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Abstract1

Insufficient testing capacity has been a critical bottleneck in the worldwide fight against2

COVID-19. Optimizing the deployment of limited testing resources has therefore emerged as3

a keystone problem in pandemic response planning. Here, we use a modified SEIR model4

to optimize testing strategies under a constraint of limited testing capacity. We define pre-5

symptomatic, asymptomatic, and symptomatic infected classes, and assume that positively6

tested individuals are immediately moved into quarantine. We further define two types of7

testing. Clinical testing focuses only on the symptomatic class. Non-clinical testing detects8

pre- and asymptomatic individuals from the general population, and a concentration parameter9

governs the degree to which such testing can be focused on high infection risk individuals. We10

then solve for the optimal mix of clinical and non-clinical testing as a function of both testing11

capacity and the concentration parameter. We find that purely clinical testing is optimal at12

very low testing capacities, supporting early guidance to ration tests for the sickest patients.13

Additionally, we find that a mix of clinical and non-clinical testing becomes optimal as testing14

capacity increases. At high but empirically observed testing capacities, a mix of clinical testing15

and non-clinical testing, even if extremely unfocused, becomes optimal. We further highlight16

the advantages of early implementation of testing programs, and of combining optimized testing17

with contact reduction interventions such as lockdowns, social distancing, and masking.18

Keywords: COVID-19; Epidemiology; Optimal control; SARS-CoV-2; SEIR Model19

Introduction20

The COVID-19 pandemic caught the world off-guard and continues to result in devastating conse-21

quences to life, health, and national economies. A key factor hampering global control efforts has22

been the unanticipated shortage of testing capacity. While testing was clearly problematic early in23

the pandemic, it remains a critical bottleneck in many parts of the world despite massive efforts24

to ramp up capacity (Hasell et al., 2020). Extensive testing provides the empirical basis on which25

to build a robust, scientifically based response strategy (Grassly et al., 2020). Insufficient testing26

leaves public health authorities with little information on how to coordinate efforts to effectively27
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combat an emerging epidemic. For example, Li et al. (2020) estimated that, early in the COVID-28

19 outbreak in China, 86% of infections went undocumented, and these unnoticed cases fueled29

the subsequent global expansion of the disease. Similarly, undetected introductions of the virus30

coupled with undocumented community transmission facilitated the rapid spread of COVID-19 in31

New York City (Gonzalez-Reiche et al., 2020). Sustained high-rate testing also plays a crucial32

role in strategies for safely moving beyond costly and crippling lockdowns (Grassly et al., 2020).33

Specifically, quick identification and isolation of new infection clusters is critical for managing a34

disease like COVID-19 before a vaccine is widely available.35

While other aspects of epidemic response such as vaccine distirbution have been studied from a36

resource allocation perspective (Zaric and Brandeau, 2001; Hansen and Day, 2011; Emanuel et al.,37

2020), the optimal allocation of limited testing capacity has, so far, received little attention (Grassly38

et al., 2020). The limited work that has been done on this topic has emerged recently, with some39

efforts focusing on using pooled testing as a simple means to stretch limited testing capacity as far40

as possible (Aragón-Caqueo et al., 2020; de Wolff et al., 2020; Ghosh et al., 2020; Gollier and Goss-41

ner, 2020; Jonnerby et al., 2020), while others consider stratified testing strategies focused on high42

risk groups such as health care workers (Cleevely et al., 2020; Grassly et al., 2020). Mathematical43

optimization has been applied to the economics of lockdown and quarantine policies (Aldila et al.,44

2020; Alvarez et al., 2020; Choi and Shim, 2021; Jones et al., 2020; Khatua et al., 2020; Piguillem45

and Shi, 2020), and to parameter estimation using testing data (Chatzimanolakis et al., 2020), but46

has not yet been applied comprehensively to resource allocation problems under testing constraints.47

Faced with insufficient testing capacity, public health agencies advise the prioritization of test-48

ing effort via qualitative considerations (Centers for Disease Control and Prevention, 2020). These49

guidelines base resource allocation decisions on total testing capacity, quality of information gained50

via contact tracing, current outbreak stage, and other characteristics specific to individual com-51

munities (Centers for Disease Control and Prevention, 2020). The proportion of limited testing52

resources reserved for high priority cases (e.g., highly symptomatic and vulnerable patients, essen-53

tial healthcare workers) depends in part on the overall degree of sporadic versus clustered versus54

community-wide transmission (Robert Koch Institute, 2020; World Health Organization, 2020b).55

While these recommendations provide useful qualitative guidance, quantitative determination of56

optimal allocation strategies under limited testing is lacking despite its potential to increase testing57
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efficiency.58

Here, we address the optimal allocation of limited testing capacity with a COVID-19 specific59

SEIR ordinary differential equation compartmental model that features constrained testing and60

quarantine. We consider the allocation of testing and health care resources between two broad61

strategies (Centers for Disease Control and Prevention, 2020; Robert Koch Institute, 2020; World62

Health Organization, 2020b): 1) clinical testing focused on moderate to severely symptomatic63

cases, and 2) non-clinical testing designed to detect mildly symptomatic, pre-symptomatic, or fully64

asymptomatic cases. We further explore how the degree to which non-clinical testing resources65

can be concentrated on infected individuals (through contact tracing efforts, for example) affects66

the optimal balance between strategies. For both strategies, we assume that individuals that test67

positive are immediately moved into quarantine. We first quantify the extent to which an out-68

break can be suppressed via optimal testing and quarantine as a function of both testing capacity69

and non-clinical concentration level. Specifically, we identify strategies that minimize the peak of70

the infection curve (i.e., “flatten the curve”). We then consider how positive factors like social71

distancing measures, and detrimental factors such as delays in testing onset affect optimal testing72

strategies and outbreak controllability. Throughout, we focus our analyses on empirically sup-73

ported parameter values including realistic testing rates. While many existing COVID-19 SIR-like74

compartmental models explore the effects of testing with forms of isolation like quarantine or hospi-75

talization, the majority of these studies assume simple linear equations for the rates at which tests76

are administered and individuals are isolated (Adhikari et al., 2021; Ahmed et al., 2021; Amaku77

et al., 2021; Choi and Shim, 2021; Dwomoh et al., 2021; Hussain et al., 2021; Ngonghala et al.,78

2020; Rong et al., 2020; Saldaña et al., 2020; Sturniolo et al., 2021; Tuite et al., 2020; Verma et al.,79

2020; Youssef et al., 2021). We show (see Methods: Testing model) that linear models can not80

fully describe highly limited testing capacity scenarios, and we propose a novel testing model which81

flexible accounts for resource-rich and resource-limited settings.82
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Methods83

Model development84

We develop a modified SEIR model to determine how limits on the number of tests administered per85

day influence disease controllability, and to determine how limited resources can be best distributed86

among compartments in the modeled population. Our study was motivated by the COVID-1987

crisis, both in terms of model structure, and in terms of the pressing need to make the most of88

limited testing capacity. Following other COVID-19 models (Contreras et al., 2020; Hellewell et al.,89

2020; Kretzschmar et al., 2020; Liu et al., 2020b; Piasecki et al., 2020; Rong et al., 2020), we90

assume two separate infectious categories based on observable symptoms. One, the “symptomatic91

class,” collects moderate to severely symptomatic cases for which one would typically seek clinical92

treatment, and the other, the “asymptomatic class,” collects all remaining cases, which may be93

either properly asymptomatic, or may simply be mild enough that the infected individual does94

not consider themselves sick or seek clinical treatment. We first develop a baseline disease model95

without interventions, and then incorporate testing and quarantine control strategies.96

