNAs

Among the lncRNAs regulated by POLR2A, nine lncRNAs have the

same risk direction (positive or negative of regression coefficients)

across four OV datasets (Figure S8). We randomly selected three

lncRNAs (KIF25‐AS1, LINC01355 and AC092171.2) to perform

experimental validation. We first measured the expression levels of

these three lncRNAs using qRT‐PCR in normal and tumour tissues

(Section 2). We found that these three lncRNAs were differentially

expressed between normal and OV tissues (Figure 7C, Student's t

test, P < 0.05). Further, we tested the prognostic significance of

these three lncRNAs by integrating the expression value in eight OV

patients with 5‐year follow‐up information. We found that these

three lncRNAs could significantly divided patients into different risk

groups (Figure 7D, Log‐rank test, P < 0.05), which were consistent

with the findings in the TCGA and GEO dataset. Then we performed

in vitro analysis to determine the roles of these prognostic lncRNAs

in OV. Considering these three lncRNAs were risk factors (having

positive Cox coefficients across four OV datasets), siRNAs were

used to knockdown the expression of these lncRNAs. The SKOV‐3
cells were transfected with si‐NC, si‐KIF25‐AS1, si‐LINC01355 and

si‐AC092171.2, respectively. Real‐time PCRs were performed to ver-

ify the transfection ratio (Figure 7E). We observed the effects of

each lncRNAs on cell migration of SKOV‐3 cells by wound healing

assay. The wound healing scratches were observed by phase‐con-
trast microscope at 0 and 48 hours, which showed that down‐regu-
lated of these risk lncRNAs caused a significantly decrease capacity

of cell migration (Figure 7F,G). Then, CCK‐8 assays were performed

to investigate the effects of these lncRNAs on cellular proliferation

in SKOV‐3 cells (Figure 7H). The results indicated that knock down

of these lncRNAs could significantly decrease the proliferation rate

of OV cells.

4 | DISCUSSION

To identify expression signatures that predict the survival of OV

patients, we built the lncRNA‐based risk score model to infer the

prognostic efficacy of each TF. The prognostic analysis was per-

formed based on the OV dataset from TCGA.7 According to the

lncRNA‐based risk score, we found that the top‐ranked TFs were

significantly associated with survival. The risk score model was fur-

ther validated in the independent cohorts GSE26193, GSE9891 and

GSE63885. We found that most of the TFs significantly divided

F IGURE 6 Time‐dependent ROC
analysis of the sensitivity and specificity
for survival prediction based on the
POLR2A‐lncRNAs signature and other
variables. (A) ROC curves in TCGA. (B)
ROC curves in GSE26193. (C) ROC curves
in GSE9891. (D) ROC curves in GSE63885
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patients into different risk groups, which were consistent with the

findings in the TCGA dataset. Furthermore, the significant associa-

tion between risk scores and PFS/DFS was observed in all four

datasets (Figure 4A‐D). For each of the top 10ranked TFs, Cox

regression hazards analysis was performed, and Kaplan‐Meier sur-

vival curves of PFS/DFS were constructed. The POLR2A‐lncRNA

significantly divided the OV patients into high and low risk groups

in terms of OS, PFS and DFS. Initially, a total number of 53

lncRNAs were identified to be regulated by the TF POLR2A

(Table S5). Considering that the biological experiments are expen-

sive and time consuming, we performed a bioinformatics analysis

by calculating the Cox regression coefficients for each lncRNA in

different OV datasets. LncRNAs which had the same risk direction

(positive or negative of regression coefficients) across different OV

datasets were retained for further analysis. There were nine

lncRNAs passed the threshold (Figure S8). Among the nine

lncRNAs, three lncRNAs were randomly selected and used for

experimental validation.

F IGURE 7 Functional detection of POLR2A‐lncRNAs. (A) Functional map of enriched biological processes. (B) Functional map of enriched
KEGG pathways. In the functional maps, each node indicates an enriched GO term or KEGG pathway, and each edge indicates common genes
shared between two nodes. (C) LncRNAs KIF25‐AS1, LINC01355 and AC092171.2 were differentially expressed between adjacent and tumour
tissues. (D) Through the lncRNA‐based model, integration of KIF25‐AS1, LINC01355 and AC092171.2 could significantly divided eight clinical
patients into different risk groups. (E) After transfection with siRNAs, the relative expression of KIF25‐AS1, LINC01355 and AC092171.2 were
significantly down‐regulated. (F) Representative images from the results of wound healing assay with siRNAs for KIF25‐AS1, LINC01355 and
AC092171.2.(G) Knock down of risk lncRNAs KIF25‐AS1, LINC01355 and AC092171.2 caused a significantly decrease capacity of cell
migration. (H) CCK‐8 assays were performed to analyse cell growth after knock down of KIF25‐AS1, LINC01355 and AC092171.2. *P < 0.05;
**P < 0.01; ***P < 0.001
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Univariate and multivariate Cox regression analyses were per-

formed to test whether the top‐ ranked POLR2A‐lncRNA signature

was independent of other clinical variables. The HR values

revealed that the POLR2A‐lncRNA signature was a negative factor

for prognosis of OV (Table 1). We found that two clinical vari-

ables, patient age and tumour grade, were also significantly associ-

ated with survival in at least two OV cohorts. Stage was

significantly associated with survival in GSE26193, and residual

tumour diameter was significantly associated with survival in

GSE9891. Thus, further stratification analysis according to patient

age, tumour grade, stage and residual tumour diameter were per-

formed. We found that the POLR2A‐lncRNA signature could sig-

nificantly subdivide patients into different risk subgroups within

different levels of age, grade, stage and residual tumour diameter.

Time‐dependent ROC analysis was performed to assess the sensi-

tivity and specificity of OS prediction between our lncRNA‐based
risk score model and other variables. These observations indicated

that our model was more sensitive and specific than the existing

clinical and molecular signatures in predicting the survival of OV

patients.

Considering that re‐annotation of lncRNAs from the microarray

dataset cannot cover all lncRNA transcripts, there is a limitation of

this study in identification of lncRNAs. In this study, only 3308

lncRNAs were identified from the microarray dataset. Thus, addi-

tional potential signatures associating with OV survival may be over-

looked. In future studies, increasing numbers of non‐coding
signatures could be assessed with survival analysis as the acquisition

of matched clinical information and whole genome expression pro-

files become available. Additionally, further experimental analysis will

be needed to validate the exact molecular mechanisms of these

potential biomarkers in OV.

In summary, in this study we constructed the lncRNA‐based risk

score model to infer the prognostic efficacy of TFs in both RNA‐
sequencing and microarray datasets. We found that the top‐ranked
TF‐lncRNAs were significantly associated with OV prognosis in OS,

PFS and DFS analyses. Further analysis indicated that the POLR2A‐
lncRNA signature was independent of other clinical variables and

more sensitive and specific than existing clinical and molecular signa-

tures. Our systematic analysis revealed that the lncRNA‐based risk

score model can provide helpful information in the discovery of

prognostic biomarkers of OV.
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