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Exploitation of a newly-identified 
entry pathway into the malaria 
parasite-infected erythrocyte to 
inhibit parasite egress
Svetlana Glushakova1, Brad L. Busse1, Matthias Garten  1, Josh R. Beck3, Rick M. Fairhurst2, 
Daniel E. Goldberg3 & Joshua Zimmerberg  1

While many parasites develop within host cells to avoid antibody responses and to utilize host 
cytoplasmic resources, elaborate egress processes have evolved to minimize the time between 
escaping and invading the next cell. In human erythrocytes, malaria parasites perforate their enclosing 
erythrocyte membrane shortly before egress. Here, we show that these pores clearly function as an 
entry pathway into infected erythrocytes for compounds that inhibit parasite egress. The natural 
glycosaminoglycan heparin surprisingly inhibited malaria parasite egress, trapping merozoites 
within infected erythrocytes. Labeled heparin neither bound to nor translocated through the intact 
erythrocyte membrane during parasite development, but fluxed into erythrocytes at the last minute 
of the parasite lifecycle. This short encounter was sufficient to significantly inhibit parasite egress and 
dispersion. Heparin blocks egress by interacting with both the surface of intra-erythrocytic merozoites 
and the inner aspect of erythrocyte membranes, preventing the rupture of infected erythrocytes but 
not parasitophorous vacuoles, and independently interfering with merozoite disaggregation. Since this 
action of heparin recapitulates that of neutralizing antibodies, membrane perforation presents a brief 
opportunity for a new strategy to inhibit parasite egress and replication.

To evade immune detection, intracellular apicomplexan parasites replicate within several layers of membranes1,2. 
However, this replication is only advantageous if parasite progeny can emerge successfully from host cells after 
breaking both the parasitophorous vacuolar membrane and the erythrocyte plasma membrane to invade new 
cells. The mechanics of malaria parasite egress from erythrocytes are still unresolved despite the growing knowl-
edge of regulated enzymatic and signaling events involved in the egress mechanism3. Morphological transfor-
mations of the two parasite-enclosing membranes prior to parasite release were visualized in a limited number 
of studies4–7 in which it was suggested that vacuolar membrane rupture occurs prior to or simultaneous with the 
opening of the erythrocyte membrane. The functional proteins for vacuolar membrane rupture are not currently 
known. However, the erythrocyte cysteine protease calpain8 and the parasite surface protein MSP19 have each 
been implicated in degradation of the erythrocyte cytoskeleton, a crucial step in parasite egress preparation lead-
ing to the opening of the host cell membrane. One of the final changes in the infected erythrocyte prior to egress 
is perforation of the erythrocyte membrane10. Perforation of the host cell membrane by Apicomplexan parasites 
was first demonstrated in Toxoplasma-infected cells11 and later was shown in Plasmodium-infected erythrocytes 
for both sexual and asexual forms12–14. Toxoplasma pore-forming protein 1 perforates both vacuolar and host 
plasma membranes while perforin-like protein 2 of P. falciparum is involved in perforation of the erythrocyte 
but not vacuolar membrane, and only in sexual forms of the parasite. Perforin-like protein 1 of P. falciparum was 
suggested to perforate both the parasitophorous vacuolar membrane and the erythrocyte membrane during the 
asexual cycle15, but a recent study demonstrated it is dispensable for blood-stage parasite growth16.
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While investigating the inhibition of P. falciparum invasion of erythrocytes by heparin and other 
highly-charged sulfated glycosaminoglycans (GAGs)17–20, we noticed entry of these inhibitory compounds into 
infected cells through the membrane of erythrocytes. Entry could only occur at the very end of the replicative 
cycle, to inhibit parasite egress. This was a surprising observation, because in analogy to antiviral mechanisms21, 
it is postulated that heparin inhibits invasion in vitro by binding to merozoite surface proteins just prior to inva-
sion, thus blocking subsequent merozoite binding to the erythrocyte surface17 (there is a clear non-specific loss 
of merozoite adhesion)22. Thus, perforation of the erythrocyte membrane just before parasite egress provides a 
novel entry pathway of high-molecular-weight hydrophilic compounds able to prevent parasite dissemination. 
Consistent with reports of delayed schizont rupture in the presence of several heparin-like compounds19,23, hep-
arin exploits a natural stage in the parasite’s intra-erythrocytic developmental cycle (IDC), i.e. erythrocyte mem-
brane perforation preceding membrane rupture during the last minute of the replicative cycle12. Our findings 
are the first indication of a technological application for the molecular-perforation stage of infected erythrocytes 
prior to egress.

Results
Heparin inhibits parasite egress in vitro. To assess heparin inhibition of parasite egress in vitro, we 
exposed P. falciparum schizonts to 25–100 µg/ml of heparin for 60–90 minutes at 37 °C. Using a quantitative 
egress assay24, we found that heparin had a reproducible, dose-dependent inhibitory effect on parasite egress from 
infected erythrocytes (Fig. 1A). Exposure to 100 µg/ml of heparin, which is known to strongly inhibit merozoite 
invasion of erythrocytes17, not only inhibited the egress of laboratory strain NF54 parasites to less than half of the 
control level but also inhibited the egress of two artemisinin-resistant P. falciparum clinical isolates, CP803 and 
RF967, up to 45% and 35%, respectively (Fig. 1B). These data suggest that heparin exerts a strain-transcendent 
inhibitory effect on parasite egress.

