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Abstract

Accumulating evidence suggests that basic visual information processing is impaired in schizophrenia. However, deficits in
peripheral vision remain largely unexplored. Here we hypothesized that sensory processing of information in the visual
periphery would be impaired in schizophrenia patients and, as a result, crowding – the breakdown in target recognition that
occurs in cluttered visual environments – would be stronger. Therefore, we assessed visual crowding in the peripheral vision
of schizophrenia patients and healthy controls. Subjects were asked to identify a target letter that was surrounded by
distracter letters of similar appearance. Targets and distracters were displayed at 8u and 10u of visual angle from the fixation
point (eccentricity), and target-distracter spacing was 2u, 3u, 4u, 5u, 6u, 7u or 8u of visual angle. Eccentricity and target-
distracter spacing were randomly varied. Accuracy was defined as the proportion of correctly identified targets. Critical
spacing was defined as the spacing at which target identification accuracy began to deteriorate, and was assessed at
viewing eccentricities of 8u and 10u. Schizophrenia patients were less accurate and showed a larger critical spacing than
healthy individuals. These results indicate that crowding is stronger and sensory processing of information in the visual
periphery is impaired in schizophrenia. This is in line with previous reports of preferential magnocellular dysfunction in
schizophrenia. Thus, deficits in peripheral vision may account for perceptual alterations and contribute to cognitive
dysfunction in schizophrenia.

Citation: Kraehenmann R, Vollenweider FX, Seifritz E, Kometer M (2012) Crowding Deficits in the Visual Periphery of Schizophrenia Patients. PLoS ONE 7(9):
e45884. doi:10.1371/journal.pone.0045884

Editor: Michael H. Herzog, Ecole Polytechnique Federale de Lausanne, Switzerland

Received May 15, 2012; Accepted August 27, 2012; Published September 26, 2012

Copyright: � 2012 Kraehenmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was funded in part by a restricted grant of the Foundation for Medical Research of the University of Zurich (RK). The Foundation for Medical
Research of the University of Zurich had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. No
additional external funding was received for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: michael.kometer@bli.uzh.ch

Introduction

Deficits in basic visual information processing are a key

impairment in schizophrenia. They are related to higher-order

neurocognitive dysfunctions and functional outcomes [1–3] and

are evident at incipient stages of schizophrenia before any

psychotic symptoms occur [4]. However, the conditions under

which dysfunctional visual processing occurs are unclear [5,6].

Under natural viewing conditions, information from the visual

periphery is essential for object and scene gist recognition, as well

as for guiding eye movements to context-relevant locations [7,8].

Previous studies on visual information processing in schizophrenia

have largely neglected peripheral vision, and information regard-

ing the presence, extent and nature of peripheral visual

dysfunction in schizophrenia is incomplete and inconsistent [9–

15]. For example, although Miller et al. [14] found no difference

between central and peripheral visual processing in schizophrenia

patients, Elahipanah et al. [10] found disproportionately large

deficits when target stimuli were located peripherally, and

Granholm et al. [11] identified peripheral deficits in schizophrenia

patients that were most prominent when object density in the

visual field was high. It therefore appears as though peripheral

vision may be impaired in schizophrenia.

Crowding is a breakdown in object perception whereby one’s

ability to recognize a peripheral target is severely impaired by the

presence of flanking objects [16]. Crowding in peripheral vision

reduces the ability to recognize objects because they are too close

together, and leads to a phenomenon whereby a single object in

the periphery (‘‘target’’) becomes indistinct from nearby objects

(‘‘distracters’’). As such, it is object spacing (target-distracter

distance), and not object size (spatial resolution), that critically

limits target-distracter discrimination in the periphery [16,17].

Crowding is closely related to input processing in low-level visual

cortices, where target and distracter signals are ‘‘compulsorily

pooled’’ [18,19]. Although this has the advantage of information

compression, it comes at the cost of target-distracter discrimina-

bility [19–22]. In healthy individuals, crowding occurs when

spacing falls below a critical value (critical spacing). This critical

value of spacing increases as the visual angle between the fixation

point and target (eccentricity) increases, and the approximately

linear relationship between the two is been termed ‘‘Bouma’s rule’’

[21].

