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Abstract
Periodontitis is a chronic inflammatory disease leading to progressive connective tissue degradation and loss of the tooth-
supporting bone. Clinical and experimental studies suggest that hepatocyte growth factor (HGF) is involved in the dysregu-
lated fibroblast–epithelial cell interactions in periodontitis. The aim of this study was to explore effects of HGF to impact 
fibroblast-induced collagen degradation. A patient-derived experimental cell culture model of periodontitis was applied. 
Primary human epithelial cells and fibroblasts isolated from periodontitis-affected gingiva were co-cultured in a three-
dimensional collagen gel. The effects of HGF neutralizing antibody on collagen gel degradation were tested and transcriptome 
analyses were performed. HGF neutralizing antibody attenuated collagen degradation and elicited expression changes of 
genes related to extracellular matrix (ECM) and cell adhesion, indicating that HGF signaling inhibition leads to extensive 
impact on cell–cell and cell–ECM interactions. Our study highlights a potential role of HGF in periodontitis. Antagonizing 
HGF signaling by a neutralizing antibody may represent a novel approach for periodontitis treatment.
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Introduction

Periodontitis is a chronic inflammatory process associated 
with loss of the tooth-supporting tissue [1, 2]. Dysbiosis of 
the oral microbiome [3–6] and host responses influenced by 
many factors are involved in the pathogenesis of periodon-
titis [7–11]. Further, presence of systemic diseases [12, 13] 
and gene polymorphisms [14–16] are reportedly correlated 
with the risk for periodontitis. Degradation of extracellular 
matrix (ECM) within the gingival connective tissue located 
between tooth and alveolar bone is the driving force in the 
pathological process of periodontitis [9, 17–20].

Activated fibroblasts are known to produce ECM compo-
nents as well as proteolytic enzymes, thereby contributing 
to ECM remodeling and degradation [18, 21, 22]. Previ-
ously, we have isolated periodontitis-associated fibroblasts 
(PAFs) from the gingiva of periodontitis affected patients. 
These PAFs demonstrated a higher capacity of collagen deg-
radation compared to normal gingival fibroblast and were 
characterized by a distinct gene expression profile [8, 9, 18]. 
To develop an experimental model of periodontitis, primary 
cultured gingival epithelial cells and PAFs were co-cultured 
in collagen gels, which appears to recapitulate epithelial 
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cell–fibroblast interactions in the gingival connective tissue. 
In a series of previous reports, we have demonstrated that 
PAFs display a remarkably higher capacity of ECM degrada-
tion compared to normal fibroblasts [9, 18].

A number of cytokines and growth factors have been 
reported to participate in the pathological process of peri-
odontitis. Previous studies demonstrated that hepatocyte 
growth factor (HGF) is secreted by gingival fibroblasts 
and is abundant in gingival crevicular fluid (GCF) of peri-
odontitis patients, indicating its clinical relevance [23, 24]. 
Of importance, HGF levels were found to correlate with 
established predictors of periodontitis such as probing depth 
(PD), gingival index (GI), bleeding on probing (BOP), and 
bone resorption [24–27].

HGF represents a paracrine growth factor capable of 
enhancing cell motility and survival [28], and is implicated 
in the wound healing process [29]. Its cognate receptor, 
MET, is expressed in epithelial cells but not in mesenchymal 
cells or fibroblasts. HGF is significantly higher in both GCF 
and saliva from periodontitis patients compared to healthy 
individuals [23], potentially correlating with disease sever-
ity. Furthermore, Nagaraja et al. demonstrated that HGF lev-
els in GCF decline after non-surgical periodontal therapy 
[24]. Thus, HGF levels in GCF might serve as both a com-
panion diagnostic tool and a surrogate marker for disease 
progression or therapeutic response. Interestingly, upregula-
tion of HGF is also known in cancer-associated fibroblasts 
that demonstrate tumorigenic properties [30, 31]. Given that 
PAFs constitute a major source of HGF in periodontitis, 
HGF may represent a hallmark of pathologically activated 
or disease-associated fibroblasts.