Figure 1. Heparin inhibits parasite egress in vitro. (A) P. falciparum NF54 schizonts were exposed to increasing 
concentrations of heparin for 60–90 min at 37 °C in environmental chambers that preserve sites of parasite 
egress. To stop the parasite IDC, chambers were cooled at 15 °C for 30 min and then examined by microscopy. 
Egress was quantified as the fraction of schizonts that released merozoites during the exposure time. A total 
of 800–1500 schizonts and egress sites were analyzed for each condition. Results are presented as mean ± SD. 
Heparin exerted a dose-dependent reduction in egress (one-way analysis of variance, ANOVA; p < 0.001). 
(B) NF54, RF967, and CP803 schizonts were exposed to 100 µg/ml of heparin for 60–90 min at 37 °C in 
environmental chambers, and egress assessed as in (A). A total of 1300–4400 schizonts and egress sites were 
analyzed for each condition. Results are presented as mean ± SD. Heparin significantly inhibited the egress of all 
three parasite strains (p < 0.01 for all, two-tailed one sample t-test, H0 = 100%). The effect of heparin on CP803 
and RF967 egress was also dose-dependent (data not shown). (C) NF54 schizonts were exposed to 100 µg/ml of 
heparin for 60 min at 37 °C in environmental chambers, and imaged using laser-scanning confocal microscopy. 
Differential interference contrast (DIC) microscopy images show frequently-observed merozoite clusters. Scale 
bar = 5 µm. (D) Quantification of egress sites and clusters as a fraction of the sum of both assay outcomes, in 
control and heparin-treated cultures (100 µg/ml heparin, 2 h at 37 °C, n = 3, total number of counted infected 
cells and events = 900). The numbers of clusters in the heparin-treated culture is significantly increased 
compared to the control (P < 0.01, two-tailed t-test).
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Live-cell microscopy of heparin-treated cultures revealed accumulation of morphologically-distorted infected 
cells composed of clustered merozoites mostly trapped within erythrocytes (Fig. 1C). Quantitative analysis of 
biological outcomes of the egress assay, i.e. counting the number of parasite egress sites and merozoite clusters in 
heparin-treated and control cultures, shows that (i) the sum of egress sites and clusters in heparin-treated cultures 
(98.0 ± 12.4% of the control, mean ± SD) were similar to those of the control (p = 0.83, two-tailed one sample 
t-test, H0 = 100%, n = 3), suggesting that both cultures normally progressed to the end of the cycle; and (ii) inhi-
bition of egress in heparin-treated cultures is explained by significantly increased cluster formation (Fig. 1D). 
Together, our data suggest that heparin does not affect the last two hours of the parasite IDC, but interferes with 
the egress of mature merozoites.

Mechanism of parasite egress inhibition by heparin. The final mechanical steps of egress include 
rupture of the parasitophorous vacuole, parasite dissociation within the schizont, and perforation and rupture 
of the erythrocyte membrane5,10,12. The scattered discharge of individual merozoites from the erythrocyte then 
completes the IDC5. To investigate the mechanism of egress inhibition by heparin, we first used time-lapse 
light microscopy to record parasite egress in medium containing 100 µg/ml of heparin and frequently observed 
blocked egresses (see Supplementary Movie 1 and Fig. 2A showing selected frames from this movie), leading to 
the formation of semi-dissociated merozoites, or merozoite clusters, retained within erythrocytes. The observed 
outcome mimics the static images presented in Fig. 1C. These data suggest that heparin interferes with the rupture 
of merozoite-enclosing membranes and likely affects merozoite dispersion prior to egress.

To further assess heparin’s effect on merozoite dispersion, we analyzed egress sites that are preserved in the 
chambers for microscopy and identified one prominent feature: egressed or partially-egressed merozoites were 
often in aggregates of varied sizes, indicating variable degrees of merozoite dispersion (Fig. 2B). 56.5 ± 11.4% 
(mean ± SD) of egress sites in cultures treated with 100 µg/ml of heparin (four independent experiments, n = 130) 
contained merozoite clusters of varied sizes in comparison to 17.7 ± 8.6% of sites in control cultures (three inde-
pendent experiments, n = 97, p = 0.004, two-tailed t-test). The heparin-induced merozoite dispersion defect may 
account for part of heparin’s reported inhibition of parasite invasion, as merozoites that fail to detach from their 
siblings are expected to be invasion-incompetent.

To investigate the integrity of the parasitophorous vacuolar membrane (PVM) that encloses divided parasites, 
we generated an NF54 strain with a fluorescent mNeonGreen tag on the C-terminus of the endogenous EXP2 
protein, a resident of the PVM25 (Fig. 3A, upper panel). EXP2-mNeonGreen infected cells were treated with 
100 μg/ml heparin and inspected for PVM integrity using fluorescence microscopy. A broken PVM was observed 
in 85% of clustered merozoites (n = 60) in heparin-treated cultures (Fig. 3A, lower panel), in contrast to 5% of 
broken PVM in the apparently normal schizonts of control cultures (n = 64).