It is suggested that peripheral visual stimuli are preferentially

processed via the magnocellular pathway [23–26], which is

disrupted in schizophrenia [27–29]. This is consistent with reports

of peripheral vision deficits in schizophrenia patients [9–11,15].

Therefore, we hypothesized that sensory processing of information

from the visual periphery would be impaired in schizophrenia

patients and, as a result, crowding would be stronger than in

healthy individuals. To test this hypothesis we studied crowding in
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the visual periphery of both schizophrenic patients and healthy

controls. We expected that accuracy in the crowding task would be

lower, and the critical spacing larger, in schizophrenia patients

than in healthy individuals.

Materials and Methods

Ethics statement
This study was approved by the Ethics Committee of the

Canton of Zurich and was carried out in accordance with The

Code of Ethics of the World Medical Association (Declaration of

Helsinki, 2008 version). A clinician who was experienced in the

evaluation of mental illness assessed by a direct examination of

participants, their understanding of all the procedures and

capacity to consent [30]. The participants were included in the

study only if they had the full capacity to consent.

Subjects
Twenty patients meeting the DSM-IV criteria for schizophrenia

and 20 healthy subjects participated in the study. Schizophrenia

patients comprised inpatients (n = 5) and outpatients (n = 15).

Schizophrenia patients were recruited from the Psychiatric

University Hospital Zurich and healthy controls were recruited

by advertisement from the University of Zurich and the Zurich

urban area. Diagnoses were obtained using the Mini International

Neuropsychiatric Interview (MINI) [31] and available clinical

information. Controls with a history of DSM-IV Axis I psychiatric

disorder or substance dependence within the last year, as assessed

by the MINI, were excluded. Patients and controls were excluded

if they had a history of neurological or ophthalmologic disorders.

All subjects were between 19 and 54 years old and had a corrected

visual acuity of at least 0.6 according to the Freiburg Visual Acuity

Test [32]. Groups were matched for age (t(38) = 21.51, p = 0.139),

gender (Fisher’s exact test, odds ratio = 0.63, 95% confidence

interval = [0.12, 2.96], p = 0.731), IQ (t(38) = 1.76, p = 0.087) and

visual acuity (t(37) = 0.48, p = 0.631). All patients were receiving

antipsychotic medication at the time of testing. Chlorpromazine

equivalents were calculated using conversion factors described

elsewhere [33,34]. The chlorpromazine equivalent dose of

paliperidone is not adequately defined in the literature; therefore,

the chlorpromazine equivalent dose was calculated from the

defined daily dose set out in the WHO Collaborating Center for

Drug Statistics Methodology Index 2011 (http://www.whocc.no/

atc_ddd_index). A certified Positive and Negative Syndrome Scale

(PANSS) rater (RK; The PANSS Institute LLC, NY) obtained

PANSS ratings from patients. Demographics and clinical charac-

teristics of subjects are presented in Table 1.

Apparatus
Subjects were tested in a dimly lit room (ambient illumination,

11 lux). Stimuli were presented using E-Prime software (Psychol-

ogy Software Tools Inc., Pittsburgh, PA) and displayed on a liquid

crystal display (Hewlett-Packard LP2065, resolution 160061200

pixels; Radeon HD4350 graphics card) placed 0.75 m in front of

the subject. Head movement was constrained by a head-chin rest.

During administration of the examination, the experimenter (RK)

sat behind the computer screen and monitored eye movements

and eye gaze direction in real time with an infrared eye camera.

All participants reliably maintained central eye fixation. Further-

more, we reduced processing time by backward-masking and

presented the stimuli in a randomized order on the left and the

right sight of the screen to reduce the amount of eye movements

towards the target stimuli.

Visual stimuli
The visual stimuli comprised uppercase letters from the Roman

alphabet. All letters were presented in a dark gray color on a white

background (background illumination, 63 lux) and were of

identical height and width (0.8u of visual angle). Four variables

were manipulated: target, target-distracter spacing, the side of

stimulus presentation, and the stimulus presentation eccentricity.