In our previous report, we identified 22 genes upregulated 
in PAFs-containing collagen gels through comprehensive 
gene expression profiling [8, 9, 18]. Among them, HGF 
showed clearly higher expression that was validated by quan-
titative PCR analysis [8, 9, 18]. Here, we sought to address 
whether HGF might serve as a therapeutic target utilizing a 
state-of-the art in vitro co-culture system as an experimental 
model of periodontitis. In this unique model, we use primary 
human gingival epithelial cells and primary fibroblasts from 
periodontitis affected patients. We show that targeting HGF 
by a neutralizing antibody alleviates collagen gel degrada-
tion. Our data might pave the way for HGF antagonism as a 
novel therapeutic approach against periodontitis.

Materials and methods

Cell culture

Gingival epithelial cells and fibroblasts were isolated from 
gingival tissues of periodontitis patients as described previ-
ously [8]. Briefly, excised gingival tissue was cut into small 

pieces and placed into 6-well plates. Gingival fibroblast 
populations were established from each well, which was 
pooled thereafter to one population. Cells were maintained 
in α-minimum essential medium (α-MEM, Wako, Osaka, 
Japan) supplemented with 10% fetal bovine serum (FBS, 
Hyclone, Logan, UT, USA) and 1% penicillin/streptomy-
cin/neomycin. Gingival epithelial cells were maintained in 
 EpiLife® medium with calcium with S7 supplement (Thermo 
Fisher Scientific, Waltham, MA, USA), and grown in type I 
collagen-coated flasks (Sumitomo Bakelite, Tokyo, Japan). 
For the subsequent experiments cell cultures between the 7th 
and 15th passages were used.

The information of patients and donors for the experi-
ments are indicated in Supplementary Table 1. The obtained 
samples are not matched to the disease grade of periodonti-
tis and came from different patients. Gingival tissues were 
obtained during periodontal surgery at Nihon University 
School of Dentistry, Dental Hospital, and at the Depart-
ment of Periodontics, Dental Hospital of Tokyo Medical and 
Dental University (TMDU). The protocol was approved by 
the Ethics Committee of Ohu University, Nihon University 
School of Dentistry, and the Faculty of Dentistry, TMDU. 
All patients gave written informed consent. The work has 
been carried out in accordance with the Code of Ethics of 
the World Medical Association (Declaration of Helsinki).

Collagen gel co‑culture assay

Three-dimensional (3D) co-culture of gingival epithelial cells 
and PAFs as an experimental model of periodontitis was car-
ried out as described previously [8, 9, 32]. Briefly, collagen 
gels were prepared by mixing 0.5 mL of fibroblast cell sus-
pension (2.5 ×  105 cells) in FBS, 2.3 mL of type I collagen 
(Cellmatrix type I-A; Nitta Gelatin Inc., Osaka, Japan), 670 µL 
of 5 × DMEM, and 330 µL of reconstitution buffer, follow-
ing the manufacturer’s recommendations. The mixed solution 
(3 mL) was placed into each well of a 6-well plate and allowed 
to gelatinize in an incubator at 37 °C. Subsequently, 2.5 ×  105 
gingival epithelial cells resuspended in 2 mL of  EpiLife® 
medium with Supplement S7 were seeded onto the surface 
of each gel. The gels were cultured overnight and separated 
from the edge of each well to generate a ‘floating culture’. 
The gels were then placed in the medium for 5 days and cul-
tured for additional 5 days at the air–liquid interface. Gels were 
fixed in neutral buffered formalin solution and embedded in 
paraffin. Vertical sections were stained with hematoxylin and 
eosin. Collagen gels were treated with the indicated concen-
trations of recombinant HGF (#100-39, Peprotech, NJ, USA) 
or HGF neutralizing antibody (AB-294-NA, R&D Systems, 
Minneapolis, MN, USA). As the control for the polyclonal 
HGF neutralizing antibody, we used normal goat polyclonal 
IgG at the same concentration (AB-108-C, R&D Systems). 
The culture experiments were performed under the assumption 
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that the final size of cultured gels reflect the degree of collagen 
degradation.

Collagen assay

Gels were weighed and placed into microtubes, and distilled 
water was added to a total weight of 1.0 g. Thereafter, the 
tubes were heated at 80 °C for 1 h to dissolve the collagen. 
Each supernatant was used to measure collagen contents by 
Sircol™ Soluble Collagen Assay (Biocolor, Carrickfergus, 
County Antrim, UK), and the total amount of remaining col-
lagen in the gel was calculated according to the manufacturer’s 
protocol [8, 9].

