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ABSTRACT: Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging 

population and is characterized by a constellation of motor and non-motor symptoms. The abnormal aggregation 

and spread of alpha-synuclein (α-syn) is thought to underlie the loss of dopaminergic (DA) neurons in the 

substantia nigra pars compacta (SNc), leading to the development of PD. It is in this context that the use of adeno-

associated viruses (AAVs) to express a-syn in the rodent midbrain has become a popular tool to model SNc DA 

neuron loss during PD. In this review, we summarize results from two decades of experiments using AAV-

mediated a-syn expression in rodents to model PD. Specifically, we outline aspects of AAV vectors that are 

particularly relevant to modeling a-syn dysfunction in rodent models of PD such as changes in striatal 

neurochemistry, a-syn biochemistry, and PD-related behaviors resulting from AAV-mediated a-syn expression 

in the midbrain. Finally, we discuss the emerging role of astrocytes in propagating a-syn pathology, and point to 

future directions for employing AAVs as a tool to better understand how astrocytes contribute to a-syn pathology 

during the development of PD. We envision that lessons learned from two decades of utilizing AAVs to express 

a-syn in the rodent brain will enable us to develop an optimized set of parameters for gaining a better 

understanding of how a-syn leads to the development of PD.  
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Parkinson’s disease (PD) is the second most common 

neurodegenerative disorder, affecting 1-2% of the 

population over 65 years. Clinically, PD is characterized 

by a loss of dopaminergic (DA) neurons in the substantia 

nigra pars compacta (SNc) and the onset of motor 

symptoms such as bradykinesia, resting tremors, postural 

instability, and muscle rigidity. Apart from motor 

symptoms, PD is also inundated with non-motor 

symptoms that occur before and during motor 

dysfunction, such as sleep disturbances, constipation, 

heightened sensitivity to pain, anxiety, depression, and 

cognitive dysfunction [1, 2]. These multifaceted clinical 

features correlate with a sequential degeneration of 

neurons within several discrete loci of the brain, which 

points to both spreading neuropathology and regional 

vulnerability as underlying causes for PD [3-7]. 

 Rather than a single source of neurodegeneration, PD 

likely results from a few select factors with central roles 

in triggering the cascade of clinical presentations and 

spreading neuropathology.  In this regard, the 

accumulation of Lewy bodies and Lewy neurites in the 

nigrostriatal pathway is a classic hallmark of clinical 
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PD[8]. These distinctive histopathological features 

consist of an aggregation of ~40 different proteins with 

alpha-synuclein (a-syn) at its core[8]. Importantly, 

autopsies from PD patients with surgical grafts of 

mesencephalic DA neurons into the striatum show Lewy 

body inclusions that spread from the host tissue into 

exogenous DA grafts [9]. Together, these findings 

strongly implicate abnormal a-syn aggregation as an 

important nucleating factor for neurodegeneration during 

PD.  

The idea that a-syn is a central player in the 

pathogenesis of PD has led to the development of 

molecular tools focused on understanding the 

mechanisms underlying a-syn-mediated neuro-

degeneration with the goal of discovering potential a-syn 

targeted therapeutics for PD. Consequently, at least three 

different tools have been developed to model the 

pathological features of a-syn in rodents. These tools 

include transgenic mice overexpressing a-syn, pre-formed 

a-syn fibrils (PFFs), and viral mediated overexpression 

with either adeno associated virus (AAV)- or lentivirus 

(LV) expressing a-syn. Each of these tools model distinct 

aspects of a-syn pathology in vivo, and recapitulates select 

symptoms of human PD. 

In this review, we specifically focus on the use of 

AAV-mediated expression of a-syn as a tool to model PD 

in vivo. Over the past two decades, AAVs expressing a-

syn have provided an effective means to model the 

progressive loss of DA neurons in rodents and appear to 

model both early and late features of PD pathogenesis. 

However, studies from various groups using AAVs 

expressing a-syn have shown a range of outcomes from 

very slight to greater than 90% DA loss, leading to 

numerous choices when selecting the most appropriate 

parameters to model PD pathogenesis in rodents. We 

provide a detailed account of the observed differences in 

published studies, along with an informed perspective on 

how one could approach the use of AAVs to model PD in 

rodents. We also provide an overview of specific 

mechanisms by which a-syn can induce astrocytic 

dysfunction and DA loss during PD, which makes AAVs 

a valuable tool for expressing a-syn in astrocytes of the 

rodent brain.  

 

1. AAV-mediated a-syn overexpression in rodents as 

a tool to model PD 

 

The first step towards implicating a-syn in PD 

pathogenesis was the identification of a case of familial 

PD due to triplication of the SNCA gene that codes for a-

syn [10]. This finding was soon followed by the discovery 

that a-syn is a main component in Lewy bodies and Lewy 

neurites, which led to focused studies on the role of a-syn 

in PD [11].  

Table 1 summarizes two decades of studies 

employing a unilateral injection of AAVs expressing 

human a-syn into the rodent SNc. The first studies 

utilizing AAV a-syn to model PD in rodents began in the 

early 2000’s, with the demonstration that AAV2 is 

capable of robustly expressing a-syn in rat SNc DA 

neurons[12-14]. Subsequent studies showed that AAV-

mediated overexpression of WT or mutated (A53T, 

A30P) a-syn produces a progressive loss of DA neurons, 

motor deficits, and striatal dopamine loss. However, the 

time-course and extent of DA cell loss is highly variable 

[12-14]. Studies in male C57BL/6 mice display a similar 

wide variation in the extent of SNc DA neuron loss [15-

19]. The next sections discuss multifaceted consequences 

of AAV-mediated a-syn expression in rodents from a 

molecular, biochemical and behavioral standpoint, as well 

as the effects of phosphorylated a-syn (p-a-syn) and 

neuroinflammatory profiles observed with AAV-

mediated expression of a-syn. 

 
Table 1. Table of studies utilizing unilateral AAV induction into the SNc of rodents for recapitulation of Parkinson’s 

disease. 