Baseline SEIR model97

We assume a homogeneously mixed population divided into S susceptible, E exposed, A asymp-98

tomatic and infectious, Y symptomatic and infectious, and R recovered classes. Newly infected99

individuals first enter the exposed class where they are unable to transmit the disease, and after100

a latent period, will enter the symptomatic or asymptomatic infectious class. For clarity, we take101

“asymptomatic” to include individuals who will show only mild to no symptoms over the course102

of the disease. The portion of individuals in the exposed class who eventually transition to the103

symptomatic class are considered “pre-symptomatic”. Although some evidence suggests that pre-104

symptomatic individuals can begin transmitting the disease one to several days before showing105

symptoms (Furukawa et al., 2020; He et al., 2020; Walsh et al., 2020), for simplicity, we assume106

that only A and Y class individuals are infectious. We further assume no host births or deaths,107

4



and that recovered hosts obtain permanent immunity. The model equations are as follows:108

Ṡ(t) = −λA β
A(t)

Z
S(t)− λY β

Y (t)

Z
S(t) (1a)

Ė(t) = λA β
A(t)

Z
S(t) + λY β

Y (t)

Z
S(t)− εE(t) (1b)

Ȧ(t) = fA εE(t)− rA(t) (1c)

Ẏ (t) = fY εE(t)− rY (t) (1d)

Ṙ(t) = rA(t) + rY (t). (1e)

Here and throughout this paper, over dots denote derivatives with respect to time, and we mea-109

sure time in units of days. The meaning of each model parameter, and the numerical values used,110

are given in Table 1, and a schematic summarizing the flow of infectives through our baseline model111

is given Fig. 1. We note that while the recovery time 1/r and incubation period 1/ε can be consis-112

tently estimated from data, some parameters in our model are not accurately known. Specifically,113

the fractions of asymptomatic and symptomatic infectious populations, fA and fY , respectively,114

are highly uncertain parameters, as estimates based on both modeling and clinical data place the115

truly asymptomatic population anywhere from 1% to 80% of all infections (Furukawa et al., 2020;116

Walsh et al., 2020; Widders et al., 2020). Focusing on symptomatic individuals, the fractions that117

are mildly symptomatic versus moderately to severely symptomatic are also uncertain, although118

some evidence suggests the majority of cases are mild (Liu et al., 2020a). Based on these observa-119

tions, we choose fA = 0.75 and fY = 0.25 as baseline values. Studies quantifying viral loads via120

RT-PCR tests and viral culture studies generally show that asymptomatic individuals are as, or121

less, infectious than symptomatic individuals (Walsh et al., 2020; Widders et al., 2020), and that122

more severely symptomatic cases can be associated with higher viral loads (Liu et al., 2020a; Walsh123

et al., 2020; Widders et al., 2020). We therefore assume that the symptomatic transmission prob-124

ability, λY , is twice that of the asymptomatic transmission probability, λA. Finally, we choose the125

overall values of λA, λY , and the contact rate, β, to yield a basic reproduction number of R0 = 5.0126

absent of any testing or quarantine control (see the Appendix A for an analytic expression for R0).127

This R0 value falls within the ranges of values suggested by a number of studies (Jiang et al., 2020;128

Majumder and Mandl, 2020; Rong et al., 2020; Sanche et al., 2020), and may best represent the129
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transmissibility of the alpha variant, which is more infectious than the original COVID-19 strain but130

less infectious than the more recent delta variant (Hendaus and Jomha, 2021). Note that under our131

model parameters, in the absence of testing and quarantine, the symptomatic and asymptomatic132

contributions to R0 are 2.0 and 3.0, respectively.

Parameter Name Meaning Value Refs

β Contact rate Average number of con-
tacts per individual per
unit time

4.0∗ Jiang et al. (2020);
Majumder and
Mandl (2020); Rong
et al. (2020); Sanche
et al. (2020)

λA Asymptomatic
transmission
probability

Probability of dis-
ease transmission
per susceptible-
symptomatic contact

0.125∗ Jiang et al. (2020);
Majumder and
Mandl (2020); Rong
et al. (2020); Sanche
et al. (2020)

λY Symptomatic
transmission
probability

Probability of dis-
ease transmission
per susceptible-
asymptomatic contact

2λ∗A Liu et al. (2020a);
Walsh et al. (2020);
Widders et al. (2020)

1/ε Latent period
or incubation
period

Time between transmis-
sion and onset of infec-
tiousness or symptoms

5 days Furukawa et al.
(2020); Hellewell
et al. (2020); He
et al. (2020); Lauer
et al. (2020); Rong
et al. (2020); Sanche
et al. (2020)

fA Asymptomatic
fraction

Fraction of infections
which remain mild or
asymptomatic

0.75∗ Furukawa et al.
(2020); Grassly et al.
(2020); Liu et al.
(2020a); Walsh et al.
(2020); Widders
et al. (2020)

fY Severely
symptomatic
fraction

Fraction of infections
which become severe
and symptomatic

1− f∗A -

1/r Infectious pe-
riod

Average time over
which infected indi-
viduals can actively
transmit the virus

8 days Walsh et al. (2020);
Widders et al. (2020)

Z Population
size

Total number of hosts
(assumed fixed)

50000 Assumed

Table 1: Model parameter definitions and baseline numerical values used. Values for highly uncer-
tain parameters based on the current literature for which we make an estimate are indicated with
an asterisk.
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Figure 1: Diagram indicating the flow of infectives in our baseline SEIR model (no testing or
quarantine control). Upon infection, susceptible individuals S move into the exposed class E where
they are neither symptomatic or infectious. A fraction fA of exposed individuals transition to
the asymptomatic infectious class A at rate ε, and a fraction fY transition to the symptomatic
infectious class Y at rate ε. Infectious individuals transition to the recovered class R at rate r.

133

Testing model134

To analyze testing and quarantine control strategies operating with testing capacity constraints,135

we construct a simple model that scales smoothly between extremes of abundant and severely136

constrained testing resources. This model is governed by the testing capacity, C, and the testing137

time, τ . The testing capacity C denotes the maximum achievable per capita testing rate assuming a138

fixed level of resources. This maximum testing rate represents the limitations of a finite health care139

infrastructure and finite testing supplies, and we take “increased resources” to mean an increased140

value of C. The testing time represents the average amount of time required for an individual141

be tested and obtain results, absent any backlogs or waiting times due to other patients. Time-142

consuming factors independent of the number of people needing to be tested determine the value143

of τ , for example, procrastination, travel time, and test processing times.144

Suppose that some sub-population P (t) of the total population Z is eligible to be tested at145

time t, and let Ṫ (t) denote the rate at which tests are administered and processed for results.146

We demand that our model for Ṫ (t) attain two limiting expressions representing “resource-limited”147
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and “testing time-limited” testing regimes as follows:148

Ṫ (t) ≈


CZ, P (t)/τ

CZ � 1 (resource-limited)

P (t)
τ , P (t)/τ

CZ � 1 (testing time-limited).