Figure 2. Schizonts exposed to heparin show different IDC outcomes. (A) Aborted parasite egress leading to 
formation of merozoite clusters within an erythrocyte. P. falciparum NF54 schizonts were exposed to 100 µg/ml 
of heparin at 37 °C in environmental chambers and parasite egress was recorded using laser-scanning confocal 
microscopy. DIC microscopy: selected frames from Supplemental Movie 1. Scale bars = 5 µm. (B) Inefficient 
merozoite dispersion. P. falciparum NF54 schizonts were exposed to 50 or 100 µg/ml of heparin for 60 min at 
37 °C in environmental chambers and imaged using laser-scanning confocal microscopy. DIC microscopy 
images show examples of egress sites with unseparated, clustered, and separated merozoites (Mz). Note that 
only a limited number of single merozoites are available (left and middle images) to initiate a new cycle of 
erythrocyte invasion. Scale bar = 5 µm.
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In a separate experiment to test the integrity of the PVM, we incubated infected cells with Lucifer Yellow CH 
(LY), a fluorescent marker for the PV space and merozoites (Fig. 3B, upper panel)26,27 and inspected dye distribu-
tion within infected cells in heparin-treated cultures. LY was not found around parasite clusters within infected 
cells (Fig. 3B, lower panel) but rather only in merozoites, presumably because LY leaked out of the PV upon 
rupture of the PVM. Together, these data suggest that most heparin-induced merozoite clusters harbored broken 
PVMs, and therefore that heparin does not interfere with PV disintegration at the end of the IDC.

To investigate whether heparin inhibits erythrocyte membrane rupture, we used Alexa Fluor 488-labeled phal-
loidin, which binds erythrocyte cytoskeletal F-actin28. Fluorescent phalloidin enters infected erythrocytes during 
parasite-induced perforation of the erythrocyte membrane, which precedes natural parasite egress12,14, and labels 
the inner erythrocyte membrane. When we exposed wild-type NF54 schizonts to Alexa Fluor 488-phalloidin and 

Figure 3. Heparin inhibits erythrocyte membrane rupture, but not PV membrane rupture. (A) To detect the 
status of PVM in infected cells, we used P. falciparum NF54 schizonts expressing EXP2-mNeonGreen as a PVM 
marker. Infected cells were imaged in control (upper panel) and heparin-treated cultures (lower panel) (100 µg/
ml of heparin, 60 min at 37 °C). The majority of heparin-treated schizonts had a broken PVM, as gauged by 
fragmentation of the EXP2-mNeonGreen signal. (B) P. falciparum NF54 schizonts were incubated with Lucifer 
Yellow for 2.5 hours at 37 °C, washed, exposed to 100 µg/ml of heparin for 60 min at 37 °C, and imaged using 
laser-scanning confocal microscopy. DIC and fluorescence microscopy images show (upper panel) an immature 
schizont within an LY-filled PV, in which individual merozoites are obscured by accumulated LY in the PV, 
and (lower panel) intra-erythrocytic merozoite clusters surrounded by disintegrated, LY-leaking PVs, in which 
individual merozoites are clearly observed. Scale bars = 5 µm. (C) To detect the status of erythrocyte membrane 
in infected cells we used NF54 schizonts that were incubated in Alexa Fluor 488-phalloidin-supplemented 
medium with or without 100 µg/ml of heparin for 60 min at 37 °C and inspected cells using fluorescence 
microscopy. Almost all clusters in heparin-treated cultures were labeled with phalloidin-Alexa488 while normal 
infected erythrocytes were not (p < 0.001, paired two-tailed t-test). (D) The examples of phalloidin-Alexa 
488-labeled clusters with apparently closed (upper panel) and opened membranes (lower panel). (E) Fraction of 
clusters with opened and closed membranes (n = 181).
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100 µg/ml of heparin (three independent experiments) and analyzed them by fluorescence microscopy, we found 
that 95.6 ± 4.82% of inspected clusters (mean ± SD, n = 3, total number of inspected cells = 181) were surrounded 
with erythrocyte membrane permeable for fluorescent phalloidin, while only 0.55 ± 0.95% (mean ± SD, three 
experiments) of 181 morphologically normal schizonts in the same cultures were fluorescent (Fig. 3C). These data 
suggest that (i) heparin does not interfere with parasite-induced erythrocyte membrane perforation, (ii) clusters 
are enclosed in the erythrocyte membrane, and (iii) heparin was able to enter infected cells before parasite egress. 
Next, we evaluated macroscopic erythrocyte membrane integrity in 119 randomly-selected, phalloidin-labeled 
clusters in heparin-exposed cultures (cumulative data of two independent experiments). About 75% of the 
phalloidin-labeled erythrocytes contained merozoite clusters, enclosed in apparently intact erythrocyte mem-
branes (Fig. 3D, upper panel, and Fig. 3E), while the rest of infected cells had macroscopic defects in the erythro-
cyte membrane (Fig. 3D, lower panel, and Fig. 3E). These data confirm that heparin interferes with erythrocyte 
membrane rupture or erythrocyte membrane shedding that could proceed once the membrane is broken.

Thus, heparin inhibits parasite egress and reinvasion by both blocking erythrocyte membrane rupture and 
impairing parasite dispersion at the end of the IDC.