 

Ref. Animal/Sex 
Inj. Age 

(wks) 
Serotype Promoter 

A-syn 

Strain 
Enhancers 

Viral Load 

(gc) 

Length of 

expression 

(wks) 

TH loss 

(SNc) 

TH loss 

(STR) 

DA loss 

(STR) 

[16] SD Rats – F *8-12 AAV2/1 CAG A53T 
WPRE & 

bGF-polyA 
3.40E+09 

3 

6 

None 

-28% 

-7% 

-24.5% 

None 

-43% 

[22] C57BL/6 - M *8-10 AAV2/1 CMV WT -- 6.20E+08 

4 

8 

12 

-- 

-34% 

-50% 

-10% 

-25% 

-45% 

-10% 

-20-30% 

-50-60% 

[70] C57BL/6 Pups P0 AAV2/1 CAG WT WPRE 2.70E+10 

4 

12 

24 

-- -- -- 

[24] C57BL/6 - M 12 AAV2/1 CAG A53T 
WPRE & 

bGF-polyA 
7.74E+09 10 -30% -20% -38% 

[13] SD Rats -M 12 AAV2/2 CAG A30P -- 3.00E+10 52 -53% -- -- 

[14] SD Rats -M 10 AAV2/2 CMV WT -- 1.26E+09 13 -49% -- -10% 
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[15] C57BL/6 - M 12-16 AAV2/2 CAG WT WPRE 2.67E+08 

4  

12 

24 

-- 

-5-15% 

-25% 

none 

none 

none 

-- 

[88] C57BL/6 - M 8-12 AAV2/2 CAG WT WPRE 1.30E+10 

2  

4 

12 

-- -- -- 

[79] Rats -- AAV2/5 CAG WT -- 1.40E+10 

4  

8 

26 

-- 

-40% 

-60% 

-- 

none 

-36% 

-64% 

     S129A  1.40E+10 

4  

8 

26 

-70% 

-70% 

-60% 

-- 

none 

-50% 

-70% 

     S129D  1.40E+10 

4  

8 

26 

none 

none 

none 

-- 

none 

none 

none 

[125] SD Rats - F adult AAV2/5 CAG WT -- 6.07E+10 

3  

8 

15 

none 

none 

none 

none 

none 

none 

none 

-10-15% 

-20% 

     α-synΔ110 -- 8.25E+10 

3  

8 

15 

none 

none 

none 

none 

none 

-35-

40% 

none 

-10-15% 

-40% 

     
WT & 

α-synΔ110 
-- 

6.07E+10 

& 

8.25E+10 

3  

8 

15 

none 

-15% 

-36% 

none 

-25-

30% 

-35-

40% 

none 

-30% 

-35% 

[18] SD Rats - M -- AAV2/5 CAG WT -- 2.00E+10 

4  

8 

12 

-35% 

-60% 

-- 

-- 

-42% 

-- 

-- 

       2.00E+11 

4  

8 

12 

-70% 

-90% 

-- 

-42% 

-- 

-- 

-- 

[87] SD Rats – F *8-12 AAV2/5 CAG WT -- 2.00E+10 

4 

8 

15 

none 

-56% 

-54% 

none 

-50% 

-60% 

-- 

     S129A  4.00E+10 

4 

8 

15 

none 

-44% 

-44% 

none 

none 

-40% 

-- 

     S129D  4.00E+10 

4 

8 

15 

-40% 

-49% 

-49% 

none 

-40% 

-40% 

-- 

[81] Wistar Rats - F *8-12 AAV2/6 CMV WT -- 3.40E+08 8 -20% †-- -- 

     WT S129A  2.40E+08 8 -70% -- -- 

     WT S129D  3.40E+08 8 -10% -- -- 

     A30P  1.80E+08 8 -20% -- -- 

     A30P S129A  3.80E+08 8 -70% -- -- 

     A30P S129D  2.80E+08 8 none -- -- 

[17] SD Rats - F *8-12 AAV2/6 h-syn WT WPRE 1.11E+10 8 -66% -68% -- 

[64] SD Rats - F *8-12 AAV2/6 h-syn WT WPRE 3.10E+08 

10 days 

3 wks 

5 

8 

16 

none 

-42% 

-60% 

-80% 

-75% 

-20% 

-30% 

-30% 

-59% 

-60% 

none 

-20% 

-31% 

-56% 

-61% 

    CAG  -- 3.10E+08 

10 days 

3 wks 

5 

8 

16 

-- 

none 

-- 

none 

-- 

-- 

none 

-- 

none 

-- 

-- 

[69] SD Rats - F *8-12 AAV2/6 h-syn WT WPRE 2.30E+11 
3  

8 

none 

-43% 

-- 

-31% 
-- 



 Huntington TE., et al                                                               AAV α-synuclein expression to model Parkinson’s disease 

Aging and Disease • Volume 12, Number 4, July 2021                                                                              1123 

 

[25] SD Rats - F *8-12 AAV2/6 PGK WT -- 1.50E+07 14 -45-50% 
-25-

30% 
-50% 

[62] SD Rats - F 16 AAV2/6 h-syn WT WPRE 1.11E+10 8 -50% -- -60% 

[71] SD Rats - F *8-12 AAV2/6 h-syn WT -- 8.80E+08 

7  

16 

28 

-10% 

-30% 

-50% 

-20-

25% 

-30% 

-40-

50% 

-- 

[65] Wistar Rats - F *8-12 AAV2/7 
CMV-h-

syn 
-- A53T 9.00E+08 

15 days 

29 days 

11 mo 

-- 

-80% 

-- 

-- 

-60% 

-92% 

-- 

[19] C57BL/6 - F 8 AAV2/7 
CMV-h-

syn 
WT WPRE 5.20E+08 

5 days 

4 wks 

8 

-- 

-19% 

-23% 

-- 

-17% 

-56% 

-- 

     WT  8.00E+08 

5 days 

4 wks 

8 

-- 

-45% 

-50% 

-- 

-56% 

-86% 

-- 

     WT  1.60E+09 

5 days 

4 wks 

8 

-- 

-57% 

-82% 

-- 

-73% 

-86% 

-- 

     A53T  8.00E+08 

5 days 

4 wks 

8 

-- 

-51% 

-59% 

-- 

-57% 

-91% 

-- 

 