Target. The target letters were upright or 90u tilted

uppercase ‘‘T’’s, which appeared alone or flanked by uppercase

distracter letters (‘‘I’’ or ‘‘H’’) above and below. The target and

distracter letters were similar in appearance to increase the

crowding effect [39].

Spacing. Distracters appeared at one of seven equidistant

locations on the vertical meridian of the targets. The target-

distracter spacings (center-to-center) were 2u, 3u, 4u, 5u, 6u, 7u and

8u of visual angle (Figure 1).

Side. Targets and distracters appeared on either the left or

right side of the central fixation point to ensure reliable central

fixation, since selectively fixating at the left or right side of the

central fixation point would be counterproductive for the subjects’

accuracy performance.

Eccentricity. Targets and distracters appeared at either 8u or

10u of visual angle from the horizontal meridian.

Experimental procedures
The crowding task has been previously described [40]. Figure 1

depicts a trial sequence in this crowding task. Subjects were

instructed to fixate on a central point before stimulus onset, and to

maintain central fixation during the trials. They were then asked

to press the space key on the computer keyboard to initiate the

trial. Initially, a fixation point (with a diameter of 0.2u of visual

angle) appeared for 1500 ms. Next, target and distracter letters

were displayed for 60 ms. This short interval between the stimuli

interval precluded any eye movement [41]. Subsequently, masks

appeared at the same target/distracter locations for 200 ms.

Finally, a response screen displaying a fixation point was shown.

At this time, the subjects were required to indicate whether they

saw an upright or 90u tilted ‘‘T’’ by pressing the appropriate key

on the computer keyboard. Following the response, a new trial was

started. No feedback was given. The experiment consisted of six

blocks of 64 trials each, giving a total of 384 trials. Within each

block, all variables (target, spacing, side and eccentricity) were

randomly intermixed. Spacing conditions appeared with equal

probability (including a ‘‘target-only’’ condition where the target

appeared without distracters). Between blocks, the subjects

received a short break to avoid fatigue. Test blocks of 16 trials

with visual feedback were performed before the experiment, and

were repeated until the experimenter was sure that the subject

understood the procedure.

Calculation of critical spacing
Crowding occurs when target-distracter spacing falls below a

critical value and recognition of the target letter is reduced. We

computed the critical spacing value using a two-step algorithm.

First, a logistic function (equation 1) was modeled to the data

obtained from each individual subject, where y is the probability of

correct target recognition and x is the corresponding target-

distracter spacing:

y~0:5z
a{0:5

1z exp (b(x{c))
1Þ:
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The constants a, b and c were used for standardization. Critical

spacing was then computed from the fitted logistic function

(equation 2) as the point of the curve where accuracy began to

deteriorate [18,40,42]. We defined critical spacing according to

Scolari et al. [40] and Yeshurun and Rashal [43], i.e., the point at

which accuracy reached 90% of asymptotic performance:

cs~

loge

0:1a

0:9a{0:5

� �

b
zc 2Þ:

Statistical analyses
All data were first tested for normality by means of a Shapiro-

Wilk test. Accuracy was calculated as the proportion of correctly

identified targets. Accuracy was then analyzed using a 2676266

mixed model analysis of variance (ANOVA) with group (schizo-

phrenia, control) as a between-group factor, and spacing (2u, 3u,
4u, 5u, 6u, 7u, 8u), eccentricity (8u, 10u) and block (1, 2, 3, 4, 5, 6) as

within-group factors. To control for group differences due to

differential feature detection, attention, or task engagement effects,

the effect of group on accuracy during the target-only condition

was assessed using an unpaired t test for accuracy at each

eccentricity (8u, 10u). Critical spacing was analyzed using a 262

mixed model ANOVA with group (schizophrenia, control) as a

between-group factor and eccentricity (8u, 10u) as a within-group

factor. When the ANOVA assumption of sphericity was violated,

the Greenhouse-Geisser correction [44] was applied. Bonferroni-

corrected post-hoc t tests were performed when ANOVA

identified significant group main effects or interactions. General-

ized eta squared (gG
2) [45] or Cohen’s d [46] were reported as

measures of effect size. Pearson’s product moment correlation was

used to examine correlations between critical spacing and

demographic/clinical variables. All significance levels were two-

tailed with a preset a,0.05. If not stated otherwise, all values

represent the mean (6 standard deviation). The open source

statistical software R, version 2.14.2 [47] was used for statistical

analyses.

