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Abstract: Electric Dirac quantum walks, which are a discretisation of the Dirac equation for a spinor
coupled to an electric field, are revisited in order to perform spatial searches. The Coulomb electric
field of a point charge is used as a non local oracle to perform a spatial search on a 2D grid of N
points. As other quantum walks proposed for spatial search, these walks localise partially on the
charge after a finite period of time. However, contrary to other walks, this localisation time scales
as
√

N for small values of N and tends asymptotically to a constant for larger Ns, thus offering a
speed-up over conventional methods.
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1. Introduction

Quantum Walks (QWs) are automata defined on graphs and lattices. These were first
considered by Feynman in studying possible discretisations for the Dirac path integral [1,2].
They were later introduced in a systematic manner by Aharonov et al. [3] and Meyers [4],
and they have been realized experimentally in a number of ways [5], which include cold
atoms [6], photonic systems [7,8] and trapped ions [9,10]. With the recent development
of Noisy Intermediate Scale Quantum (NISQ) devices, it is now possible to implement
short-depth quantum circuits with several qubits such as QWs [11–14]. Unitary QWs are
also a universal primitive of unitary computation [15–17] useful in quantum information
and algorithmic development [5,18–22]. Moreover, several spatial search algorithms based
on QWs have been proposed [23–29]. It appears that the most successful strategies consist
in using unitary QWs which (i) incorporate the basic idea behind Grover abstract search
algorithm [30,31] and (ii) admit, similarly to massless Dirac equation, a linear dispersion
relation at large scales [32–34]. Some of these unitary QWs work in continuous time [35–39],
while others work in discrete time [40–44].

Unitray QWs are also important for quantum simulation [45,46]. In particular, unitary
QWs can be used to simulate Dirac fermions interacting with arbitrary Yang-Mills gauge
fields [47,48] and arbitrary relativistic gravitational fields [49–53], and steps have been
taken to construct alternatives to Lattice Gauge Theories based on Discrete-Time Quantum
Walks (DTQWs) [54]. Finally, geometrical aspects of unitary QWs are discussed in [55].

The idea behind the present article is to merge both lines of thought and present a
spatial search algorithm based on QWs interacting with a gauge field. In order to keep
the discussion as simple as possible, we focus on 2D search on a periodic square grid (2D
discrete torus) with N points and consider only Discrete-Time Quantum Walks (DTQWs).
To permit the introduction of an electric field, the wave function of the walker must have
only two components, as the 2D spinors obey the Dirac equation, and not four. The
algorithm is based on QWs already introduced in the literature [47]. These walks admit a
continuum limit which coincides with the Dirac equation obeyed by a spin 1/2 fermion
in flat (1 + 2)D space-time in the presence of an arbitrary static electric field. This field
is encoded in a global phase and acts as the oracle in the search. We first present these
DTQWs and recall their continuum limit. We then particularise the electric field to the
Coulomb field created by a charge situated at the center of a grid cell Ω and show by
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numerical simulations that, for spatially homogeneous initial conditions, the algorithm
localises partially the walker after a finite time on the four corners of the cell containing
the point Ω. The search can then be completed by amplitude amplification. For smaller
values of N, the partial localisation time of the Dirac walk scales as

√
N, but this tends

asymptotically to a constant value independent of N. If partial localisation after a finite time
is standard for spatial search algorithms based on QWs, the fact that the partial localisation
time does not scale as

√
N for all Ns but rather tends to a constant for larger Ns is definitely

non standard. All results are finally summed up and discussed with special emphasis on
possible extensions.

2. Materials and Methods: The Dirac Quantum Walks
2.1. Definition

We consider a 2D square grid where the nodes are indexed by the two positive integers
(p, q) ∈ N2

M, with M an arbitrary strictly positive integer. The integers p and q can be
considered as discrete Cartesian coordinates in 2D space. The total number of points in
the grid is N = M2, and we impose periodic boundary conditions. Time is also discrete
and indexed by j ∈ N. Given a basis (|bL〉 , |bR〉) of an Hilbert spaceH2 named the ‘spin’-
space, the wave-function ψ ∈ H2 of the DTQW is represented by its two components ψL

and ψR. The equations of motion of the walks considered in this article are of the form
ψj+1 = Uψj where U is a unitary operator independent of the time j. This operator is
U = exp(ieV) · R(θ+) · Sq · R(θ−) · Sp where Sp and Sq are the standard shift operators
defined by the following equations:

(Spψ)L
p,q = ψL

p+1,q

(Spψ)R
p,q = ψL

p−1,q (1)

and

(Sqψ)L
p,q = ψL

p,q+1

(Sqψ)R
p,q = ψL

p,q−1. (2)

The operator R(θ) is a rotation in spin space and is represented in the basis (|bL〉 , |bR〉) by
the matrix

R =

[
cos(θ) −i sin(θ)
−i sin(θ) cos(θ)

]
(3)

where θ± = ±(π/4)− (m/2) with m a real positive parameter. The operator V is, at each
point, proportional to the identity in spin space; thus, (exp(ieV)ψ)p,q = exp(ieVp,q)ψp,q
where e is another arbitrary real parameter. The interpretation of m and e will be made
clear below.

2.2. Continuum Limit

The continuum limit describes situations where the wave-function ψ of the walk varies
on time-scales and spatial scales much larger than the step of the grid. Suppose that there
exists a real positive number ε much lower than unity such that, in a certain domain in
(j, p, q)-space, the wave-function ψ varies on scales of order ε−1 in its three variables j, p
and q. Then, define the ‘slow’ variables t = εj, x = εp and y = εq so that ψ varies on scales
of order unity in these new variables. Suppose also that, in the same domain, the quantities
eV and m are of order ε and write eV = εeṼ and m = εm̃. The discrete equations of the
motion for the walk can then be expanded in powers of ε around ε = 0. This expansion
delivers the identity ψ = ψ at zeroth order in ε but, at first order, one obtains he following.

(∂t − ieṼ)ψL − ∂xψL − i∂yψR + im̃ψR = 0
(∂t − ieṼ)ψR + ∂xψR + i∂yψL + im̃ψL = 0.

(4)
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This equation coincides with the flat (1 + 2)D space-time Dirac equation for a spinor
of mass m̃ and electric charge −e propagating in the electric potential Ṽ. More details on
the calculations of the continuous limit can be found at [50,56].

3. Results: Search with Coulomb Potential

We now particularise the discussion to the following choice:

Vp,q = Q
(
(p−Ωp)

2 + (q−Ωq)
2
)−1/2

, (5)

except on the borders of the grid, where we impose the potential to vanish identically, thus
preserving periodicity in both p and q. The above expression coincides with the Coulomb
potential created by a point charge Q situated at point Ω = (Ωp, Ωq). To ensure that the
walk is defined at all points in the grid, the point Ω where V diverges must not be on the
grid. A simple possibility is to choose Ω at the center of a grid-cell equidistant from the
four vertices of this cell. The distance in the (p, q) Euclidean plane between Ω and these
4 points is then 1/

√
2, and the maximum value taken by the function V on the grid is

the following.
Vmax = Q

√
2. (6)

At given Ω, m and N, the walk is entirely controlled by the initial condition and the
parameter a = eQ. The maximum value of the global phase is αmax = eVmax = eQ

√
2.

As is usual in spatial search problems, we choose initial conditions that are uniform
on the grid and in spin state [30,31]. Considering the chosen potential, the algorithm can
be considered successful if it localises the walker on the four vertices of the cell centred on
Ω. Let P∗j be the probability of finding the walker at time j on any of these four vertices.
The explicit expression of P∗j is:

P∗j = Pj,Ωp+1/2,Ωq+1/2 + Pj,Ωp−1/2,Ωq+1/2 + Pj,Ωp+1/2,Ωq−1/2 + Pj,Ωp−1/2,Ωq−1/2 (7)

with
Pj,p,q =| ψL

j,p,q |2 + | ψR
j,p,q |2 . (8)

The probability P∗j depends in a non trivial manner on the free parameters Ω, m, N
and eQ. Exploring systematically this parameter space is out of the scope of this article.
What follows is a synthetic presentation of some features observed in extensive numerical
simulations.

As expected from the behaviour of other QW based search algorithms, at fixed values
of the parameters Ω, m, N and a = eQ, the probability P∗j displays strong oscillations
in j. For example, Figure 1 displays two typical evolutions of P∗j with j, both obtained
on a grid of N = 1202 points, with m = 0. and with Ω = Ω0 located at the center of
the central grid cell but for different values of a. Changing Ω does not change P∗j too
much, at least if one does not proceed too close to the border of the grid (data not shown).
However, changing m typically increases the oscillation frequency of P∗j , as exemplified
Figure 2, which plots P∗j against time j for N = 1202, Ω = Ω0, m = 0.08 and m = 0.25. The
introduction of a non-vanishing mass provides greater inertia to the walker, slowing down
the localisation process. In Figure 2, the value ∼0.21 is reached by function P∗j at a later
time when compared to the right curve of Figure 1. Note also that the values reached by
P∗j are larger when the mass vanishes.
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Figure 1. Evolution of P∗j with time j for N = 1202, Ω = Ω0, m = 0, eQ = 0.01 (left) and
eQ = 1 (right).
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Figure 2. Evolutions of P∗j with time j for N = 1202, Ω = Ω0, eQ = 1 and mass m = 0.08 (left) or
m = 0.25 (right).