[23] SD Rats - M 8-10 AAV2/9 h-syn WPRE WT 4.00E+09 
1  

4 

-- 

-57% 

-- 

-60% 

-- 

-70% 

[66] C57BL/6 - M 8-10 AAV2/9 
CMV-h-

syn 
A53T -- 8.40E+08 20 -30% 

-25-

30% 
-- 

 SAMR1 - M        none -30% -- 

 SAMP8 - M        none -30% -- 

[190] SD Rats – F 8 AAV2/9 CAG A53T -- 1.16E+10 10 -55% -- -- 

[191] 
Fisher 344 Rats – 

M 
12 AAV2/9 CAG WT 

WPRE & 

bGF-polyA 
4.40E+09 

2 

4 

16 

none 

-25-30% 

-25-30% 

-- -- 

 

When a study did not report a parameter (--) is used. When a study reported either no or non-significant changes in a parameter, none, is used. 

Columns/Abbreviations: Ref. (reference), rodent strain and sex (M/F), age at injection, AAV serotype, promotor, strain of a-syn, enhancing elements, 

viral load injected in total genomic copies, length of expression of a-syn, loss of tyrosine hydroxylase (TH) neurons in the SNc, TH loss in the striatum, 

dopamine (DA) loss in the striatum. *age as determined by average weight reported. †As measured by TH and VMAT2. 

Biochemical and molecular changes  

 

Based on amino acid (aa) composition, a-syn has three 

distinct domains, with an amphipathic N-terminal domain 

(aa 1-60), a central hydrophobic domain (aa 61-94), and 

an acidic C-terminal domain (aa 95-140).  a-syn mainly 

localizes to pre-synaptic terminals [20, 21], where the 

amphipathic and central domains mediate a-syn 

interactions with cellular membranes. These interactions 

result in distinct biochemical and molecular changes 

during PD.  

AAV-mediated a-syn expression in rodents causes a 

paradoxical increase in dopamine turnover along with a 

depletion of the dopamine transporter, DAT [16, 17, 22-

25]. In addition, a dynamic change in DAT binding occurs 

between 3 and 6 weeks post injection, beginning with a 

31% increase and ending with a 48% decrease in DAT 

binding [16]. This would suggest that early stages of a-

syn pathology may be associated with a paradoxical 

increase in striatal dopamine. Indeed, 4-month old male 

transgenic mice overexpressing a-syn under the Thy-1 

promoter also show a surge in dopamine release within 

the striatum[26]. Following this initial surge in striatal 

dopamine, rodents show a loss of the axonal terminals of 

SNc DA neurons in the striatum [26], which is 

accompanied with a decrease in striatal dopamine as well 

as its major metabolites, 3,4-dihydroxyphenylacetic acid 

(DOPAC) and homovanillic acid (HVA). These findings 

are similar to previous studies in patients with PD 

showing an initial degeneration of DA axons in the 

striatum [27], and relates to an increased risk of PD in 

humans with DAT mutations [28]. This suggests that 

AAV-mediated a-syn expression in the rodent SNc 

reliably models clinical aspects of PD related to 

fluctuations in striatal dopamine.  

Dysfunctions in striatal dopamine also trigger 

increases in burst firing within the subthalamic nucleus 

(STN). In PD patients, this is typically seen during 

surgical implantation of deep brain stimulation electrodes 

into the STN and is also noted in PD toxin models [29-

32]. One study overexpressing a-syn using AAV2/5-

CAG-WT-a-syn-WPRE in the SNc has recapitulated 

heightened burst firing within the STN of female Sprague 

Dawley (SD) rats [33], suggesting that AAV-mediated a-
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syn pathology in the SNc can have wide-ranging 

consequences that lead to dysfunction of other basal 

ganglia nuclei. 

Within the pre-synaptic compartment, a-syn 

interactions with SNARE protein complexes as well as 

with the vesicular transporter of monoamines (VMAT2) 

have been described [34-37], suggesting a primary role for 

a-syn in the trafficking and assembly of synaptic vesicle 

complexes[38-40]. In support of this idea, all known point 

mutations in a-syn associated with familial PD (A30P, 

E46K, H50Q, G51D, A53T, and A53E) localize to the N-

terminus, suggesting that alterations in the ability of a-syn 

to bind to cellular membranes may underlie its toxic 

effects, and trigger abnormal aggregation of a-syn [41-

50]. 

Interactions between a-syn and multiple cellular and 

subcellular targets[34, 51, 52] are also mediated by the 

core region of this intrinsically disordered protein. The 

central, hydrophobic region of a-syn (aa 61-94) was first 

identified in amyloid plaques of Alzheimer’s disease 

patients [44]. Termed the non-amyloid-β component 

(NAC), conformational changes in this region are 

responsible for a-syn fibril formation and aggregation due 

to crosslinking of β-sheets [53-57]. Indeed, the idea that 

a-syn may exist in a dynamic equilibrium between a 

disordered monomer and a tetramer under physiological 

conditions [58-61] would indicate that changes in both 

regions could abnormally alter monomer:tetramer a-syn 

ratios. This may be due to either an inability of a-syn to 

bind to membranes, an abnormal increase in a-syn binding 

to membranes or result in abnormal a-syn aggregates and 

the formation of Lewy pathology. Further understanding 

of a-syn structure in humans and in AAV-mediated 

expression in rodents are needed to determine the full 

relationship of a-syn structure and pathology in PD. 

 

Behavioral changes 

 

The early pre-symptomatic stage following AAV-

mediated expression of a-syn in rodents correlates with 

early striatal dysfunction [17, 22, 62, 63], which could 

precede non-motor behavioral changes reminiscent of 

prodromal symptoms such as anxiety or depression. 

During the symptomatic stage, the extent of DA neuron 

loss and consequent deficits in striatal dopamine are large 

enough to induce motor dysfunction [12, 13, 18, 19, 23, 

64-67], while the more advanced stages are likely 

characterized by an increase in mortality. Therefore, 

depending on the exact model, AAV-mediated a-syn 

expression in the SNc can recapitulate important aspects 

of early, mid as well as late stages of clinical PD.  