The mode of heparin interaction with infected erythrocytes and heparin targets. To investigate 
heparin’s interaction with infected erythrocytes and its molecular targets, we used a FITC-heparin conjugate and 
live-cell fluorescence microscopy. FITC-heparin was not found on the surface of uninfected or infected erythro-
cytes during 120 minutes of incubation (Fig. 4A,B) and did not accumulate within schizonts, which can acquire 
other labels5,27. Thus, intact membranes of uninfected and infected erythrocytes neither bind nor translocate 
these highly-charged polymerized heparin molecules, so the mechanism of egress inhibition is likely related to 
the very end of the cycle. To further explore the parasite-heparin interaction, we recorded parasite egress in the 
presence of FITC-heparin, and found that FITC-heparin conjugate enters pre-egressing schizonts just prior to 
erythrocyte membrane rupture (Fig. 4C shows selected frames from Supplementary Movie 2). This timing of 
FITC-heparin entry matches the previously-reported time for parasite-induced perforation of the erythrocyte 
membrane that precedes egress12. The pore size was apparently large enough for FITC-heparin influx, as was 
shown in experiments with the cysteine protease inhibitor E-64, which blocks parasite egress from erythrocytes 
but does not affect erythrocyte membrane perforation10. All inspected E-64-induced merozoite clusters contained 
FITC-heparin within erythrocytes (Fig. 4D, upper panel; compare with Fig. 4D, lower panel showing an imma-
ture schizont in the same culture with intact erythrocyte membrane not labeled with FITC-heparin). However, 
when a specific inhibitor of PfPKG, Compound 2 (C2)29,30, is used to entirely block parasite egress upstream of 
vacuolar and erythrocyte membrane perforation and rupture, morphologically-abnormal infected cells appear 
(63% of all infected cells, n = 200), which are different from the heparin-induced clusters and are not permeable 
for FITC-heparin (n = 60) (Fig. 4E). Thus, by investigating various stages of egress, both before erythrocyte mem-
brane perforation (C2 treatment) and after this step (E-64 treatment), we have strengthened our conclusion that 
heparin can diffuse through parasite-modified erythrocyte membranes prior to egress.

Two FITC-heparin targets were observed: the inner erythrocyte membrane just before egress or in the stalled 
parasite clusters, and the merozoite surface in clusters or egressed parasites (Fig. 5A,B). By observing the mem-
branes of infected erythrocyte ghosts, which had extruded their PVM-enclosed parasites (we confirmed the pres-
ence of PVM around the extruded schizonts using EXP2-mNeonGreen-labeled, NF54-infected cells, Fig. 5C), we 
concluded that the FITC-heparin signal at the inner erythrocyte membrane (Fig. 5D) originated from a parasite 
source for two reasons: (i) uninfected erythrocyte ghosts do not bind FITC-heparin (n = 52, also see Fig. 5E, 
white arrowhead); and (ii) the intensity of erythrocyte membrane fluorescence is directly correlated (r2 = 0.98) 
with the multiplicity of erythrocyte infection (Fig. 5F, n = 80). These observations suggest that heparin targets are 
parasite-derived proteins, rather than infection-modified erythrocyte cytoskeletal proteins.

While the inner erythrocyte membrane showed a FITC-heparin fluorescence signal that was stable for sev-
eral hours, merozoites showed a transient fluorescence signal that disappeared within 15 minutes after egress 
(Fig. 6A). Quantitative image analysis of individual merozoites released from the same schizont in time-lapse 
recordings (every 60 seconds) showed that fluorescence loss from the merozoite surface had a stochastic onset 
(Fig. 6B) and fast progression (Fig. 6C). Initiation of fluorescence loss was spread over a period of 205.2 ± 48.1 sec-
onds (mean ± SEM) and characterized by an exponential with a time constant ± 95% confidence interval of 
147.2 ± 81.5 seconds (Fig. 6B). Single-exponential decay equations fit to the fluorescence loss of parasites from 
the point of loss initiation (the end of the “shoulder” of fluorescence loss) had a time constant of 175.2 ± 72.6 sec-
onds (mean ± SEM, four experiments with 3, 5, 7, and 5 individually-measured parasites in each experiment).