(2)

The testing time-limited regime represents a high resource availability scenario, where the total149

testing rate is limited only by the rate at which individuals arrive to be tested and the actual time150

required for a single test to produce results. Here, the number of tests administered and processed151

per unit time is simply the average processing rate for an individual test absent of patient backlogs,152

multiplied by the total patient load P (t). The resource-limited regime represents a low resource153

availability scenario, where the number of people needing to be tested far exceeds the maximum154

daily testing capacity. In this regime, tests are administered and processed at the maximum pos-155

sible rate CZ, independent of the excess patient load. To incorporate this limiting behavior into a156

testing model, we propose the following simple function for Ṫ (t):157

Ṫ (t) =
P (t)

τ + P (t)
CZ

. (3)

The above expression limits to the testing time-limited regime for small P (t), monotonically in-158

creases with P (t), and saturates to the resource-limited regime as P (t) approaches ∞. We justify159

this testing model based on the fact that it exhibits the correct limiting behavior, and that it160

incorporates the reasonable assumption that the average waiting time required to administer and161

process a single test increases linearly with the patient load P (t) (see Appendix A Eq. (10)).162

It is important to note that despite its frequent use in the literature, a simple linear testing163

rate model Ṫ (t) = γP (t), where γ represents a testing rate parameter, is insufficient for describing164

resource-limited scenarios. Under a linear model, even if γ is made to be very small in reflection of165

testing limitations, the rate at which tests are administered will always increase in proportion with166

the demand for testing, and this can not describe a resource-limited scenario where the maximum167

testing rate is capped at a fixed value independent of the testing demand. The linear model is168

in fact equivalent to our testing model in Eq. (3) under the testing time-limited regime shown in169

Eq. (2), which represents a resource-rich rather than resource-limited scenario.170
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We note further that the testing rate model in Eq. (3) can be extended to multiple sub-171

populations subject to distinct testing capacity constraints. Specifically, suppose two distinct sub-172

populations P1(t) and P2(t) are subject to two distinct testing policies with distinct resource pools173

limited by the capacities C1 and C2, respectively. In this scenario, the total rate at which tests are174

administered to the two populations is given by the following:175

Ṫ (t) =
P1(t)

τ + P1(t)
C1Z

+
P2(t)

τ + P2(t)
C2Z

. (4)

Disease model with resource allocation, testing, and quarantine176

We now utilize our testing model to incorporate testing and quarantine into our disease model. We177

assume that testing resources can be allocated between two control strategies, designated “clinical178

testing” and “non-clinical testing,” which are applied to individuals based the presence of observ-179

able symptoms. Clinical testing applies resources to the moderate to severely symptomatic class180

Y (t). This strategy represents saving resources for hospital and health care facilities to ensure181

adequate treatment of the most seriously ill individuals. Under a pure clinical testing strategy,182

individuals are only eligible to be tested if they show severe enough symptoms. Non-clinical testing183

applies resources to the exposed class E(t) and the asymptomatic class A(t), as well as to some184

portion of the uninfected population. This strategy represents a combination of large scale popu-185

lation monitoring programs, contact tracing and case investigation programs, and testing centers186

open to the general public. Population monitoring and contact tracing allow individuals unaware of187

their infection status to be identified, possibly before they become infectious, while testing centers188

facilitate testing for individuals who have not been reached by population monitoring or contact189

tracing efforts but who are concerned about potential recent COVID exposures. For both strategies,190

we assume perfectly accurate tests with no false positives or negatives, and we assume that testing191

can detect the disease at any point after infection to when the period of infectiousness ends. These192

assumptions are somewhat optimistic in comparison to real-world testing efficacies (Kucirka et al.,193

2020; Surkova et al., 2020), and our model thus represents a limit on what can be achieved.194

When an infected individual is tested in our model, they will instantly transition to the quaran-195

tine class Q(t), and will subsequently recover from the disease and transition to the recovered class.196

We also introduce the “unknown status” class U(t), which is the subset of recovered hosts who did197
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not receive any testing or quarantine, and are therefore unaware that they previously had COVID-198

19. We assume that recovered individuals who have previously been tested and quarantined will199

exclude themselves from non-clinical testing due to assumed immunity, and therefore assume that200

non-clinical testing covers the entirety of the E(t) and A(t) classes as well as a fraction (1 − η)201

of the S(t) + U(t) class, where η ∈ [0, 1] denotes the “concentration parameter.” This parame-202

ter provides a simplified means for representing the degree to which modes of non-clinical testing203

in aggregate are able to concentrate testing resources on infected individuals. Different η values204

are taken to represent different combinations of non-clinical resources jurisdictions may devote to205

large scale monitoring, contact tracing, and public testing centers, as well the varying efficacies206

of jurisdictions’ contact tracing efforts. Larger η values represent greater efficacies of non-clinical207

testing in the sense that a greater share of resources are used for quarantining the COVID-19208

positive population, and less are “wasted” obtaining negative results. The case η = 0 represents a209

strictly random large scale population monitoring program, where non- clinical testing resources210

are dispersed randomly among the entirety of the E(t) +A(t) + S(t) + U(t) population. Non-zero211

η values are obtained from the presence of any influence which compels test-positive rates to be212

greater than overall prevalence rates obtained by random population sampling, such the informa-213

tion gained through contact tracing allowing resources to be focused away from individuals less214

likely to be infected, or the fact that public testing centers may be naturally biased towards receiv-215

ing infected individuals. By “biased,” we mean that individuals with suspected recent exposures or216

extremely mild symptoms may be more inclined than others to seek testing on their own volition, so217

testing centers may see a higher proportion of infected individuals during an outbreak as compared218

to a random population monitoring program. The case η = 1 represents an impossibly perfect large219

scale contact tracing and case investigation program, where all non-clinical testing is focused on220

infected individuals, and testing centers have impossibly perfect omniscience of who is and is not221

infected. Although η = 1 and η = 0 are extreme cases, and η = 1 is not practically achievable, they222

place informative bounds on what can be accomplished according to our model.223

In Appendix B, we provide a concrete definition of η using our testing model. Here, we derive224

a mathematical expression which shows explicitly the manner in which η quantifies non-clinical225

testing efficacy in terms of non-clinical test-positivity rates and disease prevalence rates. Utilizing226

this expression, we estimate plausible η ranges for real-world testing programs by comparing test-227
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positivity rate data to estimated prevalence rate data. We find η ∈ [0.50, 0.95] to be a generous228

range of plausible values for testing programs which are not strictly random population sampling,229

although this is an admittedly crude estimate due to the unavailability of strictly non-clinical test-230

ing data, as well as the crude manner in which our model uses η represents the aggregate influence231

of multiple modes of non-clinical testing. To achieve values greater than η = 0.95, contact tracers232

would likely require foreknowledge on which secondary contacts of a confirmed case are more likely233

to be infected, for example, based on factors such as age or the presence of comorbidities. Finally,234

we acknowledge that our non-clinical testing model makes a simplification in assuming that testing235

is applied to the entirety of the E(t) +A(t), and this assumption may be overly generous and un-236

realistic regarding the reach of contact tracing and testing centers. In Appendix C, we show that237

relaxing this assumption does not qualitatively change our model or results, and that our central238

result in Fig. 4 remains entirely unchanged.239

Suppose that a fraction ρ of the testing capacity C is allocated to non-clinical testing, with the240

remainder devoted to clinical testing. The parameter ρ denotes the “strategy parameter,” and its241

value represents a government’s policy for balancing health care resources between reservation for242

more critical symptomatic cases and for use in contact tracing, testing centers, and surveillance243

programs. Our modified SEIR model including testing, quarantine, and resource allocation is as244

follows:245

Ṡ(t) = −λA β
A(t)

Z
S(t)− λY β

Y (t)

Z
S(t) (5a)

Ė(t) = λA β
A(t)

Z
S(t) + λY β

Y (t)

Z
S(t)− εE(t)− E(t)

τ +
E(t)+A(t)+

(
1−η
)(
S(t)+U(t)

)
ρCZ

(5b)

Ȧ(t) = fA εE(t)− rA(t)− A(t)

τ +
E(t)+A(t)+

(
1−η
)(
S(t)+U(t)

)
ρCZ

(5c)

Ẏ (t) = fY εE(t)− rY (t)− Y (t)

τ + Y (t)
(1−ρ)CZ

(5d)

Q̇(t) =
E(t) +A(t)

τ +
E(t)+A(t)+

(
1−η
)(
S(t)+U(t)

)
ρCZ

+
Y (t)

τ + Y (t)
(1−ρ)CZ

− rQ(t) (5e)

Ṙ(t) = rA(t) + rY (t) + rQ(t) (5f)