The most widely tested behavior among all PD 

models is locomotion. In AAV models with a unilateral 

injection of AAV-a-syn, behavioral paradigms that focus 

on measuring motor asymmetry such as amphetamine or 

apomorphine induced rotations, cylinder test, or paw-

stepping test are commonly employed [13]. In addition, 

the beam walk, open field, and rotarod test are also 

common behavioral tests for AAV-a-syn models [18, 19, 

23, 65, 66, 68-70]. Although the vast majority of AAV 

studies show motor deficits compared to controls, there is 

variability in the amount of SNc dopaminergic loss when 

correlated with motor symptoms. A majority of AAV-

based studies report motor deficits only when greater than 

50% of SNc DA neurons are lost, which is consistent with 

clinical PD [12, 13, 17-19, 23, 65-67]. However, several 

other studies show motor deficits with less than 40% SNc 

DA neuron loss [16, 17, 24, 25, 68, 71, 72]. As shown in 

Table 1, potential sources for this variability are numerous 

and could include differences in behavioral assays, in the 

methodology used for quantification of PD-related 

behaviors, the AAV serotype, length of time for 

expression of a-syn or species of rodent. Studies focused 

on systematically comparing one or more of these 

parameters are therefore essential for developing a more 

consistent and standardized AAV-based a-syn expression 

model for PD in rodents. 

An array of non-motor symptoms appears prior to 

motor dysfunction and are attributed to both DA and non-

DA neuron pathology. These symptoms include sleep 

disturbances, depression, anxiety, cognitive dysfunction, 

heightened pain, hallucinations, impaired color vision, 

and hyposmia [1, 73-75]. A few AAV a-syn models in 

rodents have assessed non-motor symptoms in PD [18, 

67-69]. Male AAV-a-syn SD rats show significant loss in 

odor discrimination at 9 weeks, followed by significant 

deficits in rotarod performance [67]. In a recent study, 

female SD rats unilaterally injected with AAV-a-syn 

showed anxiety, but no cognitive deficits. A similar 

anxiety phonotype has been reported in male Wistar rats 

with bilateral SNc injection of AAV a-syn [68]. 

Additionally, gastrointestinal (GI) disturbances have been 

associated with a-syn pathology in the gut-brain axis [76, 

77], but only two studies so far have explored the ability 

of AAV-a-syn in modeling this feature of PD [78]. Thus, 

AAV-mediated expression of a-syn in the rodent SNc 

appears to model important aspects of PD such as anxiety, 

and GI dysfunction.  However, not all prodromal 

symptoms may be present in AAV a-syn PD models. 

Further characterization of non-motor symptoms in PD 

such as depression, cognitive dysfunction and hyposmia 

is necessary. This would be especially beneficial when 

investigated with AAV-a-syn models already shown to 

reproduce DA neurodegeneration and motor symptoms. 

 

Phosphorylated a-syn (p-a-syn)  
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The C-terminus of a-syn (aa 96-140) is a highly 

unstructured region with several post-translational 

modification sites, including phosphorylation sites (Tyr-

125,133,136 and Ser-129). This region is populated with 

negatively charged amino acids resulting in a random coil 

structure at the tail of a-syn. The most common post-

translational modification is phosphorylation of a-syn at 

S129 (p-a-syn). Interestingly, p-a-syn is expressed 

throughout the brain in PD patients, and in PFF and AAV 

a-syn models of PD [67, 79, 80]. This suggests that 

phosphorylation of S129 is pathological. In accordance 

with this idea, abundant expression of p-a-syn is 

accompanied by bulging neurite morphology in the 

striatum and a dystrophic morphology of cell bodies in the 

SNc of AAV a-syn expressing rodents [19, 33, 65, 70]. 

Further evidence for a pathological role of p-a-syn comes 

from the finding that p-a-syn comprises greater than 90% 

of LBs seen in post-mortem human tissue. Attempts in 

AAV studies to further characterize p-a-syn inclusions 

consist of proteinase K digestion, immuno-staining for 

ubiquitin or thioflavin S, or a combination [16, 24, 67, 71, 

72, 80-83]. A recent study bilaterally overexpressing 

A53T a-syn demonstrated a shorter half-life for p-a-syn 

and increased concentrations of p-a-syn with proteasome 

inhibition, indicating p-a-syn as a favored substrate in the 

ubiquitin-proteome system [84]. Additionally, lysosome 

and autophagosome-like structures demarcated in the 

inner architecture of LBs suggest dysfunction in 

degradation pathways [85].  

Rodent models of AAV-a-syn expression provide the 

advantage of expressing a-syn with aa substitutions that 

mimic either a phosphorylated (S129D) or a 

dephosphorylated (S129A) form of the protein. The 

dephosphorylated state of S129, in some AAV rat models, 

correlates with higher rates of DA cell death in both WT 

and A30P strains [79, 86]. However, another study using 

a different rat strain reported slower DA cell loss with 

S129A expression [87]. In order to better understand the 

role of S129 a-syn phosphorylation in PD, differences in 

experimental parameters such as AAV serotype, viral 

titers, and strain of rodents used will need to be 

systematically addressed in a standardized setting. 

 

 

Neuroinflammation  

 

In AAV a-syn models, the overexpression of WT or 

mutant a-syn activates microglia and induces lymphocyte 

infiltration. Neuroinflammatory markers such as IL-6, 

TNF-α, and CD68 are upregulated, along with production 

of CD8+ and CD4+ T lymphocytes [65, 72, 80, 88, 89]. 

Interestingly, partial rescue of DA neurodegeneration 

occurs with pharmacological inhibition of upregulated 

angiotensin II type I receptors in an AAV α-syn rat model 

[23]. While microglia are the resident immune cell in the 

CNS, recent evidence points to a larger role for astrocytes 

in neuroinflammation than previously thought, 

particularly with regard to a-synucleinopathies [90, 91]. It 

is important to note that although AAVs provide a useful 

model for studying neuroinflammation during PD, GFP-

expressing AAVs injected into the rodent hippocampus 

have been shown to induce astrocyte reactivity at high 

titers [92]. Therefore, one has to be cautious with regard 

to the serotype and titer of the AAV being used to express 

a-syn.  In summary, rodent models utilizing AAV-

mediated a-syn expression parallel several aspects of PD 

pathology including neurochemical changes, non-motor 

and motor behaviors, and neuroinflammatory changes in 

the brain.  

