
Clinical and Translational Radiation Oncology 33 (2022) 57–65

Available online 5 January 2022
2405-6308/© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Original Research Article 

Radiomics biopsy signature for predicting survival in patients with spinal 
bone metastases (SBMs) 

I. Sanli a,*, B. Osong b, A. Dekker b, K. TerHaag b, S.M.J. van Kuijk c, J. van Soest b, L. Wee b, P. 
C. Willems a 

a Department of Orthopedic Surgery, Maastricht University Medical Center, The Netherlands 
b Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands 
c Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Center, Maastricht, The Netherlands   

A R T I C L E  I N F O   

Keywords: 
Spinal bone metastases 
SBM 
Radiomics 
Predictive model 

A B S T R A C T   

Study design: Retrospective analysis of a registered cohort of patients treated and irradiated for metastases in the 
spinal column in a single institute. 
Objective: This is the first study to develop and internally validate radiomics features for predicting six-month 
survival probability for patients with spinal bone metastases (SBM). 
Background data: Extracted radiomics features from routine clinical CT images can be used to identify textural 
and intensity-based features unperceivable to human observers and associate them with a patient survival 
probability or disease progression. 
Methods: A study was conducted on 250 patients treated for metastases in the spinal column irradiated for the 
first time between 2014 and 2016, at the MAASTRO clinic in Maastricht, the Netherlands. The first 150 available 
patients were used to develop the model and the subsequent 100 patient were considered as a test set for the 
model. A bootstrap (B = 400) stepwise model selection, which combines both the forward and backward variable 
elimination procedure, was used to select the most useful predictive features from the training data based on the 
Akaike information criterion (AIC). The stepwise selection procedure was applied to the 400 bootstrap samples, 
and the results were plotted as a histogram to visualize how often each variable was selected. Only variables 
selected more than 90 % of the time over the bootstrap runs were used to build the final model. 
A prognostic index (PI) called radiomics score (radscore) and clinical score (clinscore) was calculated for each 
patient. The prognostic index was not scaled, the original values were used which can be extracted from the 
model directly or calculated as a linear combination of the variables in the model multiplied by the respective 
beta value for each patient. 
Results: The clinical model had a good discrimination power. The radiomics model, on the other hand, had an 
inferior performance with no added predictive power to the clinical model. The internal imaging characteristics 
do not seem to have a value in the prediction of survival. However, the Shape features were excluded from 
further analyses in our study since all biopsies had a standard shape hence no variability.   

Introduction 

Spinal bone metastases (SBMs) are often accompanied by a signifi-
cant burden of morbidity, causing cancer-induced bone pain, pathologic 
fractures, or neurological complications as a consequence of nerve root 
and spinal cord compression, leading to a reduced quality of life and 
impaired survival [1]. An accurate estimation of survival is required to 

prevent invasive surgery in patients with only a short-term survival 
expectancy and to prevent the omission of treatment in patients with a 
more prolonged survival. Two systematic reviews showed that physi-
cians’ assessment of life expectancy based solely on their clinical expe-
rience is inaccurate [2–4]. Controversies often exist between the best 
clinical practices determined by scientific evidence and the actual care 
provided to patients; about 30–40 % of patients do not receive care 
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based on the current scientific evidence, and about 20–25 % of the care 
provided is unnecessary or even potentially harmful to patients [5]. 
Hence, prediction of prognosis is crucial for counselling patients and for 
selecting the most adequate treatment for a patient, thus ensuring 
appropriate allocation of health care resources. Several studies have 
been published to assess the prognostic value of single variables, and 
multiple variables combined into predictive models. However, existing 
predictive models lack discriminative ability, particularly predicting 
which patients will survive for more than 3 to 6 months and become 
potential candidates for surgical treatment [5–15]. Therefore, there’s a 
significant need for new prognostic biomarkers. Tissue markers derived 
from tumor biopsies usually represent only a small tumor subregion at 
a single time point. Therefore, they are often not representative of the 
tumors’ biology or the biological alterations during and after treatment. 
Radiomics has the potential to give complete three-dimensional tumor 
information. Radiomics, which extracts and analyses vast amounts of 
advanced quantitative imaging features with high throughput from 
medical images like Computed Tomography (CT), is gaining interest in 
health care and becoming increasingly important [16]. 