U̇(t) = rA(t) + rY (t). (5g)
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Note that as ρ → 1, Eq. (5d) reduces to Eq. (1d), and as ρ → 0, Eqs. (5b) and (5c) reduce246

to Eqs. (1b) and (1c), respectively. Additionaly, as C → 0, all of Eq. (5) reduces to Eq. (1).247

In Appendix A, we analyze a closed-form expression for R0 under our full SEIR + testing and248

quarantine model, and we provide expressions in Eqs. (11) and (12) for average testing waiting249

times for non-clinical and clinical patients, respectively.250

A summary of all control related parameters is given in Table 2 for reference, and a schematic251

summarizing the flow of infected individuals through our control model is given in Fig. 1. For all252

simulations, we assume the testing time τ = 1 day, which is reasonable for an effective testing and253

processing system lacking patient backlogs. For all other control parameters, we will consider a254

range of numerical values. Note that for notational simplicity in our model equations, we define255

C in units of tests per person per day, while actual testing capacities are often reported in units256

of tests per thousand people per day. To establish clear connections between our results and real-257

world testing limitations, we too report numerical values for testing capacity in units of tests per258

thousand per day. Thus, if we report a particular numerical value C1K in per thousand units, the259

corresponding value in per person units used for numerical simulations is given by C1K/1000.260

Parameter Name Meaning

C Testing capacity Maximum number of tests able to
be administered per day per capita

τ Testing time Average amount of time required for
an individual be tested (including
procrastination, travel time, pro-
cessing time, etc.) absent of back-
logs or delays due to other patients

ρ Strategy parameter Fraction of testing capacity used for
non-clinical testing

η Concentration parameter (1 − η) = fraction of COVID-19
negative population with unknown
infection history subjected to non-
clinical testing

Table 2: Testing and quarantine control parameter definitions

Flattening the epidemic peak as a control goal261

In accordance with the goal of “flattening the curve” typically communicated by government and262

health agencies (World Health Organization, 2020a), we simulate our model dynamics to determine263
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Figure 2: Diagram indicating the flow of infectives in our SEIR model with testing or quarantine
control. Blue arrows represent natural disease transitions, and red arrows represent transitions due
to testing and quarantine interventions. Exposed E and asymptomatic infectious A individuals
enter the quarantined class Q via non-clinical testing, while symptomatic infectious individuals Y
enter quarantine Q via clinical testing. Quarantined individuals are prevented from generating new
infections, and enter the recovered class R at the natural recover rate r. Infectious individuals who
do not enter the quarantined class also recover at rate r, and subsequently enter the subset U of
recovered individuals with unknown infection histories, signifying that they are unaware that they
were ever infected with COVID-19.

if and to what extent appropriately allocated resources can reduce the peak number of infections.264

First, we calculate optimal resource allocation strategies ρ for reducing the epidemic peak (defined265

as the maximum value of the sum of the E,A, and Y classes), assuming parameter values in Table266

1 and an initial outbreak of one exposed individual as our baseline case. Optimization is executed267

by numerically integrating the disease dynamics in Eq. (5) and utilizing the fmincon function in268

MatlabR2017a running the sqp algorithm with ρ = 0 as an initial guess. To account for the possi-269

bility of multiple local minima, we employ the parallel MultiStart algorithm from Matlab’s global270

optimization toolbox. Simulations assume specific values values for η and find optimal ρ and epi-271

demic peak values for all testing capacities in the range [0, 25] (in units of tests per thousand per272

day). In the Appendix A, we consider the alternative optimization goal of minimizing R0 under273
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our combined disease + testing model.274

To determine the effects of delays in testing/quarantine policy implementation, as well as the275

effects of social distancing efforts, we consider alternative scenarios of initial conditions and/or276

model parameters. We model implementation delays by considering initial conditions equal to the277

outbreak size after a given number days under our baseline scenario with no testing or quarantine278

controls. In the case of a 30 day delay, for example, the alternative initial condition is given by279

(S(0), E(0), A(0), Y (0), R(0)) = (49727, 134, 63, 21, 55), which yields 218 initially infected individ-280

uals. To model the effects of social distancing, we reduce β to a given fraction of its baseline value.281

Additionally, we consider the effects of social distancing and implementation delays together. To282

evaluate the effects of alternative scenarios on optimal control policies, we perform the same op-283

timization procedure as in our baseline case. We provide an in-depth examination of the specific284

conditions of a 30 day initial testing delay and a 50% reduction of β, and also consider a broader285

range of delays and β reductions in less detail.286

Results287

Optimal resource allocation strategies288

We find that, even under extremely limited testing capacities, the epidemic peak can be reduced289

to the initial outbreak size of 1 infected individual, provided that resources are optimally allocated290

and that non-clinical resources are sufficiently concentrated on the infected population (Fig. 3a).291

Reducing the epidemic peak to the initial outbreak size signifies that disease spread has been292

effectively suppressed. For a given η at low testing capacities, the optimal strategy is to devote all293

resources to clinical testing, and a minimum threshold capacity Cth(η) exists, above which optimal294

strategies call for a mix of clinical and non-clinical testing (Fig. 3b). As testing capacity increases295

above Cth(η) optimal strategies require an increasing share of resources to be devoted to non-296

clinical testing until a second threshold capacity C∗(η) is reached. The threshold C∗(η) represents297

the smallest testing capacity for which the outbreak can be suppressed to its initial size with a298

non-clinical concentration level η. For example, at concentration level η = 0.90, Cth(η) = 2.8 and299

C∗(η) = 15.4 tests per thousand per day (Fig. 3b). Table 3 summarizes the threshold capacity300

definitions and gives numerical values for various values of η.301
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For testing capacities C > C∗(η), the epidemic peak size will always be reduced to 1 as long302

as at least as much of the total capacity is devoted to clinical and non-clinical testing as is called303

for by the optimal strategy at C = C∗(η). As a result, optimal strategies are not unique when304

C > C∗(η). To see this non-uniqueness explicitly, consider a concentration level η, and let ρ∗(η)305

denote the optimal strategy parameter at the critical capacity C∗(η). At this critical capacity, the306

optimal action is to devote ρ∗(η)C∗(η) total resources to non-clinical testing and
(

1− ρ∗(η)
)
C∗(η)307

total resources to clinical testing, the result of which reduces the epidemic to the smallest possible308

value 1. If the testing capacity C exceeds the critical level C∗(η), one can always allocate at least309

ρ∗(η)C∗(η) and
(

1 − ρ∗(η)
)
C∗(η) total resources to non-clinical and clinical testing, respectively,310

thereby guaranteeing the epidemic peak to be reduced to 1. The allocation of the remaining311

C − C∗(η) resources will therefore be irrelevant, as adding resources to either strategy can not312

further decrease the peak size beyond the initial infection size. In other words, for a given η, if313

C > C∗(η), the epidemic peak will be reduced to 1 whenever ρ is selected such that ρC ≥ ρ∗(η)C∗(η)314

and
(

1 − ρ
)
C ≥

(
1 − ρ∗(η)

)
C∗(η). These inequalities imply that any ρ drawn from the interval315 [

ρ∗(η)C
∗(η)
C , ρ∗(η)C

∗(η)
C +

(
1− C∗(η)

C

)]
will reduce that epidemic peak to the minimum possible316

value, thus showing that the optimal strategy is not unique for C > C∗(η).317

For a given capacity C, there exists a critical non-clinical concentration value ηcrit(C), below318

which the optimal strategy is clinical testing only, and above which the optimal strategy is mixed319

(Fig. 3). From the definition of Cth(η) as the minimal capacity below which the optimal strategy320

is clinical testing only for a given η, we have the relation Cth(η0) = C0 if and only if ηcrit(C0) = η0,321

and numerical values for ηcrit(C) at specific C values can therefore be inferred from Table 3.322

The critical concentration value represents an important practical decision making threshold for323

public health officials operating under a potentially limited testing capacity C; if η is estimated324

to be below ηcrit(C), no testing resources should be diverted away from severely symptomatic325

individuals, while if η is estimated to be above ηcrit(C), important resource management decisions326

should be considered. In Fig. 4, we plot ηcrit as a function of testing capacity C. Here, the curve327

defined by ηcrit(C) divides the (C, η) plane into two regimes, one where the optimal strategy calls328

for clinical testing only, one where optimal strategies are a mix of clinical and non-clinical testing.329

In particular, we find that for C > 8.0 tests per thousand per day, ηcrit(C) = 0. Thus, for testing330

capacities above 8.0, it is always optimal to devote at least some resources to non-clinical testing,331
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even if the non-clinical testing is a simple randomized population sampling program lacking the332

efficacy of targeted contact tracing efforts.