 

Changes in organelle function  

 

Apart from the pre-synaptic terminal, potent membrane 

binding capabilities of a-syn have also been identified in 

organelles such as mitochondria [38, 52, 93, 94], the 

endoplasmic reticulum [95, 96],  the Golgi apparatus[97-

99] and the nucleus [100]. Multiple forms of a-syn disrupt 

protein synthesis and degradation pathways, restrict 

intracellular calcium handling, increase oxidative stress, 

and impair phagocytic activity[52, 101].  

AAV a-syn models demonstrate aggregates 

localizing to mitochondria associated membranes [38, 

39]. This disrupts Ca2+ handling from ER to mitochondria 

and ATP production, and alters energetic homeostasis in 

the brain [102, 103]. Additionally, a-syn interactions with 

calcium-ATPases lead to fragmentation in the Golgi 

apparatus [52]. Mutations in genes implicated in PD have 

direct consequences on mitochondrial function, but are 

exacerbated with accumulation of a-syn aggregates [104, 

105]. In neurons, region specific decreases in respiratory 

chain complexes correlate with idiopathic PD in humans 

[103]. However, another study showed higher levels of 

respiratory complexes without a change in the number of 

neuronal mitochondria [106]. a-syn further elicits 

subcellular damage in the nucleus via interactions with 

DNA and histones that are thought to impact production 

of vesicular transport machinery [52]. Furthermore, a-syn 

degradation is mediated by the ubiquitin-proteasome 

system and the autophagy-lysosomal system; however, 

recent studies have revealed damages to these systems 

that may encourage a-syn aggregation [83, 84, 107, 108]. 

Taken together, these reports suggest diverse roles for a-

syn in subcellular function with the potential for abnormal 

a-syn to exert global pathological effects on neuronal 

physiology. The vast majority of organelle interactions 

have been studied in neurons [5, 52], but emerging 

evidence shows parallel mechanisms of a-syn induced 

pathology in glial organelles, including astrocytes [109, 
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110]. Understanding how these mechanisms affect PD 

pathogenesis will greatly enhance our knowledge of PD, 

and neurodegeneration in general. 

 

2. An analysis of AAVs as viral vectors for expressing 

a-syn 

 

Recombinant AAVs are multi-functional tools in research 

and are widely used for gene delivery to the central 

nervous system (CNS) of rodents as well as humans [27, 

111]. Advantages of recombinant AAVs include their low 

immunopathogenicity and the episomal expression of 

transgenes, with a very low probability of integration into 

the host genome [112]. Moreover, the ability of AAVs to 

transduce slow-dividing or non-dividing cells in a 

targeted manner is beneficial for expressing proteins in 

different cell types within the CNS. Together, these 

features make AAVs an attractive tool to express a-syn as 

a means to understand how pathological a-syn initiates 

PD. As shown in Table 1, key elements of AAVs that vary 

among rodent a-syn studies include the genome with 

promoter and enhancer elements, capsid serotype, the 

strain of a-syn encoded, method of purification, and 

determination of functional titer. In addition, the choice of 

control AAVs for experiments along with the species, 

strain, age, and sex of rodents significantly influence the 

outcome of studies in terms of the extent of SNc DA 

neurodegeneration. In the next sections, we consider each 

of these elements in some detail. 

 

AAV genome  

 

Recombinant AAVs are classified based on their genomic 

sequence and capsid serotype. Thus, AAV2/5 denotes a 

recombinant AAV with an AAV2 genomic sequence and 

an AAV5 capsid serotype. The AAV genome typically 

consists of a transgene cDNA cassette and a 

polyadenylation signal driven by a promoter for 

tissue/cell specific expression. Enhancers and/or post-

transcriptional elements can be added within the cassette 

for optimized transgene expression. AAV expression 

systems are compatible with a wide range of minimal 

promoters and enhancers for transgene expression. This 

not only increases flexibility in altering a-syn expression, 

but also gives rise to increased variability in modeling a-

syn pathology. Some common minimal promoters used in 

AAV a-syn models include the cytomegalovirus (CMV), 

chicken beta-actin (CBA), human synapsin I (hSyn or 

Syn-1), phosphoglycerate kinase 1 (PGK), 

cytomegalovirus-enhanced synapsin I (CMVie/hSyn), 

and the chicken beta actin/cytomegalovirus enhancer 

hybrid (CAG). Although these promoters efficiently 

transduce DA neurons in the SNc[17, 65, 113], how these 

promoters influence the subsequent cell-to-cell transfer of 

a-syn has not been completely elucidated. In addition to 

minimal promoters, the Woodchuck Hepatitis Virus 

Posttranscriptional Regulatory Element (WPRE) is 

commonly included in AAV-a-syn expression systems. 

WPRE consistently produces robust dopaminergic loss 

compared to AAVs with no WPRE [64]. On the other 

hand, the presence of WPRE does not ensure cell death as 

other studies report lower dopaminergic degeneration 

despite higher injected viral titer [24, 69]. Thus, although 

promoter and enhancer elements can influence the 

outcome of experiments with a-syn expression, the 

mechanisms underlying these variations remain to be 

determined.   