The analyses of Big Data (Omics) allows us to define biomarker 
signatures, which may significantly improve the prediction of outcomes 
[17]. Extracted radiomics features from routine clinical CT images can 
be used to train a machine-learning prediction model to identify textural 
and intensity-based features unperceivable to human observers and 
associate them with a patient survival probability or disease progres-
sion. Furthermore, these predicted probabilities can be used to classify 
patients into risk categories for more precise and timely therapeutic 
interventions. These non-invasive techniques for guiding treatment de-
cisions could complement the present conventional methods. And with 
our increasing knowledge of cancer biology, these techniques could play 
an essential role in the future of cancer treatment. 

The aim of this study was to develop and internally validate radio-
mics features in a predictive model. Can the use of (current) radiomics 
help improve the prediction of survival as based on clinical features in 
SBM patients? 

Materials & methods 

Patients 

A retrospective study was conducted on 250 patients treated for 
metastases in the spinal column irradiated for the first time between 
January 1, 2014, and December 31, 2016, at the MAASTRO clinic in 
Maastricht, the Netherlands. The first 150 available patients were used 
to develop the model and the subsequent 100 patient were considered as 

a test set for the model. Of the 100 patients included in the test data, 13 
(13 %) had no images reducing the test data set to 87 patients. The 
following patient characteristics were considered for their prognostic 
value for predicting survival: age, gender, primary tumor type metas-
tasis, location treated spinal metastases causing symptoms, radiation 
field, radiotherapy fractionation schedule, pathological fracture, spinal 
compression, lymphatic metastases, pain score, visceral metastases, 
brain metastases, World Health Organization (WHO) performance score. 
The primary tumors were categorized based on the classification used by 
Bollen et al. [11]. In the original Tomita classification, growth speed 
alone was used to assign a primary tumor into 1 of 3 groups [6]. Bollen 
renamed the classification “clinical profile” to encompass other 
contributing factors such as the availability of effective systemic treat-
ment options for the primary tumor. The clinical profile of a primary 
tumor was considered to be favorable, moderate, or unfavourable [11]. 
These variables were complemented with SBM tumor characteristics by 
the use of Radiomics analysis. 

Feature extraction and processing 

One physician (IS) and a physician assistant (KtH) independently 
segmented the regions of interest by taking multiple (5 to 10) “virtual” 
biopsies (A small portion of the ROI that is large enough to capture the 
heterogeneity of the tumor) of 1 cm in diameter from the obtained CT 
scans. Seven feature classes were extracted using the Ontology-guided 
Radiomics Analysis Workflow (O-RAW) version 2.0 software 
(https://gitlab.com/UM-CDS/o-raw)  

• Shape  
• First-order  
• Texture:  

o Gray Level Dependence Matrix (GLDM)  
o Gray Level Size Zone Matrix (GLSZM)  
o Gray Level Co-occurrence Matrix (GLCM)  
o Gray Level Run Length Matrix (GLRLM)  
o Neighboring Gray Tone Difference Matrix (NGTDM) 

The Shape features were excluded from further analyses since all 
biopsies had a standard shape hence no variability. To ensure repro-
ducibility, the intra-class correlation coefficient (ICC), which evaluates 
the degree of agreement and correlation between measurements, was 
used to assess the stability and robustness of the extracted radiomics 
feature values between the two physicians (ICC < 0.50, low agreement; 
0.50 ≤ ICC < 0.80, median agreement; ICC ≥ 0.80, high agreement). 
The maximum value of ICC is 1, which indicates perfect agreement. The 

Fig. 1. Analyses scheme for building the spinal metastases models to predict six months’ survival using radiomics biopsy and clinical information.  
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lower the ICC, the lower the similarity among the features extracted 
values between the two physicians. Only features with an ICC > 0.8 were 
considered for subsequent analyses. 

Feature selection and signature building 

A bootstrap (B = 400) stepwise model selection, which combines 
both the forward and backward variable elimination procedure, was 
used to select the most useful predictive features from the training data 
based on the Akaike information criterion (AIC). Only variables selected 
more than 90 % of the time over the bootstrap runs were used to build 
the final model. A prognostic index (PI) called radiomics score (rad-
score) and clinical score (clinscore) was calculated for each patient via a 
linear combination of the selected features and weighted by their 
respective regression coefficients for a practical application. Higher 
values for these scores indicate a poorer prognosis for the patients’ 

Table 1 
Detailed characteristic of the studied cohorts.  