The high fluorescence intensity on merozoite surfaces indicates an abundance of FITC-heparin target. The 
transient nature of this signal suggests that heparin may bind proteins that are shed during merozoite invasion 
by the Ca2+-dependent subtilisin-type protease PfSUB2 and rhomboid proteases PfROM1 and PfROM431,32. To 
discriminate between these, we investigated the Ca2+-dependence of heparin shedding in vitro. The drop in mero-
zoite surface fluorescence was abolished when merozoites egressed into Ca2+-free medium (Fig. 6D), suggesting 
that the shedding of MSP1, the only known target of PfSUB2 on the merozoite surface that can bind heparin33–36, 
is causing the fluorescence loss. The enhanced stability of merozoite surface fluorescence in Ca2+-free medium 
enabled us to evaluate the photobleaching kinetics of FITC-heparin as a function of multiple scans. Quantitative 
image analysis revealed a slight decline in fluorescence over time (Fig. 6E), which can be ascribed to photobleach-
ing. Thus, photobleaching was induced and measured by imaging the merozoites with frequent frame rates, and 
then quantified as a function of frame number (mean ± SEM frame constant, 35.7 ± 11.16 frames, n = 18 mero-
zoites from two experiments). Knowing the rate of observed fluorescence decay in Ca2+-containing medium (one 
frame per minute), we calculated a time constant of decay due to photobleaching of 2140 seconds (~36 minutes), 
12-fold longer than that observed above. This result excludes photobleaching of FITC as a significant factor in the 
disappearance of fluorescence from the merozoite surface in Ca2+-containing medium (Fig. 6C). The observed 
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Figure 4. Heparin enters infected erythrocytes just prior to parasite egress. (A,B) P. falciparum NF54 schizonts 
were exposed to 10 (A) or 20 (B) µg/ml of FITC-heparin for 60 (A) or 120 min (B) at 37 °C in environmental 
chambers, and imaged using laser-scanning confocal microscopy. DIC and fluorescent microscopy images show 
schizonts a few seconds before parasite egress. (C) CP803 schizonts were incubated in 20 µg/ml of FITC-heparin 
for 60 min at 37 °C in environmental chambers, and imaged using laser-scanning confocal microscopy. DIC and 
fluorescent microscopy images from a live-cell recording of parasite egress (Supplemental Movie 2) are shown. 
(D) NF54 schizonts were incubated with 10 µg/ml of FITC-heparin and 10 µM of E-64 for 30 min at 37 °C, washed, 
placed in environmental chambers, and imaged using laser-scanning confocal microscopy. The upper panel shows 
an E-64-induced merozoite cluster filled with FITC-heparin that entered the perforated erythrocyte membrane, 
and an uninfected erythrocyte. The lower panel shows an immature schizont with an erythrocyte membrane that 
is still impermeable to FITC-heparin. (E) NF54 schizonts were incubated with 10 µg/ml of FITC-heparin and 4 µM 
of C2 for 30 min at 37 °C in environmental chambers, and imaged using laser-scanning confocal microscopy. C2-
induced morphologically-abnormal schizonts were not labeled with FITC-Heparin (n = 60). Scale bars = 5 µm.
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asynchronous nature of FITC-heparin shedding likely reflects a stochastic interaction between merozoite and 
putative shedding-inducing stimuli, such as receptors on erythrocyte membrane fragments at egress sites. After 
initiation, shedding proceeded at the same rate in most merozoites, supporting the possibility that it is an enzy-
matic reaction. Together, these data suggest that MSP1 is the most likely merozoite surface protein to bind hep-
arin in our experiments.

A third heparin target was detected as the sudden appearance of a strong punctate fluorescence signal at the 
merozoite apical prominence (visualized by DIC microscopy) following shedding of heparin from the merozoite 
surface, i.e. not immediately after egress (Fig. 7A, Supplementary Movie 3), which then persisted for a prolonged 
period. The sequential nature of the shedding of heparin-binding merozoite surface proteins and appearance of 
apical fluorescence signal seem to represent two independent steps of the invasion process. Blocking the shedding 
of heparin from the merozoite surface in Ca2+-free medium did not affect the timely appearance of apical fluo-
rescence signal on merozoites (Fig. 7B). The extrusion of apical material somewhat mimics the events of natural 

Figure 5. Heparin targets the inner erythrocyte membrane and the merozoite surface. (A,B) P. falciparum 
CP803 and NF54 schizonts were incubated with 5 (CP803) or 10 µg/ml (NF54) of FITC-heparin for 60 min at 
37 °C in environmental chambers, and imaged using laser-scanning confocal microscopy. (A) NF54 merozoite 
cluster enclosed within a perforated erythrocyte. Note that both the merozoite and erythrocyte membranes are 
labeled with FITC-heparin. (B) CP803 parasite egress site containing labeled merozoites (orange arrowhead) 
and erythrocyte membrane remnants (white arrowhead). (C) NF54-EXP2-mNeonGreen schizonts were 
incubated in isotonic “high-potassium” buffer (140 mM KCl, 5 mM NaCl, 0.4 mM CaCl2, 0.4 mM MgCl2, 25 mM 
HEPES, 4.5 mg/ml glucose, 0.5% Albumax II), and imaged using laser-scanning confocal microscopy. Due to 
the higher permeability of infected erythrocytes for potassium than sodium ions, many infected cells swelled, 
hemolyzed, and frequently extruded their vacuoles together with schizonts. An extruded schizont still retained 
within its PV judged by the presence of EXP2-mNeonGreen-labelled membrane around it. PV with schizont 
remains tethered to erythrocyte membrane. (D) A culture of NF54-infected cells was treated as described in 
(C) except that the “high-potassium” buffer was supplemented with 10 µg/ml of FITC-heparin. Note that FITC-
heparin only labeled the erythrocyte ghost. PV membrane is impermeable to FITC-heparin. (E) Two RF967 
parasites extruded from infected erythrocytes in the presence of FITC-heparin. Note the different intensity 
of erythrocyte membrane fluorescence in the single- versus the triple-infected erythrocyte. Both extruded 
parasites (orange arrowheads) are enclosed in PV membranes that are impermeable to FITC-heparin. Note 
that the non-infected erythrocyte ghost (white arrowhead) does not bind FITC-heparin. Scale bars = 5 µm. (F) 
NF54-infected cells were treated as described in (D) and imaged using laser-scanning confocal microscopy. The 
mean membrane pixel intensity of the individual erythrocyte ghosts of single-, double-, triple-, and quadruple-
infected cells was assessed (n = 80) and taken as a data point. Data are presented as a normalized value to the 
value of the single-infected cells (mean ± SD). Line shows a result of the linear regression analysis, r2 = 0.98.
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Figure 6. Ca2+-dependent shedding of heparin-binding target from the merozoite surface. (A–C) P. falciparum 
NF54 schizonts were incubated in 1 µg/ml of FITC-heparin for 60 min at 37 °C in environmental chambers, 
and imaged using laser-scanning confocal microscopy. (A) Selected frames from a representative egress site are 
shown (Supplementary Movie 3). Note that all in-focus merozoites show bright surface fluorescence at 4 min 
post egress, only two merozoites show weak surface fluorescence at 15 min post egress, and no merozoites show 
fluorescence at 20 min post egress; however, the erythrocyte membrane (white arrow) retains its fluorescence at 
25 min post egress. (B) When the timing of merozoite fluorescence loss events are plotted together (t = 0, first 
fluorescence loss in each experiment), a logarithmic relationship (red) is revealed, suggesting that the initiation 
of fluorescence loss for each inspected merozoite has a stochastic component. (C) The mean time course of each 
merozoite’s fluorescence loss, aligned to the moment of initiation, shows that it occurs fast, within 2-3 min or 
roughly the same time scale (approximately 3 times slower) as invasion-induced shedding (within 1 min). Cyan 
band: 95% confidence interval. Light gray traces: individual merozoite intensities. (D,E) NF54 schizonts were 
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merozoite invasion in vitro37,38 and may be involved in the reported inhibition of parasite invasion by heparin17, 
but not in Ca2+-free medium39,40.