 

AAV capsid 

 

In rodents, AAV2/2 shows low transduction efficiency; 

however, studies employing AAV 2/1, 2/5, 2/6, 2/7, 2/8, 

and 2/9 in the CNS show a marked improvement in terms 

of transduction efficiency [114-118]. In a separate study, 

Aschauer and colleagues determined that AAV 2/5, 2/8, 

and 2/9 show increased transgene expression in striatum, 

hippocampus, and auditory cortex of adult mice when 

compared to AAV 2/1 [119]. Furthermore, transduction 

efficiencies of AAV 2/1 and 2/5 are higher in adult mouse 

tissue than in neonatal brains, and transduction efficiency 

has been shown to change over time in neonatal mice 

[116, 118, 120]. Apart from the AAV serotype, the species 

of rodent used (mice versus rats) may play a role in 

determining AAV expression efficiency. Interestingly, 

models utilizing AAV 2/1 and AAV2/7 show dose 

dependent nigral cell death with WT and A53T a-syn 

overexpression in rodents [16, 19]. However, a 

comparison shows AAV 2/1 expressing the A53T mutant 

a-syn promotes greater DA degeneration in rats than in 

mice[16, 24]. These unknown interactions between AAV 

serotypes and rodent species point to species-specific 

differences that may include either permissivity to AAV 

infection, immune responses, or genetic differences 

between mice and rats.   

Apart from influencing the rate of DA degeneration 

in vivo, AAV capsid serotypes can alter other factors such 

as transduction volume, cell tropism, and even the 

retrograde transport of AAV-expressed proteins [121, 

122]. While AAVs are able to transduce larger areas of 

tissue than PFFs, a lower transduction volume with 

AAV2/8 was reported in rats [114]. This appears to be a 

function of the AAV2/8 serotype since a lower AAV2/8 

transduction volume was also observed in adult mouse 

brains; however, this deficit disappeared with an increase 

in viral titer [116]. Interestingly, some AAVs may be 

more efficient at the retrograde transport of AAV-

expressed proteins in neurons. In a study comparing seven 

different serotypes, only AAV2/5 was able to transduce 
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SNc neurons after striatal injection, while Burger et al. 

reported both AAV2/1 and 2/5 enhance the retrograde 

transport of expressed proteins [115, 123].  

Despite phenotypic variations in terms of PD-related 

behaviors following AAV-mediated a-syn expression, the 

majority of AAV a-syn studies report greater than 80% 

AAV-mediated a-syn expression in SNc dopaminergic 

neurons. Further characterization of AAV capsid serotype 

transduction efficiencies in mature rodent brains will 

benefit efforts to consistently reproduce a-syn pathology. 

Also, the approval of multiple AAV serotype capsids for 

use in humans (AAV 1, 2, and 9) may provide insight on 

whether or not lessons learned from AAV-mediated 

transgene expression in rodents are applicable to humans 

[111, 124]. 

 

AAV purification and titer 

 

Potential sources for variability between AAV studies 

come from the AAV purification method used as well as 

the method to determine functional viral titers, which have 

been previously described [80]. Importantly, the method 

used to purify AAVs for in vivo injection could alter the 

functional titer, which is determined by the proportion of 

empty AAV capsids or AAV genome copies that are not 

encapsulated, both of which will be incapable of protein 

expression in vivo [125].  Since most AAV titers are 

determined via DNA dot blot or by qPCR, which do not 

report functional titers, better and more efficient methods 

to determine the functional titers or AAVs will need to be 

developed. Undoubtedly, advancements in AAV quality 

control and improvements in vector transduction 

efficiencies will lead to a newer generation of AAVs 

rodent models that consistently mimic key aspects of a-

syn pathology in PD patients [27].  

 

3. Appropriate controls, age, species, and sex 

differences in modeling AAV-mediated a-syn 

pathology in rodents 

 

Following unilateral AAV injection into the rodent brain, 

there is significant spread to the contralateral hemisphere 

which makes it difficult to utilize the uninjected side as a 

control [126]. Furthermore, bilateral injections of AAV-

a-syn to model PD in rodents are rarely employed[22, 69, 

70]. Therefore, many studies utilize separate injections of 

control AAVs as empty vectors or encoding fluorescent 

reporters such as GFP or mCherry (Table 1). Since high 

titers AAV-GFP induce toxicity [16, 92, 112], proteins 

that form non-toxic oligomers, such as actin or collagen, 

might serve as a better control for AAV a-syn 

overexpression models [112]. 

Age is a critical factor when considering parameters 

when designing AAV-mediated a-syn expression 

experiments in rodents. Evidence for an influence of age 

on a-syn expression in vivo comes from a number of 

studies. Decreases in endogenous a-syn levels are present 

in 20-month old, but not in 10- and 2- month old male 

C57BL/6 mice [127]. Conversely, humans and non-

human primates show increased a-syn levels with age 

[128]. Indeed, all human brain cell types exhibit changes 

in gene expression levels upon aging[129]. The effect of 

age on AAV a-syn-induced DA cell death has been 

compared between C57BL/6, and two outbred strains 

which are the rapid aging, SAMP8 and the age resistant, 

SAMR1 mice. Surprisingly, only C57BL/6 mice 

experienced cell death, indicating possible background 

susceptibilities or compensatory mechanisms, rather than 

age dependent a-syn pathology [66]. Similar differences 

related to strains are observed in rats. Specifically, Wistar 

rats are less susceptible to DA cell death when compared 

to Sprague Dawley (SD) rats [66].  

A heavy species bias exists towards the use of SD rats 

as AAV a-syn models (Table 1). A specific preference for 

SD rats stems from the relative ease of performing 

behavioral paradigms in rats, the differential gene 

expression between species, and technical challenges 

related to injection of AAVs into the mouse SNc [130]. 

Surprisingly, there is also a sex bias towards the use of 

female SD rats, while male C57BL/6 mice are the chosen 

sex for AAV a-syn mouse models (Table 1). In humans, 

males are diagnosed with PD at a higher rate than women, 

and clinical symptoms have been shown to vary with sex 

[131, 132]. Given the central importance of sex 

differences in PD, future studies will need to focus on 

assessing differences in AAV-mediated a-syn expression, 

DA cell death, and PD-related behaviors between male 

and female rodents.  

 

4. Additional tools to model a-syn pathology PD in 

rodents 

 

Since the implication of a-syn in neurodegenerative 

diseases including Parkinson’s disease, Lewy body 

dementia, and multiple system atrophy, numerous 

molecular tools and animal models have been developed 

to study underlying mechanisms and efficacy of potential 

therapeutics. Although the vast majority of a-syn models 

utilize either transgenic mice, exogenous oligomers or 

PFFs, or viral vectors, recent data using combinations of 

these tools to induce PD has begun to show promise [71, 

133]. In this case, each PD model varies in rate of a-syn 

spreading, degree of pathogenicity, and time course of PD 

progression.  