Characteristic Train on 150 Validate on 87 

Dead Alive p-value Dead Alive p- 
value 

Age at RT in 
years [mean 
(Min-Max)] 

67 
(24–92) 

68 
(46–88) 

0.524 72 
(50–88) 

67 
(39–86) 

0.041 

Sex 
Male 39 

(48.8 
%) 

41 
(51.2 
%) 

0.844 31 
(56.4 
%) 

24 
(43.6 
%) 

0.392 

Female 33 
(47.1 
%) 

37 
(52.9 
%) 

15 
(46.9 
%) 

17 
(53.1 
%)  

WHO performance score 
Restricted 28 

(40.0 
%) 

42 
(60.0 
%) 

0.174 13 
(46.4 
%) 

15 
(53.6 
%) 

0.215 

Self-care 29 
(50.0 
%) 

29 
(50.0 
%) 

17 
(47.2 
%) 

19 
(52.8 
%) 

Limited Self- 
care 

14 
(66.7 
%) 

7 (33.3 
%) 

16 
(72.7 
%) 

6 (27.3 
%) 

Missing 1 (100 
%) 

0(0.0 
%) 

0 (0.0 
%) 

1 (100 
%)  

Clinical profile 
Favorable 3 (8.8 

%) 
31 
(91.2 
%) 

<0.005 4 (28.6 
%) 

10 
(71.4 
%) 

0.021 

Moderate 15 
(37.5 
%) 

25 
(62.5 
%) 

11 
(42.3 
%) 

15 
(57.7 
%) 

Unfavorable 54 
(71.1 
%) 

22 
(28.9 
%) 

31 
(66.0 
%) 

16 
(34.0 
%)  

Location treated spinal metastases 
Diffuse 22 

(66.7 
%) 

11 
(33.3 
%) 

0.212 6 (46.2 
%) 

7 (53.8 
%) 

0.692 

Cervical 4 (40.0 
%) 

6 (60.0 
%) 

2 (33.3 
%) 

4 (66.7 
%) 

Lumbar 23 
(40.4 
%) 

34 
(59.6 
%) 

15 
(57.7 
%) 

11 
(42.3 
%) 

Thoracic 23 
(46.0 
%) 

27 
(54.0 
%) 

23 
(54.8 
%) 

19 
(45.2 
%)  

Number of spinal metastases 
1 15 

(45.5 
%) 

18 
(54.5 
%) 

0.486 10 
(66.7 
%) 

5 (33.3 
%) 

0.308 

2 17 
(41.5 
%) 

24 
(58.5 
%) 

07 
(63.6 
%) 

04 
(36.4 
%) 

3 or more 40 
(52.6 
%) 

36 
(47.4 
%) 

29 
(47.5 
%) 

32 
(52.5 
%)  

# of extra spinal bone metastases 
None 23 

(46.9 
%) 

26 
(53.1 
%) 

0.376 6 (60.0 
%) 

4 (40.0 
%) 

0.883 

1 or 2 13 
(61.9 
%) 

8 (38.1 
%) 

5 (50.0 
%) 

5 (50.0 
%) 

3 or more 36 
(45.0 
%) 

44 
(55.0 
%) 

35 
(52.2 
%) 

32 
(47.8 
%)  

Visceral metastases 
Present 32 

(59.3 
%) 

22 
(40.7 
%) 

0.038 26 
(66.7 
%) 

13 
(33.3 
%) 

0.020  

Table 1 (continued ) 

Characteristic Train on 150 Validate on 87 

Dead Alive p-value Dead Alive p- 
value 

Not present 40 
(41.7 
%) 

56 
(58.3 
%) 

20 
(41.7 
%) 

28 
(58.3 
%)  

Brain metastases 
Present 9 (100 

%) 
0 (0.0 
%) 

0.001 2 (100 
%) 

0 (0.0 
%) 

0.176 

Not present 63 
(44.7 
%) 

78 
(55.3 
%) 

44 
(51.8 
%) 

41 
(48.2 
%)  

Pain score 
No pain 1 (33.3 

%) 
2 (66.7 
%) 

0.251 1 (33.3 
%) 

2 (66.7 
%) 

0.784 

Mild 2 (28.6 
%) 

5 (71.4 
%) 

2 (66.7 
%) 

1 (33.3 
%) 

Moderate 16 
(64.0 
%) 

9 (36.0 
%) 