Microarray analysis

Total RNA from the collagen gels after treatment with the 
HGF neutralizing antibody or the control goat IgG was iso-
lated using RNeasy Mini Kit (Qiagen, Hilden, Germany). 
RNA samples were routinely monitored for RNA integrity on 
Bioanalyzer 2100 (Agilent Technologies, Wilmington, DE, 
USA). Gene expression profiles were analyzed using micro-
array technique (Affymetrix GeneChip™, Human Genome 
U133 Plus 2.0 Array, Santa Clara, CA, USA).

Genes that showed fold change of normalized values ≤ 0.67 
or ≥ 1.5 in three independent cell culture experiments were 
used for comparative analyses.

Quantitative real‑time PCR

Quantitative real-time PCR was carried out for validating 
gene expression profiles detected in microarray analyses. 
Total RNA was extracted using the Trizol reagent (Invitrogen, 
Thermo Fisher Scientific, Waltham, MA, USA). The cDNA 
was synthesized using PrimerScript RT reagent kit (Takara, 
Shiga, Japan) following the manufacturer’s protocol. Quanti-
fication of mRNA levels was performed using SYBR Green 
(SYBR Premix Ex Taq II, Takara), and a PCR thermal cycler 
(TP900, Takara). Relative mRNA expression was calculated 
using the ΔΔCt method. The quantitative expression was nor-
malized to the transcript levels of glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH). The primer pairs used are outlined 
in Supplementary Table 2.

Descriptive statistical analysis

Student’s t test for paired samples was performed. P val-
ues < 0.05 were considered as statistically significant.

Results

An in vitro experimental model of human periodontitis 
was applied, where gingival epithelial cells and PAFs were 
co-cultured in collagen gels (Supplementary Fig. 1A). 
Using this model, we have previously demonstrated that 
PAFs are highly capable of collagen degradation in clear 
contrast to control fibroblasts [8, 9, 18]. The cross section 
of the collagen gel after the culture period of total 10 days 
illustrates the changes in collagen gel shape and cellular 
components in the superficial epithelial layer (Supplemen-
tary Fig. 1B).

Previously, we have also provided primary cultured gin-
gival epithelial cells and fibroblasts for the FANTOM5 
project [33], which enabled us to identify transcription 
start sites across the whole genome using the Cap Analy-
sis of Gene Expression sequencing technology [34]. We 
utilized this dataset and compared expression levels of 
HGF and its cognate receptor, MET, in these cell types. 
The analysis revealed MET being predominantly expressed 
in gingival epithelial cells, whereas HGF appeared to be 
exclusively expressed in gingival fibroblasts (Table 1).

We hypothesized that HGF signaling-mediated cellu-
lar interactions might impact on periodontitis progression. 
First, gingival epithelial cells and PAFs were co-cultured 
in collagen gels and treated with recombinant HGF. Exog-
enous HGF did not have a substantial impact on collagen 
gel degradation (Fig. 1A). Next, gingival epithelial cells 
and PAFs co-cultured in collagen gels were treated with 
different concentrations of HGF neutralizing antibody and 
collagen gel degradation was monitored. The HGF neutral-
izing antibody attenuated collagen gel degradation in a 
concentration-dependent manner (Fig. 1B). The residual 
collagen gel content was significantly higher under the 
HGF neutralizing antibody treatment (Fig. 1C).

Further histological observations of 3D collagen gel 
cultures revealed reduced number of vacuoles surrounding 
fibroblasts under the HGF neutralizing antibody treatment 
(Fig. 2).

The percentages of fibroblasts associated with apparent 
vacuoles were 24.2 ± 8.2% (average ± SD) in the control 

Table 1  CAGE tag counts of transcription start sites (p1 promoters) 
annotated to HGF and MET (average ± SD)

CAGE data were compared between gingival epithelial cells and 
fibroblasts

HGF MET

Gingival fibroblasts 
(n = 6)

91.1 ± 46.4 21.8 ± 38.0

Gingival epithelial cells 
(n = 3)

0 ± 0 119.1 ± 39.6
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group and 8.8 ± 6.2% in the HGF neutralizing antibody 
group.