Discussion
Our data show that the highly-charged natural polymer heparin inhibits P. falciparum egress in vitro, exploiting 
a previously-unrecognized mode of interaction with infected erythrocytes from within, entering cells through 
parasite-derived pores in the erythrocyte membrane prior to parasite egress. The following heparin-cell inter-
actions show the topology of proteins that are critically involved in the egress mechanism: surface proteins of 
merozoites and the inner aspect of erythrocyte membranes. The mechanics of egress inhibition includes inhi-
bition of erythrocyte membrane rupture and prevention of merozoite dispersion. The fast kinetics of heparin 
binding to its targets and high intensity of FITC-heparin signal at the binding sites suggest that heparin has a high 
binding affinity for abundant parasite proteins. One of them is likely MSP1, a major merozoite surface protein 
that was recently implicated in parasite egress9. It was suggested that MSP1 interacts with spectrin, a component 
of the erythrocyte cytoskeleton, to disrupt the erythrocyte membrane and release merozoites. MSP1 is the most 
likely heparin target on the merozoite surface because it is a major merozoite surface protein and the only known 
heparin-binding protein to be shed from the merozoite surface by the Ca2+-dependent protease PfSUB2 after 
parasite egress34,35,41. Heparin-MSP1 binding may also explain poor merozoite dispersion. The heparin-induced 
merozoite clusters we observed appear to be the same as those induced by human antibodies specific for mero-
zoite surface proteins42. The binding of polyvalent molecules such as heparin and antibodies to the merozoite sur-
face may impair merozoite dispersion by effectively creating an adhesive between adjacent merozoites, preventing 
the formation of singular merozoites that are responsible for initiating a new round of erythrocyte invasion and 
parasite replication. Heparin binding to the inner erythrocyte membrane, which we suggest prevents erythrocyte 
membrane rupture and thus egress, could involve one or more parasite proteins known both to interact with 
components of the erythrocyte membrane and to bind heparin36. These include PfEMP2 (MESA), which inter-
acts with the erythrocyte cytoskeletal protein 4.143–46, and CLAG 3.1–3.2, which are proposed components of a 
nutrient channel in infected erythrocytes47.

Besides playing a role in egress, MSP1 is thought to mediate the merozoite’s interaction with the erythro-
cyte surface upon invasion17,48–50, after which time MSP1 and several other surface proteins are shed from the 
merozoite as it enters an erythrocyte41. This Ca2+-dependent protein shedding51, assayed as MSP-1 processing in 
vitro using purified merozoites, has apparent first-order kinetics with an MSP-1 processing half-life of approx-
imately 20 minutes52. Here we show that FITC-heparin is also shed from live egressed merozoites in a similarly 
Ca2+-dependent manner. By not interfering with surface protein shedding, heparin might not inhibit merozoite 
penetration into erythrocytes. However, specific merozoite-erythrocyte interactions that precede invasion may 
be negatively affected by heparin. Indeed, several studies suggest that stages prior to merozoite penetration are 
blocked in the presence of heparin17,22.

The sudden appearance of a third heparin-binding site on the apical prominence of merozoites late after egress 
was independent of Ca2+-dependent protease activation, and seemed to occur with or without shedding of the 
second binding partner from parasite surfaces. Since the merozoite is fully formed at this third stage of apical hep-
arin binding, the appearance of this late membrane-bound heparin target can occur either by merozoite extrusion 
or enzymatic modification of pre-existing surface proteins. Based on electron microscopy images of invading 
merozoites extruding rhoptry material into erythrocytes37,38 and observations that rhoptry proteins are well rep-
resented among the parasite’s heparin-binding proteins36,53, we suggest that this heparin target is a component of 
the extruded rhoptry material.