6 (60.0 
%) 

4 (40.0 
%) 

Severe 11 
(45.8 
%) 

13 
(54.2 
%) 

10 
(66.7 
%) 

5 (33.3 
%) 

Very severe 19 
(48.7 
%) 

20 
(51.3 
%) 

10 
(43.5 
%) 

13 
(56.5 
%) 

Worst possible 6 (75.0 
%) 

2 (25.0 
%) 

2 (40.0 
%) 

3 (60.0 
%) 

Missing 17 
(38.6 
%) 

27 
(61.4 
%) 

15 
(53.6 
%) 

13 
(46.4 
%)  

Pathological fracture 
Yes 15 

(50.0 
%) 

15 
(50.0 
%) 

0.806 14 
(53.8 
%) 

12 
(46.2 
%) 

0.906 

No 57 
(47.5 
%) 

63 
(52.5 
%) 

32 
(52.5 
%) 

29 
(47.5 
%)  

Spinal compression 
Yes 8 (28.6 

%) 
20 
(71.4 
%) 

0.022 12 
(54.5 
%) 

10 
(45.5 
%) 

0.856 

No 64 
(52.5 
%) 

58 
(47.5 
%) 

34 
(52.3 
%) 

31 
(47.7 
%)  

lymphatic metastases 
Present 32 

(53.3 
%) 

28 
(46.7 
%) 

0.286 24 
(53.3 
%) 

21 
(46.7 
%) 

0.929 

Not present 40 
(44.4 
%) 

50 
(55.6 
%) 

22 
(52.4 
%) 

20 
(47.6 
%) 

RT: Radiotherapy, #: Number. 
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survival outcomes. 

Statistical analysis 

Exploratory data analysis (EDA) and principal component analysis 
(PCA) were performed to detect abnormal patterns and possible outliers 
within the data. Survival time was defined as the difference between the 
start of treatment for the spinal metastasis and the date of death or last 
follow-up record. Those patients alive at the end of their follow-up were 
censored. Cox proportional hazard regression models were fitted to 
evaluate the performance of the selected clinical and radiomic pre-
dictors. Harrell’s C statistic, which estimates the probability of concor-
dance between predicted and observed responses, was used to validate 
the models’ predictive value. Survival curves were estimated using the 
Kaplan-Meier method, and log-rank tests were used to compare the 
differences in survival curves. A p-value <0.05 was considered statisti-
cally significant. The Z-score transformation was applied to have the 
radiomics features on the same scale. Fig. 1 shows the analysis schema 
for this study. 

Software packages 

Statistical analysis, model training, validation, and visualization 
were performed in R version 3.6.1. 

Results 

The majority of the patients in the study were males 135 (57 %), and 
the median age (range) of all patients was 68 years (24–92 years) 
(Table 1). There was no statistically significant difference between pa-
tients who were alive and those who died for almost all the variables for 
both the train and test data, except for the variables clinical profile and 
visceral metastases. The pain score variable was excluded from the an-
alyses because of the high percentage of missing values. 

The interobserver agreement of the extracted features was good 
(Table 2). Hence, the median biopsy radiomics value for each patient 

was considered in this study. The first radiomic feature reduction pro-
cess, which considered only features with an ICC value above 0.8 and the 
exclusion of shape features, reduced the radiomics feature from 105 to 
19. Two patients, one with a missing WHO performance score (Table 1) 
and another with extreme outlying value (Fig. 1, supplementary mate-
rial) due to artifacts on the image, were excluded reducing the total 
training sample size to 148. The stepwise selection procedure selected 
three radiomics features (glszm Small Area Emphasis, gldm Small 
Dependence Emphasis, gldm Dependence Non-Uniformity Normalized) 
and two clinical features (Clinical profile and WHO performance score) 
as shown in Fig. 1, supplementary material. The median follow-up time 
was 22.37 (95 % CI: 10.22–36.14) and 15.21 (95 % CI: 9.79–20.60) 
months for the training and testing data, respectively. 

The three radiomic features and two clinical features selected by the 
stepwise procedure in the training dataset were used to compute the 
radscores- and clinscores. The proportional hazards assumption was 
supported since there was a non-significant relationship between scaled 
Schoenfeld residuals and time. The plot of the scaled Schoenfeld re-
siduals against the transformed time also had no pattern (Fig. 2, sup-
plementary material). 