Results

Accuracy
Figure 2 shows target identification accuracy as a function of

spacing at 8u and 10u eccentricity in the patient and the control

groups. Accuracy was significantly lower in the schizophrenia

group than in the control group [F(1, 38) = 10.4, p = 0.003,

gG
2 = 0.09]. A significant main effect was found for spacing

[F(2.17, 82.5) = 129, p,0.001, gG
2 = 0.57] demonstrating in-

creased accuracy with increased spacing. The main effect of

target eccentricity was also significant [F(1, 38) = 8.38, p = 0.006,

gG
2 = 0.01] – accuracy decreased as target eccentricity increased.

There was also a spacing 6 eccentricity interaction [F(3.78,

144) = 5.15, p,0.001, gG
2 = 0.024]. At 8u eccentricity, accuracy

was significantly lower in the schizophrenia group than in the

control group at spacings of 3u [t(38) = 4.95, p,0.001, d = 1.56],

4u [t(38) = 3.13, p = 0.024, d = 0.99] and 6u [t(38) = 3.17,

p = 0.021, d = 1.00]. At 10u eccentricity, accuracy was signifi-

cantly lower in the schizophrenia group than in the control

group at spacings of 4u [t(38) = 3.20, p = 0.019, d = 1.01], 5u
[t(38) = 3.43, p = 0.010, d = 1.08] and 8u [t(38) = 3.84, p = 0.003,

d = 1.22].

Accuracy during the target-only condition at 8u eccentricity was

similar for both groups [t(38) = 1.64, p = 0.110, d = 0.52]. There

was a tendency for schizophrenia patients to perform worse than

controls at 10u eccentricity (accuracy of 0.96 (0.072) and 0.99

(0.023) respectively; t(38) = 1.97, p = 0.056, d = 0.62), but this was

Table 1. Demographic and clinical characteristics of schizophrenia patients and healthy controls.

Schizophrenia patients (n = 20) Healthy controls (n = 20)

Age (y) 39.9 (9.66) 35.0 (11.2)

Gender (m/f) 13/7 15/5

MWT-B IQ 100.1 (15.3) 108.8 (16.0)

Visual acuity 1.31 (0.38) 1.36 (0.31)

Onset age (y) 22.6 (4.75)

Illness duration (y) 16.8 (9.13)

Lifetime admissions (n) 6.30 (5.29)

Chlorpromazine daily equivalent (mg) 405 (377)

Atypical antipsychotic medication(n) 20

Typical antipsychotic medication(n) 4

PANSS total score 80.8 (17.7)

PANSS positive subscore 18.6 (6.12)

PANSS negative subscore 20.5 (4.47)

PANSS disorganization subscore 10.8 (2.97)

RHS 8.70 (2.25)

Values represent the mean (6 standard deviation) unless otherwise indicated.
MWT-B IQ, Multiple Choice Vocabulary IQ [35]; PANSS, Positive and Negative Syndrome Scale [36,37]; RHS, Revised Hallucination Scale, 6-item visual score [38].
doi:10.1371/journal.pone.0045884.t001
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Figure 1. Schematic showing the crowding experiment and selected examples of stimuli used in the experiment. Panel A: A fixation
point was first presented for 1500 ms, followed by a target/distracter array (4u spacing/10u eccentricity condition shown here) for 60 ms. Then, a
mask appeared for 200 ms. Finally, a response screen displaying a fixation point was shown and the subjects were required to register whether they
saw an upright or 90u tilted target ‘‘T’’ by pressing a key. Panel B: 2u spacing/10u eccentricity condition (top left); 8u spacing/10u eccentricity
condition (top right); target-only/10u eccentricity condition, 90u tilted target ‘‘T’’ (bottom left); 8u spacing/8u eccentricity condition (bottom right).
doi:10.1371/journal.pone.0045884.g001