Threshold
Capacity

Definition
Numerical Values (tests per thousand per day)

η = η = η = η = η = η = η = η =
0.00 0.50 0.85 0.90 0.95 0.97 0.999 1.00

Cth(η) Minimal capacity
beyond which
optimal strategies
are mixed

8.0 6.0 3.4 2.8 1.8 1.2 0.1 0.0

C∗(η) Minimal capacity
beyond which
optimal strategies
reduce epidemic
peaks to initial
infection levels

154.0 77.0 23.1 15.4 7.6 4.6 0.2 0.0

Table 3: Threshold testing capacity definitions and numerical values for the non-clinical concen-
tration levels η considered in Fig. 3. Note that critical concentration threshold levels ηcrit(C) can
be inferred from this table from the relationship Cth(η0) = C0 if and only if ηcrit(C0) = η0. For
example, the η = 0.90 column indicates that ηcrit(2.8) = 0.90.

333
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(a) Optimal epidemic peak sizes (b) Optimal testing policies

Figure 3: Optimally reduced peak infected population proportions at the epidemic peak and
corresponding optimal ρ values as a function of testing capacity. Note that the peak proportion
0.48 (corresponding to 23882 individuals) at zero testing capacity corresponds to the uncontrolled
disease dynamics without a testing or quarantine program. (a) Optimally reduced epidemic peak
proportions as a function of testing capacity for the values of non-clinical testing concentration level
η indicated in the legend. (b) Optimal resource allocation strategies ρ for reducing the epidemic
peak as a function of testing capacity. An optimal ρ curve which terminates at a testing capacity C∗

below than the maximally considered value 25.0 tests per thousand per day indicates a non-clinical
concentration level for which the optimal strategy is not unique at capacities above C∗, and for
which the optimal epidemic peak size can be reduced to the initial value of one infected at capacities
above C∗. Note that for the idealized omniscient limit η = 1, the optimal testing strategy is not
unique down to the smallest non-zero testing capacity considered 0.01 tests per thousand per day.
Note also that for η = 0.85, 0.90, 0.95, and 0.97, the optimal ρ values at C = C∗ appear to be close
to 1, but are not actually equal to 1.
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Figure 4: Optimal resource allocation strategy regimes for reducing the epidemic peak as a function
of testing capacity C and non-clinical testing concentration level η. For (C, η) values within the
shaded region, optimal strategies call for sharing resources between a mix of clinical and non-clinical
testing. Within the non-shaded region, optimal strategies call for all resources to be focused to
clinical testing only. The black curve indicates a critical concentration level threshold which for a
given testing capacity, determines whether the optimal strategy will be mixed or clinical testing
only.

Social distancing and delays in testing program implementation334

Unsurprisingly, delaying the implementation of a testing program by 30 days has negative impact335

on optimal peak reduction, with the delay being most detrimental at the lowest testing capacities336

(cf. Figs 5a and 5b). Specifically, a delay of this magnitude makes it impossible to reduce the epi-337

demic peak to its initial value, regardless of the non-clinical concentration level, within the range of338

testing capacities [0, 1.2] tests per thousand per day (Fig. 5a). This is not the case for immediate339

testing program implementation, where the peak can be reduced to its initial value at any non-zero340

testing capacity given a sufficient concentration level (Fig. 3). Reducing the peak to its initial value341

is an important control goal, as it is equivalent to the ability to force an immediate downturn in the342

infection curve upon implementation of testing and quarantine. These results emphasize the need343

for early implementation of a testing program at the beginning stages of a novel disease epidemic,344
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where resources may be extremely limited as health agencies adjust to the biology of the newly345

discovered infectious agent.346

Halving the contact rate, which simulates the influence of social distancing, has a strong effect347

on optimal policies and peak sizes (Figs. 5c and 5d). At zero testing capacity (which corresponds348

to the disease dynamics without testing and quarantine), the epidemic peak reaches a proportion of349

0.23, which is approximately half of the no testing peak proportion without social distancing. This350

finding is not surprising given that we model social distancing by reducing the contact rate β by351

half. Generally, social distancing expands the range of testing capacities over which the peak can352

be reduced to its initial value for a given non-clinical concentration level. Compare, for example,353

the η = 0.90 curve in Fig. 5c to that of Fig. 3a. We thus conclude that social distancing allows for354

more effective utilization of limited testing capacities under lower concentration levels. Note that355

in both the base and socially distanced parameter scenarios, we find no non-zero testing capacities356

for which the peak can not be suppressed to its initial size for η = 1, and therefore no range of357

testing capacities over which the optimal ρ is unique (Figs. 5d and 3b).358

Combining the two modulating factors shows that the beneficial effects of social distancing at359

low testing capacities can counteract some of the detrimental effects of delays in testing implemen-360

tation (Figs. 5e and 5d). Indeed, social distancing reduces the testing capacity range over which361

implementation delays render epidemic control impossible. This interval is given by [0, 0.4] tests362

per thousand per day with 50% contact reduction social distancing (Fig. 5e), as compared to [0, 1.2]363

without social distancing (Fig. 5a). For all delays between 1 day and the time of the uncontrolled364

epidemic peak, 62 days, larger degrees of contact reduction from social distancing yield larger re-365

ductions in the range of testing capacities for which the peak can not be reduced to its initial size366

in the idealized omniscient limit η = 1 (Fig. 6). Note that after day 62, the infection curve turns367

downward in the uncontrolled model, so for delays greater than 62 days in the controlled model,368

the epidemic peak value will always be equal to the initial value regardless of testing capacity, and369

peak reduction is not a useful control goal. Also note that in Fig. 6, the plotted curves begin to370

turn down around a delay of 50 days due to the fact that in the uncontrolled model, the slope of371

the epidemic curve begins decrease after about 50 days. This occurs because a smaller intervention372

force is required to cause an immediate downturn when the infection curve has already started373

moving towards a downturn on its own. In total, these results emphasize the importance of social374
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distancing during the early resource-limited stages of a novel disease epidemic.375
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(a) Optimal peak size: 30 day control delay (b) Optimal testing policies: 30 day control delay

(c) Optimal peak size: Social distancing (d) Optimal testing policies: Social distancing

(e) Optimal peak size: 30 day control delay with social
distancing

(f) Optimal testing policies: 30 day control delay with
social distancing

Figure 5: Effects of social distancing and control delays on optimal testing strategies for reducing
the epidemic peak. See Fig. 3 for a comparison to our baseline case and an explanation of the
meaning of each plot.
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Figure 6: Combined effects of social distancing and delays in testing implementation on epidemic
controllability. Threshold testing capacities are plotted as a function of implementation delay,
where different curves represent different social distancing strengths as percent reduction in the
contact rate. For a given implementation delay time, if testing capacity falls below the value
indicated by a curve in the figure, the epidemic will not be forced into a downturn upon control
implementation despite perfectly omniscient non-clinical testing, assuming the indicated level of
social distancing. Plotted curves terminate at a 62 day delay because the uncontrolled epidemic
curve peaks and begins to decrease on its own after day 62. Plotted curves begin to decrease after
about a 50 day delay because the slope of the uncontrolled epidemic curve begins to decrease after
about 50 days.
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Discussion376