Transgenic mice expressing either the mutant or wild-

type strains of human a-syn were the first animal models 

to overexpress a-syn[134-136]. These models shows very 

little to no neurodegeneration in DA neurons of the 
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SNc[137], but they do show neuronal inclusions similar 

to LB seen in human PD, as well as deficits in striatal 

dopamine, neuroinflammation, and prodromal behaviors 

including cognitive, sleep, and olfactory dysfunctions [1, 

73, 138, 139]. Despite these caveats, a-syn overexpressing 

transgenic mice likely reflect pathological processes that 

occur before the onset of neurodegeneration, which makes 

this approach a useful tool to study the role of a-syn 

dysfunction during early-stage PD. Moreover, the 

expression of a-syn aggregates in transgenic mice may be 

a useful model for determining the efficacy of 

therapeutics in mediating or even reversing a-syn 

aggregation. 

The use of oligomers or PFFs, either injected into the 

brain [71, 140, 141], or into the gut [76, 142] is a second 

tool that has recently gained traction and is increasing our 

understanding of the nature of a-syn spread within the 

brain. PFFs cause robust DA cell death and show 

extensive spread of a-syn pathology across brain regions 

[100, 143, 144]. Ser-129 phosphorylation of endogenous 

a-syn in response to extracellular a-syn fibrils exerts 

profound effects on the ability of a-syn to form toxic 

aggregates[143], and may be of particular relevance to the 

spread of a-syn pathology across brain regions. Injection 

of exogenous a-syn fibrils can elicit an immune response 

in microglia not present with monomeric a-syn [145]. 

Similar to AAV-mediated a-syn, PFF injections are 

regionally targeted and typically unilateral [146]. PFFs 

also mirror the widespread variability among results (DA 

neurodegeneration, changes in striatal dopamine, motor 

deficits) seen in AAV a-syn models [71, 80, 146]. 

Differences in size and structural homogeneity of PFFs 

cause variability in results. However, recent 

advancements in standardizing PFF generation and 

characterization will help overcome this barrier. Thus, 

PFF a-syn rodent models offer distinct insights into the 

seeding and propagation of toxic species in a-

synucleinopathies, and a unique perspective of PD 

pathogenesis.  

While we focus on AAV-mediated a-syn models in 

this review, the use of other viral vectors in rodents have 

also enabled an understanding of a-syn pathology. 

Lentiviruses (LVs) have genomes that are roughly twice 

as large as AAVs, allowing for a larger payload. However, 

disadvantages of LVs include lower transduction 

efficiency, higher toxicity, and viral incorporation into the 

host genome [147]. There are relatively fewer studies 

utilizing LVs that demonstrate large variabilities in DA 

neurodegeneration [148-151]. The formation of neuronal, 

cytosolic inclusions in LV a-syn models have been 

exploited to test efficacy of PD treatments such as parkin, 

glial-derived neurotropic factor (GDNF), or heat shock 

protein overexpression [152, 153]. Furthermore, in vivo 

LV overexpression of mutated a-syn has shown that 

oligomeric a-syn is a critical determinant of the degree of 

a-syn-induced pathology [151]. This inherent toxicity and 

the probability of spontaneous recombination have been 

mitigated with newer generations of LVs [154, 155]. 

Thus, LVs have indeed become useful tools in gene 

therapy developments as well as therapy efficacy [155]. 

Importantly, the payload of LVs allows for the study of 

larger PD-related genes such as LRRK2[147]. While 

current a-syn models favor the use of AAVs, the use of 

LVs to confirm therapeutic efficacy, promote gene 

therapy, and understand the mechanisms of PD relevant 

genes is critical for understanding PD from multiple 

perspectives.  

In summary, no one tool is able to fully recapitulate 

the molecular and behavioral pathogenesis of a-syn seen 

in human PD, but selecting the appropriate tool will allow 

greater accuracy in modeling specific aspects of PD 

pathology. Furthermore, combinations of these 

aforementioned tools are beginning to show promise in 

recapitulating the complexities of human a-syn pathology 

[71, 133, 140, 156]. 

 

5. Using AAVs to understand the role of astrocyte-

specific a-syn in PD 

 

Astrocytes govern important aspects of brain function 

such as glutamate clearance, extracellular K+ buffering, 

regulation and maintenance of the blood brain barrier, the 

release of antioxidants and gliotransmitters, and synaptic 

physiology [157-159]. Interestingly, many of the genes 

implicated in the progression of PD, such as ATP13A2, 

GBA1, LRRK2, PARK7, PINK1 and PARKIN are highly 

expressed in human astrocytes [22, 160-162], and human 

post-mortem brain studies, in vitro, as well as in vivo 

models of a-syn [90] suggest a significant role for 

astrocytes in a-syn pathology. Together, these reports 

suggest that astrocytes play a critical role in the 

pathogenesis of PD, and in the propagation of a-syn 

pathology during later stages of the disease. 

There is some evidence that a-syn may have a 

physiological role in astrocytes that is distinct from its role 

in neurons. Astrocytes alter gene expression in response 

to a-syn aggregates [163], and primary astrocytes from 

SNCA KO mice display disrupted incorporation of fatty 

acids arachidonic acid and palmitic acid, which indicates 

a possible physiological role for the low amounts of 

endogenous a-syn in astrocytes [161]. Conversely, the 

overaccumulation of a-syn in astrocytes elicits both a loss 

of physiological functions and gain of toxic, inflammatory 

functions. Despite evidence for a-syn function in 

astrocytes, AAV a-syn models have not focused on 

astrocytes. In the next sections, we highlight key findings 

that are relevant to a-syn pathology in astrocytes and 

astrocyte dysfunction in AAV-a-syn based models. We 
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also discuss potential caveats for studying astrocytes 

using AAV-mediated a-syn expression.  