Table 3 shows the univariable and multivariable performance of the 
scores in the training and testing data. As observed from the table, both 
scores are significant independent prognostic factors for six months 
survival in the train data with a p-value <0.05. However, the discrimi-
nating power of the radscore model was lower than the clinscore model 
with a C-index of 0.623 (95 % CI: 0.553–0.693). The clinscore models, 
on the contrary, had a relatively better discriminating power with a C- 
index of 0.731 (0.682–0.801). Based on the results of multivariable 
analysis, both scores were still significantly associated with the outcome 
(p-value < 0.05), but with a C-index of 0.740 (0.686–0.794), which is an 
indication that the radiomics model adds little or no information to the 
clinical model. 

The clinscore still had a decent discriminating power in the test data, 
but with a slightly low C-index of 0.686 (0.602–0.770) compared to the 
train data. The radscore, on the other hand, had a poor performance 
with a C-index of 0.570 (0.497–0.642), which is only slightly better than 
a random guess. The multivariable model with both scores shows that 
the addition of the radscore negatively affected the model’s discrimi-
nating power with a reduced C-index value of 0.669 (0.598–0.740), 
which might indicate overfitting. 

The calibration plot, which measures the similarities between the 
observed and predicted probabilities, was used to evaluate further the 
performance of the score models in the training and testing data. The 
closer the points are to the diagonal dotted line, the more accurate the 
model predicts the outcome. Fig. 3 show that the model is well cali-
brated on the train data, especially for clinscore. However, the model 
looks less well-calibrated on the test data, especially the radscore with 
its point falling far from the diagonal line. 

The scores values were categorized to separate the patient into two 
risk groups based on some cut-off values determined from the frequency 
distribution of the scores as shown on the histogram plot (Fig. 4). The 
chosen cut-off scores used for separating the patients into high (>cut- 
off) and low (≤cut-off) risk groups from the train data were translated to 
the test data. The clinscore had a bimodal distribution; hence a cut-off 
value of − 1, which separates the two distributions, was chosen. For 
the radscore, which had a normal distribution, the median value of 
0.044 was chosen. 

Furthermore, stratification analyses based on the risk groups showed 
that both scores were still independent predictors in discriminating the 
survival of SBM patients with a p-value <0.05 in the train data. In the 
test data, no statistical significance survival difference was observed 
between the two radscore groups with a p-value of 0.14, suggesting that 
the radscore might be slightly over-fitted to the train data. However, 
there was a borderline significance difference (p-value 0.04) between 
the two clinscore risk groups (Fig. 5). 

Table 2 
Inter-observer analysis, showing the ICC values and the number of stable fea-
tures per feature group, defined as high (ICC ≥ 0.8), median (0.8 > ICC ≤ 0.5), 
and low (ICC < 0.5) stability.  

N-0 Stability class N ICC ICC (95 % CI) 

1 First order statistics    
High stability 8  0.810 0.795–0.823  
Medium stability 8  0.510 0.478–0.540  
Low stability 1  0.330 0.292–0.366  

2 Gray Level Co-occurrence Matrix (GLCM)    
High stability 3  0.820 0.805–0.833  
Medium stability 13  0.500 0.468–0.530  
Low stability 6  0.240 0.200–0.278  

3 Gray Level Run Length Matrix (GLRLM)    
High stability 1  0.810 0.795–0.823  
Medium stability 7  0.52 0.488–0.549  
Low stability 8  0.240 0.200–0.278  

4 Gray Level Size Zone Matrix (GLSZM)    
High stability 5  0.810 0.795–0.823  
Medium stability 7  0.54 0.509–0.568  
Low stability 4  0.24 0.200–0.278  

5 Gray Level Dependence Matrix (GLDM)    
High stability 2  0.820 0.805–0.833  
Medium stability 6  0.680 0.656–0.701  
Low stability 6  0.240 0.200–0.278  

6 Neighbouring Gray Tone Difference Matrix 
(NGTDM)    
High stability 1  0.800 0.784–0.814  
Medium stability 4  0.500 0.468–0.530  
Low stability –  – –  
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Discussion 

The number of people in society diagnosed with cancer is increasing. 
Additionally, survival of patients with cancer is extended because of 
improved treatment options, thus allowing for the emergence of more 
metastases.2 The spinal column is a common site of metastatic disease. 
In autopsy studies, up to 90 % of patients with cancer, metastatic 

deposits are observed, of which approximately 30 % of patients will be 
symptomatic. Adult patients with cancer of the lung, breast, and prostate 
are most likely to be affected [18]. 