The COVID-19 pandemic has exposed a critical lack of capacity for diagnostic testing in an emerg-377

ing pandemic. Using a modified SEIR model, we explored how distributing a limited amount of378

testing effort can affect the course of an epidemic when testing is directly coupled to quarantine.379

The model is tailored to the epidemiology of SARS-CoV-2, and divides infected individuals into380

symptomatic and non-symptomatic classes, with the latter class including individuals who have381

been exposed but are not yet infectious as well as those who are infectious but not strongly symp-382

tomatic. We further defined clinical testing as that focused exclusively on the symptomatic class,383

while non-clinical testing is distributed across the rest of the potentially infected population (S, E,384

A, and U). For a given testing capacity C, our model thus allows us to identify optimal testing385

policies in terms of the balance between clinical and non-clinical testing, modulated by the strategy386

parameter, ρ, and the non-clinical concentration parameter η. This latter parameter governs the387

extent to which non-clinical testing is concentrated on infected individuals. We further examined388

how optimal policies shift as a function of testing capacity.389

Focusing on the goal of maximally reducing the height of the infection curve (i.e., “flattening390

the curve”), we found that optimal testing is always able to supress the epidemic, provided that391

testing is implemented at the onset of disease transmission. Clinical testing strategies are gener-392

ally optimal at low testing capacities. Under some conditions when the testing rate is low, mixed393

strategies that include a small but finite amount of non-clinical testing are optimal, but only when394

there is nearly omniscient information with which to focus non-clinical testing on infected individ-395

uals. While perfectly omniscient non-clinical testing is unlikely to be achieved in reality, high η396

values are indeed empirically plausible provided that the non-clinical test postivity rate exceeds the397

prevelance rate in the general population (see Appendix B). These results therefore suggest that398

testing policies employed in many countries early in the pandemic, which strongly emphasized clin-399

ical testing with some additional testing effort aimed at the highest risk individuals (e.g., front-line400

healthcare workers), were reasonable. Furthermore, we demonstrated that exclusively non-clinical401

testing is never the optimal strategy. In other words, non-clinical testing plus a small but finite402

amount of clinical testing will always be better than a purely non-clinical strategy for epidemic403

peak reduction.404
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Since the onset of the pandemic, testing capacity has steadily increased throughout much of the405

world. Our results show that increased testing capacity brings with it a broader range of possibilities406

for optimizing testing. As testing rate increases, the amount of non-clinical testing concentration407

required for a mixed strategy to be optimal decreases, with all other factors held constant. At a408

testing capacity of 8 tests per day per 1000 people, a mixed strategy becomes optimal even when409

there is no ability or tendency for non-clinical resources to be focused away from uninfected individ-410

uals. This testing rate thus defines the minimal testing capacity for which a broad, non-targeted411

population monitoring program, in conjunction with clinical testing, is optimal. While on the412

higher end of the realistic range of testing rates, this level of testing has been exceeded in several413

countries, including Denmark, Iceland, Luxembourg, and United Arab Emirates.414

While we have chosen minimizing the height of the peak of the infection curve as a pragmatic415

and meaningful control goal, we also explored the common approach of minimizing R0 (see Ap-416

pendix A). A mathematical advantage of R0 minimization is that it leads to closed-form expressions417

for key threshold parameter values that delimit the conditions under which different testing strate-418

gies are optimal. However, we found that for our model, results between these two control goals419

often differed markedly. Specifically, we identified conditions under which testing policies resulting420

in R0 < 1 still yielded large outbreaks, which suggests limited utility of R0 as a control target.421

We hypothesize that this phenomenon results from the combination of a finite system size and a422

finitely small initial condition (see Appendix A). We further note that the choice of control goal423

can also lead to qualitatively different conclusions about optimal strategies. For example, purely424

clinical testing strategies are never optimal under R0 minimization, which contrasts sharply with425

low testing capacity results for peak minimization.426

Our results suggest that testing early is critically important to control efforts. Specifically, the427

range of testing rates that allows full epidemic control is broadest when testing is implemented im-428

mediately at the start of an epidemic. A delay of even 30 days is sufficient to significantly narrow the429

conditions under which the epidemic can be brought to heel. Looking in the other direction, miti-430

gation efforts that lower the effective contact rate, such as lockdowns, social distancing, and mask431

wearing, significantly facilitate epidemic control, particularly when combined with early testing.432

Importantly, interventions that reduce the contact rate also lower the threshold testing capacity433

where uniform random testing of the non-symptomatic population is warranted. These consid-434
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erations suggest that testing programs should designed in conjunction with non-pharmaceutical435

interventions.436

Taken together, our results suggest that focusing exclusively or mostly on clinical testing at very437

low testing capacities is often optimal or close to optimal. As testing capacities increase, which can438

typically be expected to happen with time since epidemic onset, the options for optimally distribut-439

ing testing effort also open up. To our knowledge, this possibility has been largely unexplored in440

the literature. This implies that the main gains to be had by optimizing allocation of testing effort441

will occur at intermediate testing capacities, where options exist for optimization, but capacity is442

still limited relative to demand. These considerations further suggest that testing policies should443

evolve over time, and that time-dependent optimal control (Kirk, 1998; Lenhart and Workman,444

2007), which can explicitly account for the dynamics of testing capacity, will be necessary to ro-445

bustly identify how testing should change through the course of an epidemic. While beyond the446

scope of the present effort, broadening our approach to consider time-dependent optimal control is447

a clear next step. Another key direction for future efforts would be to consider optimal allocation448

of testing effort after relaxing the homogeneous, well-mixed population assumption at the core of449

compartment-type disease models. Spatially explicit extensions of disease models have been shown450

to change key quantities such as immunization thresholds (Eisinger and Thulke, 2008), and we451

expect that introducing spatial heterogeneity would also change the picture for optimal testing.452
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Appendix A: The basic reproduction number460

In this appendix, we provide an analytic expression for our model’s basic reproduction number, R0,461

and we demonstrate that R0 reduction is not a reliable metric of control efficacy for epidemic peak462

reduction. The basic reproduction number is a threshold quantity which determines the stability of463

a disease-free population with no natural or acquired immunity: small numbers of initial cases will464

produce large epidemic outbreaks when R0 > 1, and will result in rapid disease die-out when R0 < 1465

(Diekmann et al., 1990). Intuitively, R0 quantifies the number of secondary cases produced by a466

typical initial case when interacting with the disease-free state. Because we are able to obtain an467

analytic expression for R0, the question of its suitability as a metric for control efficacy is especially468

prescient; the ability to analytically minimize R0 rather than numerically minimize the peak itself469

would provide exact expressions and deep mechanistic insight into optimal control strategies if R0470

were indeed found to be a reliable metric for control efficacy.471

Analytic expression for R0472

The analytic expression for our model’s basic reproduction number is found utilizing the next-473

generation matrix method (van den Driessche and Watmough, 2002). We find that R0 can in-474

terpreted as the asymptomatic population fraction fA multiplied by average number of secondary475

infectious individuals produced by an asymptomatic case, plus the symptomatic population frac-476

tion fY multiplied by the average number of secondary infectious individuals produced by an477

symptomatic case:478

R0 = fA
ε

VE

λAβ

VA
+ fY

ε

VE

λY β

VY
, (6)

where479

VE =



ε, C = 0

ε, C 6= 0, ρ = 0

ε+ 1
τ+ 1−η

ρC

, C 6= 0, ρ 6= 0,

(7)
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480

VA =



r, C = 0

r, C 6= 0, ρ = 0

r + 1
τ+ 1−η

ρC

, C 6= 0, ρ 6= 0,

(8)

481

VY =


r, C = 0

r, C 6= 0, ρ = 1

r + 1
τ , C 6= 0, ρ 6= 1.