Our data suggest two heparin targets on the merozoite surface because merozoites could initiate a 
pseudo-invasion program under our experimental invasion-free conditions. In 1992, Trager et al.54 showed 
that extra-erythrocytic parasite development might occur in vitro in medium supplemented with erythrocyte 
homogenate. Here we show that regular culture medium supports early developmental steps. The dynamic inter-
action of heparin with merozoites that we observed using live-cell microscopy might explain a controversy orig-
inating from previous publications that used static-cell imaging. One paper described heparin binding to the 
apical region of merozoites53, while another showed heparin binding to the entire merozoite surface55. In addi-
tion, a developmental sequence of protein exposures regulated by a timed series of protein release from parasite 
secretory organelles is highly reminiscent of echinoderm zygotic development after fertilization56.

Conceptually, this work demonstrates that egress mechanisms can be targeted with large hydrophilic 
drugs, opening new avenues for antimalarial drug development that exploit the parasite’s own induction of a 
short-lasting stage-specific permeability to circumvent the anticipated membrane barrier to drug entry57. 
Heparin’s interaction with merozoite surface proteins and infection-modified erythrocyte membranes could be 
centrally important to understanding the critical mediators of parasite egress, parasite dispersion, and dissemina-
tion in general. Heparin’s fast entry is in part due to the very small volume between the merozoites and the plasma 
membrane just before egress, allowing diffusion to rapidly fill this space. Its action inside infected erythrocytes 
demonstrates the feasibility of employing proteins, peptides, or other natural polymers targeting the parasite 
egress mechanism to prevent parasite dissemination. Indeed, heparin recapitulates some of the effects exerted 
by immune antibodies42, and does so in several P. falciparum strains, thus lacking the specificity of antibodies. 

incubated in 10 µg/ml of FITC-heparin and 5 mM EGTA for 60 min at 37 °C in environmental chambers, and 
imaged using laser-scanning confocal microscopy. Selected frames from a representative egress site are shown. 
Note that all in-focus merozoites show bright surface fluorescence for more than 20 min (D). Quantitative 
image analysis of individual merozoites in time-lapse recordings (every 60 seconds) shows that their rate of 
fluorescence loss after egressing from the same schizont was slow (E). Scale bars = 5 µm.
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Polypeptides complementary to the functionally-conserved sequences of parasite proteins involved in parasite 
egress and invasion may be worth investigating to develop antimalarials that interact with intracellular parasites, 
including drug-resistant strains.

Methods
P. falciparum strains and human erythrocytes. We used three strains of P. falciparum: NF54, a long-
term-adapted laboratory reference strain (ATCC, Manassas, VA); and CP803 and RF967, two short-term-
adapted, artemisinin-resistant clinical isolates from Cambodian patients with malaria58. The clinical isolates were 
collected on a protocol (ClinicalTrials.gov identifier no. NCT00341003) approved by the Cambodian National 
Ethics Committee for Health Research and NIAID Institutional Review Board (IRB), in which patients gave writ-
ten informed consent, and were maintained in culture in our laboratories.

Generation of NF54 EXP2-mNeonGreen parasites. Integration of an mNeonGreen fusion at the 
endogenous EXP2 C-terminus was accomplished with CRISPR/Cas9 editing. A guide RNA target downstream of 
the exp2 stop codon was chosen and the gRNA seed sequence was ordered as sense and antisense oligo pairs (P1/
P2), annealed and inserted into the plasmid pAIO59 at BtgZI using an In-Fusion cloning kit (Clontech), resulting 
in the plasmid pAIO-EXP2-CT-gRNA. The vector pPM2GT60 was modified to replace the hDHFR selection cas-
sette with a yDHODH selection cassette amplified from the plasmid pUF-161 using primers P3/P4 and inserted 
between BglII and SalI sites, resulting in the vector pyPM2GT. A 5′ homology donor template (up to but not 
including the exp2 stop codon) and a 3′ homology donor template (beginning 156 bp downstream of the exp2 stop 
codon just after the gRNA seed sequence) were PCR amplified from P. falciparum NF54 genomic DNA (primers 
P5/6 and P7/8, respectively), assembled in a second PCR reaction using primers P7/P6, and inserted between 
XhoI and AvrII sites in pyPM2GT. The mNeonGreen coding sequence62 was amplified with primers P9/10 (add-
ing a flexible linker between EXP2 and mNeonGreen) and inserted between AvrII and EagI sites, resulting in the 
plasmid pyPM2GT-EXP2-mNeonGreen. This vector was linearized at the AflII site between the 3′and 5′ donor 
sequences and co-transfected with pAIO-EXP2-CT-gRNA into P. falciparum NF54attB parasites63. Selection with 
2 µM DSM-1 was applied 24 hours post transfection. After returning from selection, integration at the intended 
site was confirmed by PCR using primers P11/P12. A clonal line containing the EXP2-mNeonGreen fusion was 
obtained by limiting dilution.