For patients with SBMs, the primary goals of treatment should be 
focused on quality of life. Prediction of survival is crucial for guiding the 
appropriate choice of treatment (patient-tailored treatment). Numerous 
tools have been established to predict individual patient’s survival and 

Fig. 2. Bootstrap (B = 400) stepwise variable selection procedure for the clinical and radiomics data. The green bars show the percentage of time a variable was 
selected. The blue and red triangles (Coef Sign) show a represented rate of times the variable’s coefficient was positive or negative in each bootstrap run, respectively. 
The horizontal line shows the cut-off point for selected variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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propose an appropriate corresponding therapeutic strategy. External 
validation studies, however, demonstrated confusing inconsistency be-
tween predicted and actual survival [19–21]. 

In the retrospective study of Bollen et al. in which 1043 patients were 
treated for symptomatic SBMs, only clinical profile of the primary 
tumour, performance status, and in the subgroup of favourable clinical 
profile, the presence of visceral and brain metastases was associated 
with survival. Van der Linden et al. showed in their prospective ran-
domized radiotherapy trial that primary tumor, Karnofsky performance 
score, and absence of visceral metastases were significant predictors in 
the survival of patients with painful SBMs. In our study, only two 
prognostic factors showed significant association with survival, that is 
clinical profile, and the WHO performance status. The presence of 
visceral metastasis and clinical profile of the patient were the only 
predictors with a statistically significant difference between SBM sur-
vivors and no-survivors in both the training and testing data, although 
visceral metastasis was not selected. However, the predictive value of 
visceral metastasis for survival in patients with spinal metastases is 

controversial in current literature [22–23]. A recent meta-analysis sug-
gested that the occurrence of visceral metastases has a strong negative 
impact on survival and should be considered when choosing a precision 
treatment [24]. Interestingly, the presence of visceral metastases 
exhibited various impacts on survival in different primary tumors. 
However, visceral metastasis in thyroid, breast and renal cancer could 
not yet be confirmed as a significant prognostic factor for survival. Large 
prospective trials are required to define better the prognostic value of 
visceral metastasis in a patient with different tumors. In our study, the 
clinscore models showed a good discrimination power with a C-index of 
0.73. There seems to be a role for specific clinical factors in survival 
prediction. However, the number of patients in our training and test set 
was low. Ideally, with higher numbers, we might have better perfor-
mance with a smaller chance of overfitting. 

In clinical practice, invasive biopsy and molecular assays are needed 
to specify tumors. However, spatial and temporal pathologic heteroge-
neity limits the ability of one-moment invasive biopsies to capture their 
biological diversity or disease evolution. Furthermore, repeated invasive 
tumor sampling can be troublesome, expensive, and limited by the 
practical number of tissue sampling that can be undertaken to monitor 
disease progression or treatment response. By contrast, the non-invasive 
imaging phenotype potentially contains a treasure of information that 
can inform on the expression of the genotype, the tumor microenvi-
ronment, and the susceptibility of the tumor to treatment. 

Radiomics can be described as the next era of possibilities in preci-
sion medicine. An emerging research field aiming to find associations 
between qualitative and quantitative information extracted from clin-
ical images and clinical data, to support evidence-based clinical 
decision-making. Different kinds of features can be derived from clinical 

Table 3 
Univariate and multivariate predictive performance of the scores.  

Variables Training Data Testing data 

C-index (95 % CI) p-value C-index (95 % CI) 

Univariate scores 
RadScore 0.623 (0.553–0.693) <0.05 0.570 (0.497–0.642) 
ClinScore 0.731 (0.682–0.801) <0.05 0.686 (0.602–0.770)  

Multivariate scores 
RadScore 0.740 (0.686–0.794) 0.01 0.669 (0.598–0.740) 
ClinScore <0.05  

Fig. 3. Calibration plots for clinscore and radscore, respectively, for the train(top) and test(bottom) data. The predicted survival is plotted on the x-axis, and the 
actual survival is plotted on the y-axis. The dotted gray line represents an ideal fit where the predicted probabilities perfectly match the observed probabilities. The 
diamonds show the estimated model performance, and the crosses indicate bias-corrected estimates. 
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images. Quantitative features are usually categorized into the following 
subgroups [25]. Shape features describing the shape of the traced region 
of interest (ROI) and its geometric properties. First-order statistics fea-
tures describe the distribution of individual voxel values without 
concern for spatial relationships. Second-order statistics features are 
obtained, calculating the statistical interrelationships between neigh-
boring voxels. They provide a measure of the spatial arrangement of the 
voxel intensities and hence of intra-lesion heterogeneity. Higher-order 
statistics features are obtained by statistical methods after applying fil-
ters or mathematical transforms to the images. 