(9)

The case C = 0 corresponds to the uncontrolled model in Eq. (1), and R0 is a discontinuous482

function of C at C = 0 except for the special case ρ = 1, η = 1. Under uncontrolled conditions, the483

parameters in Table 1 give an R0 = 5.0, with 3.0 originating from the asymptomatic contribution,484

and 2.0 originating from the symptomatic contribution. For C 6= 0, R0 is a discontinuous function485

of ρ at ρ = 1 and at ρ = 0, η = 1. Note that these discontinuous limits represent potentially486

unrealistic extremes of testing policies and information quality.487

Suitability of R0 as a control metric488

To determine if R0 reduction provides a reliable assessment of control efficacy for epidemic peak489

reduction, we plot the infected population proportion at the epidemic peak as a function of R0 in490

Fig. 7. These figures were generated by integrating Eq. (5) for specific C and η and all ρ ∈ [0, 1]491

assuming the baseline parameter values and initial condition, and plotting the resulting peak in-492

fected proportions against the corresponding R0 values as determined by Eq. (6). These results493

show clearly that R0 is not a reliable measure of control efficacy for epidemic peak reduction, as494

there exists several cases where the epidemic peak value increases as R0 decreases. Further, there495

exist conditions where epidemic peaks are large even though R0 < 1, in apparent contradiction the496

definition of R0 = 1 as a threshold for large epidemic outbreaks. This effect can be seen in for497

η = 1, 0.97, and 0.95 in Fig. 7a, and for η = 1 and 0.97 in Fig. 7b. For η = 0.97 and 0.99 curves,498

large peaks occurring with R0 < 1 correspond to ρ values very close but not equal to 1, while for499
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the η = 1 curve, correspond ρ values very close but not equal to 0.500

To explain the presence of large outbreaks when R0 < 1, we define the effective testing time,501

τeff , which represents the average time an individual must wait to be tested given the current502

backlog of patients. For the basic testing model in Eq. (3), the effective testing time is defined by503

τeff = P (t)/Ṫ (t), which evaluates to504

τeff = τ +
P (t)

CZ
. (10)

Extending this definition to our disease model with testing and quarantine in Eq. (5), we find two505

effective testing times for non-clinical and clinical testing, denoted τNeff and τCeff , respectively:506

τNeff = τ +
E(t) +A(t) +

(
1− η

)(
S(t) + U(t)

)
ρCZ

(11)

τCeff = τ +
Y (t)

(1− ρ)CZ
. (12)

These effective testing times represent the average delays for asymptomatic and symptomatic in-507

dividuals, respectively, in getting tested, receiving results, and moving to quarantine, given the508

current backlog of patients and tests. τNeff and τNeff provide measures of non-clinical and clinical509

control efficiency, respectively, under the current load of infected patients. Specifically, τNeff and510

τNeff increase monotonically with the patient load (and are thus equal to the minimal possible test-511

ing times when the patient load is negligibly small), so for larger patent loads, a fixed number of512

resources will move individuals to quarantine at a slower effective per-capita rate. In this sense,513

lower patient loads allow a given number of resources to be leveraged more efficiently.514

We hypothesize that the large outbreaks observed when R0 < 1 arise due to a finite system515

size and a finitely small initial condition size. The threshold property of R0 = 1 for outbreak516

suppression assumes a disease-free equilibrium background state perturbed by a sufficiently small517

number of initial infected individuals, where “sufficiently small” means small in comparison to the518

total system size such that the disease dynamics can be well-approximated by linearizing about the519

disease-free equilibrium. Under disease-free equilibrium conditions, there is no backlog of patients520

needing to be tested, so the effective testing testing times in Eqs. (11) and (12) achieve their min-521

imal values, and R0 thus assumes a maximally efficient level of control when assessing outbreak522

28



potential. Under the full disease dynamics, however, Eqs. (11) and (12) show that small numbers523

of initial infectives will produce slightly longer than minimal effective testing times, and that this524

small increase can become exaggerated when ρ is very close but not equal to 1 or 0. Thus, initial525

conditions can yield testing efficacies much smaller than those assumed by R0, sometimes to a526

degree which allows epidemics to grow even when R0 < 1. In support of our hypothesis, we have527

found that reducing the initial condition size by a factor of 10 (which corresponds to less than one528

infected individual) eliminates the effect of large peaks when R0 < 1 for all cases pictured in Fig. 7.529

530

(a) C = 10 per thousand per day (b) C = 5 per thousand per day

Figure 7: Infected population proportions at the epidemic peak plotted as a function of R0 for
testing capacities C = 10 and C = 5 tests per thousand per day. Curve colors correspond to the
concentration values η indicated in the legend. Along each curve, ρ increases from 0 and 1, with
the beginning of each curve at ρ = 0 indicated by the centers of the black circles (ρ = 0 represents
clinical testing only where the information parameter is irrelevant, so all curves must coincide).
The dashed black lines indicate the uncontrolled peak infected proportion of 0.48, and the black x
indicates the uncontrolled R0 = 5.0.
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Appendix B: The concentration parameter η531

In this appendix, we provide a definition for the concentration parameter η in terms of test-positive532

and prevalence rates, and use the resulting expression to estimate plausible values from data. To533

begin, consider the case η = 0 representing a monitoring program conducted via random population534

sampling. Let Ṫ+
0 (t) and Ṫ−

0 (t) denote the rates at which positive and negative tests, respectively,535

are processed and administered under non-clinical testing for η = 0:536

Ṫ+
0 (t) =

E(t) +A(t)

τ + E(t)+A(t)+S(t)+U(t)
ρCZ

(13)

Ṫ−
0 (t) =

S(t) + U(t)

τ + E(t)+A(t)+S(t)+U(t)
ρCZ

(14)

Let f+0 (t) and f−0 (t) denote the corresponding respective test-positive and negative rates, defined537

as the fractions of tests returning positive and negative results:538

f+0 (t) =
Ṫ+
0 (t)

Ṫ+
0 (t) + Ṫ−

0 (t)
(15)

=
E(t) +A(t)

E(t) +A(t) + S(t) + U(t)

f−0 (t) =
Ṫ−
0 (t)

Ṫ+
0 (t) + Ṫ−

0 (t)
(16)

=
S(t) + U(t)

E(t) +A(t) + S(t) + U(t)

The above expression show that for η = 0, test positive and negative rates are equivalent to539

the overall disease prevalence and non-prevalence, respectively, within E(t) + A(t) + S(t) + U(t)540

population. This result agrees with the notion that η = 0 represents a random population sampling,541

as the test positive rate from a random sample should be an unbiased estimate for disease prevalence.542

Consider now the case of η > 0, and let Ṫ+(t) and Ṫ−(t) denote the rates at which positive and543
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negative tests, respectively, are processed and administered under non-clinical testing:544

Ṫ+(t) =
E(t) +A(t)

τ +
E(t)+A(t)+

(
1−η
)(
S(t)+U(t)

)
ρCZ

(17)

Ṫ−(t) =

(
1− η

)(
S(t) + U(t)

)
τ +

E(t)+A(t)+
(
1−η
)(
S(t)+U(t)

)
ρCZ

(18)

The corresponding test-positive rate f+(t) and test-negative rate f−(t) are given by the following:545

f+(t) =
Ṫ+(t)

Ṫ+(t) + Ṫ−(t)
(19)

=
E(t) +A(t)

E(t) +A(t) +
(
1− η

)(
S(t) + U(t)

)
f−(t) =

Ṫ−(t)