Density profiles corresponding to the first maximum and the first minimum of P∗j
are presented in Figures 3 and 4. It is obvious from the figures that localisation is much
more efficient for a = 1 than for a = 0.01. In particular, for a = 0.01, localisation does
occur on two of the four vertices, but it is accompanied by rather strong anti-localisation
on the other two and the background probability, i.e., the probability of finding the walker
elsewhere than around Ω0 is not negligible. Furthermore, there is not much difference
between the density profiles corresponding to the first maximum and the first minimum
of P∗j : Peaks have more or less the same height, and density displays ripples and bumps
outside the peaks. The picture changes drastically for a = 1. There is now practically no
anti-localisation, the peak at time j = 47 when P∗j is maximal is approximately 10 times
higher than the peak at time j = 137 when P∗j is minimal, and the density outside the peaks
is nearly flat and practically vanishes, even when P∗ is minimum. In this case, localisation
actually happens well before P∗ reaches its first maximum (see Figure 5); once installed,
localisation remains at all explored times.

The density profiles displayed in Figures 3–5 are non symmetric around the central
point Ω; in particular, the walker does not distribute evenly among the four vertices that
surround Ω. This is due to the choice of initial condition in spin state. The upper part
of Figure 6 offers a contour version of the upper Figure 3 and corresponds to an initial
condition symmetric in ψL and ψR. Switching to an initial condition with vanishing ψR

does not change the time-evolution of P∗ (data not shown) but produces the other contour
plot in Figure 6 where the central peak is nearly symmetric.
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Figure 3. Density profiles at time j = 61 corresponding to the first maximum of P∗j (up) and at time

j = 111 corresponding to the first minimum of P∗j (down) for eQ = 0.01, N = 1202 and Ω = Ω0.

Figure 4. Density profiles at time j = 47 corresponding to the first maximum of P∗j (up) and time

j = 137 corresponding to the first minimum of P∗j (down) for eQ = 1, N = 1202 and Ω = Ω0.



Entropy 2021, 23, 1441 6 of 11

Figure 5. Density profiles at times j = 5 (up) and j = 6 (down) for eQ = 1, N = 1202 and Ω = Ω0.

6.920 × 10-6

6.930 × 10-6

6.940 × 10-6

6.950 × 10-6

6.960 × 10-6

6.970 × 10-6

6.920 × 10-6

6.930 × 10-6

6.940 × 10-6

6.950 × 10-6

6.960 × 10-6

6.970 × 10-6

Figure 6. Density contours at time j = 61 corresponding to the first maximum of P∗j for eQ = 0.01,

N = 1202, Ω = Ω0 and two different initial conditions: ψL = ψR (up) and ψR = 0 (down).
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A final comment on the density profiles is in order. The absolute values taken by
the density Pj,p,q may appear to be rather small. The main reason for that is the total
number of points N = 1202 over which the walker moves. A uniform probability spread
uniformly over 1202 points amounts to 6.94× 10−5. The density profiles corresponding to
a = 0.01 reveal that the peaks are then approximately 4.3% above this value. However, the
peak for a = 1 at time t = 47 corresponding to the first maximum of P∗j is approximately
0.006 ∼ 86× 6.94× 10−5, corresponding to an increase of 8500% with respect to uniform
spreading, which is quite substantial. Whatever the increase, the absolute value of 0.006
may still be considered small compared to unity. However, it is not vanishingly small.
Moreover, as already indicated in the introduction and as discussed in the final section, the
search procedure offered by the DTQWs presented cannot be considered complete, since
the probability of finding the walker on the four vertices surrounding Ω is never equal to
unity. The search should, therefore, be complemented by amplitude amplification.

Let us now explore how the time T at which P∗j reaches its first maximum evolves
with N. Typical results are displayed in Figures 7 and 8 for Ω = Ω0 and a = 0.9. Figure 7
displays the time T of the first maximum of P∗j as a function of N. At small N, T increases

as
√

N but T is asymptotically constant. This unexpected behaviour has been observed
numerically for all values of a; the greater a is, the sooner the asymptotic regime in which
T is independent of N is reached. For example, for a = 1, the asymptotic regime is reached
around N = 30.