In this paper, we studied the predictive value of first-order and 
texture radiomics signatures. We found no added discriminative effect of 
the studied radiomics signatures. So the internal imaging characteristics 
do not seem to have a value in the prediction of survival. However, the 
Shape features were excluded from further analyses in our study since all 
biopsies had a standard shape hence no variability. Especially volume 
seems to predict well in many Radiomics analyses. A study by Roy et al. 
found that of all radiomic features tested in their study, 16 were found to 
be volume-dependent [26]. Their evidence indicates that tumor volume 
significantly impacts radiomic features in co-clinical imaging, in which 
they propose a volume-dependency correction scheme and identify a set 
of robust radiomic features for co-clinical imaging studies. 

A major strength of a radiomics approach for cancer is that digital 
radiologic images are obtained for almost every patient with cancer, and 
all of these images are potential sources for radiomics databases. It is 
conceivable that the lack of quantitative information leads to increased 
follow-ups or invasive biopsies that would be deemed unnecessary given 
the unused information in medical images. Besides features encode 
morphological information beyond the limits of the human eye. When 
the feature extraction is performed expertly, artificial intelligence 
trained on handcrafted radiomics features can perform as deep learning, 
especially in smaller data sets. 

However there are some other critical comments which can be made. 

Algorithms contain human bias and delineation of hand crafted radio-
mics features is time consuming. Besides routine clinical imaging tech-
niques show a wide variation in acquisition parameters, such as image 
spatial resolution; administration of contrast agents; kVp and mAs 
(among others) for CT; type of sequence, echo time, repetition time, 
number of excitations, and many other sequence parameters for MRI. 
Furthermore, different vendors offer different reconstruction algo-
rithms, and reconstruction parameters are customized at each institu-
tion, with possible variations in individual patients. All these variables 
affect image noise and texture, and consequently, radiomic features. 
Standard CT phantoms, allow the evaluation of imaging performance 
and the assessment of how far image quality depends on the adopted 
technique. Despite not being intended for this, they may provide useful 
information on the parameters potentially affecting image texture. 
Segmentation is another critical step of the radiomics process because 
data are extracted from the segmented volumes. This is challenging 
because many tumors show unclear borders, and the reproducibility of 
the segmentation is questionable. Hence radiomic features are suscep-
tible to image acquisition and segmentation variability. Ideally, only 
features robust to these variations would be incorporated into predictive 
models for good generalizability or a reproducible, automated algorithm 
for segmentation should be used. Other factors such as the presence of 
artifacts due to metallic prostheses, may affect image quality and impair 
quantitative analysis. Furthermore, electronic density quantification 
expressed as Hounsfield Units may vary with the reconstruction algo-
rithm or scanner calibration. 

Radiomics is a growing field based on the analysis of hand-crafted 
features, which depend on an arbitrary decision to apply a statistical 
analysis to an image as a form of feature engineering. Deep learning can 
extract learned features from images which may be more helpful in 
determining the required outcome. Combining the learned features 
extracted via deep learning and the current hand-crafted radiomic fea-
tures may possibly improve outcome prediction. Deep learning 

Fig. 4. Histogram of the clinscore and radscore in the train and test datasets respectively. The red arrows indicates the optimal cut-off point used to categorize the 
patients into a low and high risk groups in each dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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combined with machine learning has the potential to advance the 
Radiomics field, provided the raw data is available for the results to be 
determined robustly across all patient and tumor types [27]. 

Conclusions 

We have developed and validated a clinical and Radiomics model for 
predicting six-month survival probability for patients with SBM. The 
clinical model had a good discrimination power. The radiomics model, 
on the other hand, had an inferior performance with no added predictive 
power to the clinical model, which might be due to the excluded shape 
feature. Therefore using a more sophisticated approach like deep 
learning that uses features from the entire image maybe a better method 
to show the predictive benefit of medical images. 
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