List of used primers for generation of NF54-EXP2-mNeonGreen parasites.
P1  TAAGTATATAATATTatattatgtacagtatctgaGTTTTAGAGCTAGAA
P2  TTCTAGCTCTAAAACtcagatactgtacataatatAATATTATATACTTA
P3  GGGAGACCGGCAGATCTTATAAGGAAATTCCC
P4  ATGCCTGCAGGTCGACTCTAGAGGATCCCCGG
P5  GTTTGATTATTTTATTTATGTACTCTCCTTATGACTTAAGCCTTGAGAGAAATATGGGAT

Figure 7. Heparin binds material extruded from the apical prominence of merozoites. (A,B) P. falciparum 
NF54 schizonts were exposed to 1 µg/ml of FITC-heparin for 60 min at 37 °C in environmental chambers, and 
imaged using laser-scanning confocal microscopy. (A) In Ca2+-containing medium, heparin is shed from the 
merozoite surface but also binds material extruded from the apical prominence (arrow) of merozoites. (B) In 
EGTA-containing medium, heparin remains bound to the merozoite surface but does not prevent the extrusion 
of heparin-binding material from the apical prominence. Scale bars = 5 µm.
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P6  CTGCACCTGGCCTAGGTTCTTTATTTTCATCTTTTTTTTCATTTTTAAATAAATCTCCAC
P7  CACTATAGAACTCGAGGGAGAAACAATCTTTTATATAAAATGTACAGAGTTTGAAAG
P8  ATCCCATATTTCTCTCAAGGCTTAAGTCATAAGGAGAGTACATAAATAAAATAATCAAAC
P9  GATGAAAATAAAGAACCTAGGGGAAGTGGAGGAGTGAGCAAGGGCGAGGAGGATAAC
P10  TAACTCGACGCGGCCGTCACTTGTACAGCTCGTCCATGCCCATC
P11  GCAACAAGTGCCTTAACCACCG
P12  GTAAGTCTTCTTCGACCTGCAC
*gRNA seed sequences are showing in lower case.
We maintained all parasite cultures in human erythrocytes isolated from the blood of healthy donors (who 

had consented to participate in the NIH IRB-approved Research Donor Program in Bethesda, MD; all samples 
were anonymized) in culture medium: RPMI 1640 medium supplemented with 25 mM HEPES, 0.1 mM hypox-
anthine, 25 µg/ml gentamicin, 0.5% Albumax II (all from Gibco, Waltham, MA), and 4.5 mg/ml glucose (Sigma, 
St. Louis, MO). Cultures were maintained at low parasitemia and 5% hematocrit.

Heparin. We used heparin (H3149, Sigma) at concentrations of 25–100 µg/ml in culture medium (~20 U/ml 
of physiological activity) or fluorescently-labelled heparin (FITC-heparin, H7482, Life Technologies, Waltham, 
MA) at concentrations of 1–20 µg/ml in culture medium.

Inhibitors. Compound 2 (4-[7-[(dimethylamino)methyl]-2-(4-fluorphenyl) imidazo[1,2-a] pyridine-3-yl]
pyrimidin-2-amine; MRT00072329) was provided by Dr. Simon Osborne, Medical Research Council Technology 
(MRCT), United Kingdom and E-64, a cysteine protease inhibitor, was purchased from Sigma (E3132).

Parasite egress assays. We performed live-cell recording as described24 using an LSM 510 laser-scanning 
microscope (Carl Zeiss AG, Oberkochen, Germany) with a 63 × 1.4 NA oil objective and 488-nm laser with low 
light intensity to minimize cell photodamage. To observe parasite egress, we isolated schizonts from culture using 
65% Percoll64,65, adjusted them to 0.1–0.2% hematocrit in media of different compositions at 37 °C, and placed 
them into special environmental chambers for microscopy (HybriWell HBW20, Grace Bio-Labs, Inc., Bend, OR). 
These chambers preserve cell viability for several hours, as well as egress sites, i.e., places where schizonts ruptured 
and released merozoites at the end of their IDC24. To quantify the effect of heparin on egress, we kept chambers 
at 37 °C for 60–90 minutes to accumulate egress sites, and then cooled them at 15 °C for 30 minutes to stop egress. 
We quantified egress as the fraction of schizonts releasing merozoites.

Quantitative image analysis. We manually selected individual FITC-heparin-labeled merozoite regions 
of interest (ROIs, 2 μm × 2 μm) in time-lapse recordings to measure loss of cell fluorescence, excluding those 
that were tightly packed (<2 μm) or moving out of focus. We tracked relative merozoite positions using a 
cross-correlation search strategy, matching merozoites at each time point to a static reference template created 
by averaging the positions of four merozoites. This corrected for stage drift through time and for small lateral cell 
movements. We then measured the average fluorescence within each ROI, and time-centered this value at the ini-
tiation of fluorescence loss. We manually identified initiation points by detecting the end of the “shoulder” of flu-
orescence loss, and the beginning of the period resembling an exponential decay. We then fit single-exponential 
decay equations to the 500-second period beginning at the initiation point for each merozoite, and averaged the 
resulting time constants. We measured photobleaching by fitting exponential decay functions on a frame-wise 
basis during the photobleaching period at the end of experiments with blocked heparin complex shedding. We 
then multiplied the resulting frame constants by the time per frame to obtain a photobleaching time course.

To quantify the FITC-Heparin signal from the membrane of ghosts in single- and multiple-infected RBCs, one 
confocal image was taken at the equator of the RBC with a pinhole of 1 Airy Unit. All imaging parameters were 
kept constant after adjusting them to prevent detector saturation. RBC membrane fluorescence was then thresh-
olded using the Otsu method66 to exclude background fluorescence. The mean pixel intensity of the thresholded 
image was taken as a data point.

All methods using in this research were carried out in accordance with relevant guidelines and regulations.
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