Finally, we performed gene expression profiling of 3D 
collagen gel cultures that contained gingival epithelial cells 
and PAFs in the presence or absence of the HGF neutralizing 

antibody. Three preparations of independently isolated co-
cultures were monitored for concordant gene upregulation 
or downregulation. Using thresholds of fold change of nor-
malized values ≤ 0.67 or ≥ 1.5, we identified 11 gene that 
were downregulated and 23 transcripts that were upregu-
lated in response to anti-HGF treatment (Fig. 3A, B). These 
transcripts corresponded to 10 and 21 annotated genes, 
respectively, and the summary of these genes and general 
descriptions of their specific functions are depicted in Sup-
plementary Table 3A and 3B.

We confirmed the expression changes indicated by the 
microarray experiments by real-time PCR for the genes 
BOC, LAMA3 and WFDC5 (Fig. 4).

Taken together with our observation that antagonizing 
HGF results in alleviated collagen degradation in 3D co-
cultures, these data implicated that HGF signaling drives 
expression changes in a subset of genes that are involved in 
ECM turnover underlying the pathogenesis of periodontitis.

Discussion

Effective treatment of periodontitis represents a major clini-
cal challenge. This is at least partially due to the fact that the 
molecular and cellular pathogenesis of periodontitis is only 
fragmentarily understood. In our previous studies, we have 
demonstrated that PAFs constitute a key component in the 
pathogenesis of periodontitis. This is based on the observa-
tions that PAFs are highly capable of matrix degradation in 
an in vitro experimental model of periodontitis, which is 
absent when normal fibroblasts are used [8, 9, 18]. Thus, 
targeting differentially regulated soluble factors that are 
associated with tissue destruction can be a novel therapeutic 
strategy against periodontitis. Here, we show that antagoniz-
ing HGF via an antibody-based approach resulted in reduced 
collagen degradation of 3D co-cultures, suggesting that HGF 
pathway inhibition contains valuable therapeutic potential.

Extensive experimental and clinical data provide several 
lines of evidence that HGF and its cognate receptor MET 
are crucial components of various diseases including organ 
fibrosis and tumor progression [35]. In periodontitis, a posi-
tive association has been described between concentrations 
of HGF in saliva and alveolar bone loss [36]. We and oth-
ers further showed that HGF concentration is upregulated 
in GCF of periodontitis patients [24, 26, 27, 37]. We also 
demonstrated that PAFs are characterized by enhanced 
HGF gene expression [8, 9, 18], suggesting PAFs as a major 
source of HGF production in periodontitis.

Here, we further addressed HGF as a potential molecu-
lar target in an experimental model of periodontitis using a 
unique human primary cells and 3D co-culture system. In 
contrast to many other experimental in vitro models [38, 
39], we utilize both, epithelial and mesenchymal primary 

Fig. 1  Effects of recombinant HGF or HGF neutralizing antibody on 
collagen gel degradation. a Effect of HGF (25 or 50 ng/mL) on colla-
gen gel degradation. Representative gels are shown. Scale bar: 1 mm. 
b Effect of HGF neutralizing antibody on collagen gel degradation. 
Three-dimensional co-culture gels were treated with control IgG 
(normal goat 20 µg/mL) or different concentrations of HGF neutraliz-
ing antibody (2, 10 and 20 µg/mL). Representative gels are shown. c 
Three-dimensional co-culture gels containing gingival epithelial cells 
and PAFs were assessed with regard to collagen gel degradation. The 
residual collagen gel content was quantified (n = 6). HGF neutralizing 
antibody was used at the concentration of 10 µg/mL
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cells isolated from patient tissue. As a functional and objec-
tive read-out, collagen gel degradation was assessed. The 
finding that PAFs led to the typical collagen degradation, 
in contrast to normal fibroblasts, indicated that our 3D co-
culture system seemed to recapitulate cellular interactions 
between the epithelium and fibroblasts in the gingival tissue 
of periodontitis.