Ṫ+(t) + Ṫ−(t)
(20)

=

(
1− η

)(
S(t) + U(t)

)
E(t) +A(t) +

(
1− η

)(
S(t) + U(t)

)
Combining the above expressions with Eqs. (15) and (16), we find the following expression for η:546

η = 1− f+0 (t)/f−0 (t)

f+(t)/f−(t)
. (21)

Equation (21) shows that η is a measure of the efficacy of a non-clinical testing program’s ten-547

dency to focus tests on infected individuals relative to overall prevalence levels. When non-clinical548

testing performs little to no better than a random sampling program, the test-positive to negative549

ratio will nearly equal the positive to negative prevalence ratio, so the fraction term in Eq. (21) will550

be close to one, and η will be close to zero. As the ratio of test-positive to negative rates increases551

beyond the level of positive to negative prevalence, the fraction term decreases in magnitude, and552

η grows larger. When the test-positive to negative ratio becomes much larger than the ratio of553

positive to negative prevalence, the fraction term in Eq. (21) will be small, and η will be close554

to one. Interestingly, because η is constant, Eq. (21) shows that, as a consequence of our model555

structure, the time-dependencies of the test-positive to negative ratio and the positive to negative556

prevalence ratio cancel one another.557

Substituting the identities f−0 (t) = 1 − f+0 (t) and f−(t) = 1 − f+(t), Eq. (21) gives a math-558
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ematical relationship between η, the test-positive rate, and the prevalence rate. In Fig. 8a, we559

plot the test-positive rate as a function of the prevalence rate for a number of η values. In our560

disease+testing model, as the epidemic grows, the point (f+0 (t), f+(t)) will travel to the rightwards561

along one of the corresponding η curves in Fig. 8a, stop and reverse direction once the epidemic562

peaks, and eventually approach the origin as the disease dies out.563

To properly estimate η for a real system, one must acquire test-positive rates and prevalence564

rates which exclude data from moderate to severely symptomatic cases in clinical settings. To the565

best of our knowledge, such data are not readily available. As a substitute, we use test-positive566

and prevalence rates for estimated for the entire infected population in the Untied States over567

the first year of the pandemic. Test-positive rates are taken from (Ritchie et al., 2020), and esti-568

mated prevalence rates are taken from (Noh and Danuser, 2021). Figure 8b provides a zoomed-in569

view of the Fig. 8a within the range of values suggested by this data, and we include markers for570

specific values of test-positivity and prevalence on specific dates. We see that during the initial571

stages of the pandemic in April 2020, test-positive and prevalence rates give η values between572

0.95 and 0.90, while in later months, η values tend to cluster between 0.75 and 0.85. The higher573

test-positive to prevalence ratios in April coincide with an extreme lack of testing supplies during574

the early pandemic when the majority of tests were reserved for the most severe cases. The lower575

test-postivity to prevalence ratios in later months coincide with initial increases in testing supplies576

and expanded testing beginning to be available to a wider population. From these considerations,577

we posit η = 0.95 as a reasonable upper bound for a non-clinical testing program including an578

efficacious contact tracing program. We base this assertion on the idea that one would likely not579

do better identifying asymptomatic individuals in our model than what the real world achieves in580

identifying symptomatic individuals. For a lower bound on a non-clinical testing program lacking581

a random population element (i.e. a program comprised of only contact tracing and testing centers582

open to individuals concerned with possible exposure), we posit η = 0.50. This is based on Fig. 8a,583

where we see that for η less than 0.50, test-positive rates are only slightly above prevalence rates,584

and this would not be reasonable for a testing program which does not randomly sample both585

infected and non-infected individuals.586
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(a) (b)

Figure 8: Plots of the non-clinical test-positivity rate f+(t) as a function of the non-clinical disease
prevalence rate f+0 (t) according to the relation in Eq. (21), assuming various values of η. Figure
8a exemplifies the degree to which non-zero η values increase the test-positivity rate beyond the
level of prevalence that would be measured by random population sampling at η = 0. Figure 8b
zooms into the ranges of prevalence and test-positivity rates for the entire clinical plus non-clinical
population estimated over the first year of the pandemic 2020 in the United States. Test-positive
rates are taken from (Ritchie et al., 2020), and estimated prevalence rates are taken from (Noh and
Danuser, 2021). Specific values pairs of test-positivity and prevalence values on specific dates in
2020 are indicated by the marks in Fig. 8b

Appendix C: Limited non-clinical testing access587

In this appendix, we consider the effects of limiting the overall population accessible to non-clinical588

testing. Such limitations may be especially relevant for large η values representing extremely589

efficacious contact tracing programs, as the time and effort required to run such programs may590

limit the number of individuals able to be reached, and many individuals may not be amenable to591

participation in such programs. Suppose that a fraction γ of the non-clinical E(t)+A(t)+S(t)+U(t)592

is accessible by non-clinical testing. Assuming a concentration level η, the rate at which positive593

and negative non-clinical tests are administered and processed, Ṫ+(t) and Ṫ−(t), respectively, are594
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given by the following.:595

Ṫ+(t) =
γ
(
E(t) +A(t)

)
τ +

γ
[
E(t)+A(t)+

(
1−η
)(
S(t)+U(t)

)]
ρCZ

(22)

=
E(t) +A(t)

τ
γ +

E(t)+A(t)+
(
1−η
)(
S(t)+U(t)

)
ρCZ

Ṫ−(t) =
γ
(
S(t) + U(t)

)
τ +

γ
[
E(t)+A(t)+

(
1−η
)(
S(t)+U(t)

)]
ρCZ

(23)

=
S(t) + U(t)

τ
γ +

E(t)+A(t)+
(
1−η
)(
S(t)+U(t)

)
ρCZ

The above expressions show that limited non-clinical testing access effectively increases the non-596

clinical testing time to τ/γ. Importantly, we see that limited testing access does not change the597

interpretation of η in terms of test-positivity rates and prevalence rates outlined in Appendix B.598

In Fig. 9, we plot optimal infected population proportions at the epidemic peak and correspond-599

ing allocation strategies for the same η values as in Fig. 3, assuming only a fraction γ = 0.20 of600

E(t) +A(t) +S(t) +U(t) class can be reached by non-clinical testing. Generally, we find that when601

non-clinical testing has limited access to the population, a larger testing capacity is required to602

achieve a given level of controllability compared to the full testing access case. Interestingly, we603

find that the critical threshold testing capacities at which optimal actions become a mix of clini-604

cal and non-clinical testing are equivalent to the full testing access case. This occurs because the605

critical thresholds Cth indicate the points at which the optimal fraction ρ of resources devoted to606

non-clinical testing switches from 0 to an infinitesimal but non-zero amount, and so the associated607

non-clinical testing capacities ρCth are extremely small, regardless of the size of Cth. Thus, at these608

thresholds, non-clinical testing is always in the resource limited regime, where τ and τ/γ are irrel-609

evant. This implies that our central result Fig. 4 is completely unaffected by limited non-clinical610

testing access. From these considerations, we conclude that limited non-clinical testing does not611

considerably change the qualitative aspects of our main analysis.612
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(a) Optimal epidemic peak sizes (b) Optimal testing policies

Figure 9: Recreation of Fig. 3 in the main text assuming only a fraction γ = 0.20 of the non-clinical
population E(t) + A(t) + S(t) + U(t) can be accessed by non-clinical testing. This assumption is
equivalent to increasing the non-clinical testing time equal to τ/γ = 5τ . Comparing Fig. 9a to
Fig. 3a shows that limited testing access generally requires larger testing capacity to achieve a
given level of peak reduction. Comparing Fig. 9b to Fig. 3b shows that for a given η value, the
threshold testing capacity at which optimal strategies become a mix of clinical and non-clinical
testing are equivalent under limited and full testing access.
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