Figure 8 displays the renormalised probability P̄∗j = 4P∗j /N plotted against time for
N = 302 (blue), N = 462 (orange), N = 602 (green), N = 762 (red), N = 902 (navy blue),
N = 1062 (brown), N = 1202 (cyan), N = 1802 (yellow) and N = 2402 (purple). The

√
N

scaling and the constant asymptotic behaviour can naturally be observed in this figure too.
Figure 8 also shows that, quite remarkably, the function P̄∗ is essentially independent of N
on the left of the first maximum. Note also that the short N-scaling does not involve log N.

100 200 300 400
N

20

40

60

80

100

T

Figure 7. Time T for the first maximum of P̄∗j in function of
√

N for eQ = 0.9, Ω = Ω0 and m = 0.

The function fitting T for small N is approximately 0.96
√

N − 1.66 and appears in yellow.
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Figure 8. Renormalised probability P̄∗j against time j for eQ = 0.9, Ω = Ω0 and N = 302 (blue),

N = 462 (orange), N = 602 (green) and N = 762 (red), N = 902 (navy blue), N = 1062 (brown),
N = 1202 (cyan), N = 1802 (yellow) and N = 2402 (purple).

Let us end this section by a qualitative comment for explaining how the localisation
time becomes independant of N due to the finite velocity of the walk. Fix all values of the
parameters except N and suppose that, for some value N0 of N, the first maximum of P∗j is
reached at time T0. Since DTQW is a discrete version of the relativistic Dirac equation, it
essentially propagates at a finite velocity which, in the units used in this article, is equal to
unity. Thus, in time T0, the peak around Ω has only been influenced by points at distance
∼ T0. If

√
N0/2 is sufficiently lower than T0, increasing N will allow points around Ω to

observe more distant points and will presumably modify T0. However, suppose
√

N0/2 is
larger than T0. Then, increasing N will not modify the dynamics of the peak until times
later than T0; thus, T0 will be independent of N for N larger than N0. Observe now Figure 7.
The time T becomes independent of N around N = 1602 and is then approximately equal
to Ta ∼ 84 ∼ 160/2, which seems to confirm the above reasoning. If this line of reasoning is
correct, any walk that propagates at finite velocity c and for which one can find an N0 such
that
√

N0/2 > cT0 will present the same asymptotic property. Intuitively, the existence of
such an N seems linked to the rapid convergence towards Ω exemplified in Figure 5.

4. Discussion

Let us now discuss these results and mention some natural extensions. One should
first stress that the DTQWs considered in this article, as previous QWs used in spatial search
algorithms, never fully localise on the desired points. In the present context, localisation
means that the probability of finding the walker on the desired point is substantially higher
than the background probability of finding it at any other point. Fully localising the walk
would require adding a step commonly called amplitude amplification.

The most interesting aspect of these walks is their behaviour for large enough values of
N. Indeed, localisation times for other spatial search algorithms scale as

√
N or

√
N log N.

The partial localisation time of these new walks does scale as
√

N for small enough N but
appears to saturate a constant value for larger N. This is possibly the most remarkable
property of these walks. Of course, this does not contradict the theorem that states that
an optimal quantum search takes O(

√
N) steps because the localisation we are speaking

of is not total, and completing it with amplitude amplification would take O(
√

N) steps.
Thus, the saturation property of the walks introduced in this article does not change the
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order of magnitude of a the minimal time necessary to perform a full quantum search.
However, for large enough values of N, it makes the first step of the spatial search much
faster than expected and realised in other quantum walks. Stopping after this step may
even be enough for some applications.

The results presented in this article should first be generalised not only to higher
dimensions but also to general lattices or graphs and and more varied initial conditions,
especially in spin space. The simulations presented in this article show that it is possible to
use artificial gauge fields as oracles to perform efficient spatial searches. One could also
consider using other artificial gauge fields, including magnetic fields, general Yang-Mills
fields and gravitational fields, as oracles in quantum search problems. Moreover, one
wonders whether problems more complex than the one studied in the present, such as for
example the motion of several particles in a gauge field they self-consistently generate, are
also susceptible of quantum algorithmic interpretation. As for now, this article adds to the
literature showing that physics can be a source of inspiration to develop new strategies in
quantum information. Other examples include applications of quantum tunelling [57] and
of Anderson localization [58,59].
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