An antibody-based anti-HGF approach resulted in 
an inhibition of collagen gel degradation in this in vitro 
model, suggesting HGF signaling being crucially involved 
in ECM turnover, and antagonism of HGF representing a 
valid treatment approach to ameliorate periodontitis. Fur-
thermore, vacuoles in 3D co-cultures were reduced upon 
HGF neutralizing antibody treatment, indicating a reduc-
tion of para-cellular matrix degradation. Given the low 
expression of MET in fibroblasts, the effect of HGF block-
ing is likely mediated by epithelial cells that participate in 

fibroblast activation. One of these factors can be TGF-β 
that is implicated in stroma remodeling in inflammation, 
wound healing and tumorigenesis. Previously we demon-
strated that TGF-β type I receptor kinase inhibitor (ALK5 
inhibitor) effectively inhibits collagen gel degradation [8], 
and a similar reduction of perifibroblast vacuolization was 
observed in this study. Thus, it is possible that the TGF-β 
pathway is also functionally involved in the development 
of periodontitis and is connected to HGF signaling.

We further addressed gene expression changes in 3D 
co-cultures after HGF neutralizing antibody treatment. A 
variety of genes was significantly upregulated or down-
regulated upon treatment. Gene Ontology analysis did not 
reveal any significant biological motives, most likely due 
to the small number of genes and rigorous adjustment for 
multiple testing.

Fig. 2  Impact of HGF neutralizing antibody on vacuolization in 
collagen gels. Three-dimensional co-culture gels containing PAFs 
derived from periodontitis patient #5 and #7 were treated with con-
trol IgG or HGF neutralizing antibody (10  µg/mL). Collagen gels 
were paraffin-embedded and sections were stained with hematoxy-

lin–eosin. Treatment with HGF neutralizing antibody resulted in a 
reduction of vacuole numbers. Arrows point to vacuoles surrounding 
PAFs observed in the control gel. The numbers of vacuoles decreased 
under the HGF neutralizing antibody treatment (10  µg/mL). Scale 
bar: 50 μm
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However, some of the genes may deserve attention since 
they may mediate important effects of anti-HGF treatment. 
Among the upregulated genes, we identified CYR61/CCN1, 
interacting with several integrins and thus cell–ECM inter-
actions [40], BAX, involved in apoptosis regulation [41], 
and BOC, a member of the immunoglobulin/fibronectin type 
III repeat family and thus impacting on cell–cell interac-
tions [42]. With regard to downregulated genes, we identi-
fied ANTXR2 and LAMA3, both being implicated in ECM 
interactions [43, 44]. Further, leukotriene B4 receptor was 
also downregulated, suggesting a potential modification of 
the inflammatory status [45, 46]. However, it needs to be 
stressed that the definite roles of the identified genes, being 

either down- or upregulated, remain to be determined with 
regard to their specific impact on periodontitis remodeling.

A limitation of our study lies in the fact that our experi-
mental model reflects only a few aspects of the complex 
interaction of different cell types in periodontitis and pre-
sents therefore a relatively reductive approach. It is likely 
that several signal pathways are involved in the reciprocal 
interactions between gingival epithelial cells and fibroblasts, 
and HGF might represent only one of many important sig-
nals. Also not included in our model are inflammatory cells 
that give raise to heterogeneous context dependent signals. 
In addition, periodontitis has many clinical phenotypes, but 
we did not differentiate the disease status of periodontitis 

Fig. 3  Gene expression profiling 
of collagen gels after anti-HGF 
treatment. RNA was extracted 
from collagen gel co-cultures 
of PAFs and gingival epithe-
lial cells treated with HGF 
neutralizing antibody treatment 
(10 µg/mL) or control IgG. 
Venn diagram illustrates the a 
downregulated or b upregulated 
transcripts in three independent 
collagen gels containing PAFs 
derived from three individuals 
(periodontitis patient #6, #8, 
and #9). Numbers of transcripts 
are indicated. Annotated genes 
that were concordant in three 
independent experiments are 
highlighted
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patients in this study. In addition, the tissue procurement 
may imply a bias, because at the time of operation patient 
hygiene is usually improved. Thus, phenotypic differences in 
relationship to the severity of periodontitis and the inflam-
mation status would be informative in future studies. Fur-
thermore, analyzing different time points following HGF 
signaling inhibition might reveal HGF-associated pheno-
typic and molecular switch of fibroblasts in more detail.

In summary, our data point towards the relevance of HGF 
in periodontitis-associated tissue remodeling and suggest the 
use of HGF neutralizing antibody treatment as a novel thera-
peutic approach.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10266- 021- 00625-0.
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