 

Astrocytic uptake and transfer of a-syn 

 

Astrocytic inclusions containing aggregated a-syn have 

been observed in post-mortem brain samples of PD 

patients [3, 161, 164] and in human derived astrocyte 

cultures [104, 162, 165-167]. One theory is that astrocytes 

take up a-syn following extracellular secretion by 

neurons, which results in the formation of abnormal 

inclusions of a-syn in astrocytes. In support of this idea, 

different mechanisms of astrocytic uptake of a-syn in 

rodents using in vitro and in vivo models have been 

proposed [90, 168-170]. Following uptake by astrocytes 

or neurons, a-syn transfer may occur via prion-like 

spreading [39, 168], tunneling nanotubes [166, 171, 172], 

exosomes [173], or by endocytosis of dead neurons [174, 

175]. Interestingly, Loria et al established that in neuron 

and astrocyte co-cultures, the fibrillary form of a-syn can 

be transferred from neuron to astrocyte, astrocyte to 

astrocyte, but not from astrocyte to neuron [167]. In the 

same study, fluorescently labelled a-syn fibrils localized 

to astrocytic and neuronal lysosomal compartments for 

degradation in vitro; however, only astrocyte and 

microglial cells showed lysosomes containing a-syn in 

organotypic cultures, consistent with other a-syn models 

[167]. Thus, astrocytes appear to not only contain 

abnormal a-syn during PD, but may also possess 

specialized mechanisms for the internalization and 

degradation of a-syn, which makes these cells a 

potentially important, but understudied cell type in the 

context of PD.   

 

Potential astrocyte dysfunctions from a-syn pathology 

 

Studies have also begun to elucidate potential 

mechanisms that underlie astrocyte dysfunction in a-

synucleinopathies. One interesting finding in this regard 

is that the abnormal accumulation of a-syn in astrocytes 

results in altered glutamate clearance [176]. Utilizing a 

transgenic mouse model with mutant A53T and WT a-syn 

directly targeted to astrocytes, another study has shown 

that the astrocytic glutamate transporters, GLT-1 and 

GLAST were downregulated [177]. In support of these 

previous studies, oligomeric a-syn from erythrocyte-

derived extracellular vesicles of PD patients has been 

shown to co-localize with GLT-1 in astrocytes and is 

associated with a reduction in glutamate clearance, 

possibly due to the inhibition of GLT1 function 

[170].These findings together suggest that a-syn 

accumulation in astrocytes can significantly alter 

glutamate neurotransmission in the brain, which has 

important implications for neurodegeneration.  

Finally, the role of astrocytes in neuroinflammation 

has only recently become an area of intense focus. 

Astrocytes actively participate in the degradation and 

clearance of a-syn [178]. Oligomeric and nonfibrillized a-

syn deposition in astrocytes lead to activation of microglia 

in vitro[179] and in vivo [102, 177]. Moreover, release of 

cytokines such as TNF-α and IL-β from astrocytes initiate 

apoptosis in dopaminergic neurons[180]. In advanced 

stages of neurodegeneration, astrocytes are reactive and 

engulf a-syn aggregates, synapses, and dead cells [91]. 

Analogously, in healthy murine astrocytes, 

overaccumulation of amyloid-beta triggers an immune 

response [181]. Yet, neuroinflammation in the AAV a-syn 

model has largely been investigated in the context of 

microglia.  

In sum, a large body of evidence suggests that 

astrocytes play a critical role in the pathogenesis of PD, 

and particularly in the pathological effects of a-syn. 

Targeting AAV-a-syn to astrocytes can therefore serve as 

a valuable tool to model the specific effects of a-syn on 

astrocytic function in vivo. In this regard, several AAV 

serotypes are capable of astrocyte transduction, including 

AAV 2/1, 2/5, 2/8, and 2/9 [118, 119, 182-185]. Recently, 

AAV 2/6 was shown to preferentially transduce astrocytes 

(>90%) in the barrel cortex of male SD rats[186], but none 

of the studies employing AAV 2/6 in Table 1 report 

expression of a-syn in GFAP labeled astrocytes. The use 

of AAV compatible astrocyte-specific minimal promoters 

such as GFaABC1D[187, 188] or the use of Flex AAV 

constructs to express a-syn in large populations of 

astrocytes from astrocyte-specific Cre mice [189] can 

provide novel insights into the role of astrocytes in 

propagating a-syn pathology. In addition, using signal 

sequences that target a-syn to subcellular organelles such 

as astrocytic mitochondria[188] could allow us to study 

how a-syn affects subcellular compartments of astrocytes 

with unprecedented precision.   

 

6. Conclusion 

 

Based on two decades of experiments, we now know that 

the expression of a-syn with AAVs in rodents 

recapitulates several aspects of PD. AAV-mediated a-syn 

expression causes defects in striatal neurochemistry that 

precede SNc DA loss, induces the formation of 

phosphorylated α-syn aggregates throughout the 

nigrostriatal pathway, and results in neuroinflammation as 

well as the activation of glia. AAVs possess a plethora of 

customizable features that include promoters, enhancers, 

inclusion of fluorescent tags, and serotype of viral capsid 

in which the construct is packaged. While the expression 

of a-syn using AAVs in rodents has undeniably expanded 

our understanding of the molecular pathology in PD and 

other a-synucleinopathies, the very same customizable 



 Huntington TE., et al                                                               AAV α-synuclein expression to model Parkinson’s disease 

Aging and Disease • Volume 12, Number 4, July 2021                                                                              1130 

 

features that make AAVs an attractive model, have also 

led to inconsistencies between various studies. 

Undoubtedly, future advancements in AAV quality 

control and improvements in vector transduction 

efficiencies will lead to a newer generation of AAVs 

rodent models that consistently mimic the key aspects of 

a-syn pathology in PD patients. Based on the emerging 

role of astrocytes during PD pathogenesis, an exciting 

new direction in PD research would be to apply AAVs as 

a tool to specifically understand the role of astrocytes in 

propagating a-syn pathology. We envision that lessons 

learned from two-decades of experiments utilizing AAV-

a-syn to model PD in rodents will enable us to apply this 

knowledge towards understanding the critical role of 

astrocytes in propagating a-syn pathology during PD.   
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