Figure 2. Accuracy and fitted logistic curves as a function of spacing at 86 eccentricity (panel A) and 106 eccentricity (panel B) in
schizophrenia patients and healthy controls. Vertical dotted lines indicate critical spacing. Values represent the mean 6 standard error of
mean.
doi:10.1371/journal.pone.0045884.g002
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not significant. There were no differences of performance between

groups due to vigilance decrements or training effects, as

evidenced by a lack of a significant group 6block, group 6block

6 eccentricity, group 6 block 6 spacing and group 6 block 6
eccentricity 6 spacing interaction (all F#1.45, p$0.139,

gG
2#0.010).

Critical spacing
Logistic regression model fitting was very good for both patients

(mean R2 = 0.97) and controls (mean R2 = 0.99). Critical spacing

was significantly larger in the schizophrenia group than in the

control group [F(1, 38) = 4.51, p = 0.040, gG
2 = 0.08] (Figure 3).

No main effect of eccentricity and no group 6 eccentricity

interaction (all F#3.15, p$0.084, gG
2#0.022) were found.

Relationship between critical spacing and demographic/
clinical variables

There were no significant correlations between critical spacing

and PANSS score (total, positive, negative, and disorganization),

Revised Hallucination Scale (RHS) score, medication (chlorprom-

azine equivalents), visual acuity, intelligence quotient, age, or

gender for the schizophrenia group (all Bonferroni-corrected

p.0.100).

Discussion

The results of this study provide the first evidence that visual

crowding, a fundamental process in the visual periphery, is

dysfunctional in schizophrenia patients. Visual crowding was

greater in schizophrenia patients than in healthy controls, as

evidenced by lower target identification accuracy and larger

critical spacing. These results indicate that schizophrenia patients

need more space between a target and distracters than healthy

controls to correctly identify the target. This is consistent with our

hypothesis of stronger crowding in schizophrenia, and indicates

impaired sensory processing of information in the visual periphery.

Magnocellular system
Converging lines of evidence indicate that information process-

ing in the visual periphery is mediated by magnocellular neurons,

whereas foveal processing is mediated by parvocellular neurons

[26,48]. Interestingly, Omtzigt et al. [49] compared the identifi-

cation of parafoveally-presented flanked and unflanked target

letters in healthy subjects, and found that the magnocellular

system was specifically involved in the identification of flanked

letters. This underpins the role of the magnocellular system in tasks

where target and distracters are closely spaced, such as the

crowding task in the present study. The finding that schizophrenia

patients have deficits in the crowding task is consistent with

previous studies showing robust magnocellular deficits in schizo-

phrenia patients [27–29,50]. N-methyl-D-aspartate (NMDA)

receptor dysfunction may underlie these magnocellular deficits

[28] and may therefore be a critical pathogenetic mechanism of

crowding deficits in schizophrenia. It has been demonstrated [51–

54] that, in schizophrenia, magnocellular dysfunction leads to

increased intrinsic neural activity, which in turn elevates noise

levels during signal processing in early visual cortex. According to

signal detection theory, increased internal noise at the sensory level

reduces target-distracter discriminability, which may in turn

increase critical spacing [18,55]. Therefore, the larger critical

spacing in schizophrenic patients observed here might be a result

of increased intrinsic noise due to magnocellular dysfunction. One

might argue that increased noise at higher-level processing stages,

including attention and decision making, might also reduce

accuracy and therefore lead to a larger critical spacing. However,

it is important to keep in mind that critical spacing is a relative

measure of accuracy and is calculated as 90% accuracy relative to

asymptotic performance. Therefore, although increased noise

levels at higher-level processing stages may indeed reduce

accuracy levels, the critical spacing effect will still be evident.

Interestingly, it has been shown that noisy sensory processing in

subcortical areas may lead to secondary cortical processing

impairments in schizophrenia [56–58]. Indeed, crowding deficits

may themselves lead to downstream cognitive dysfunctions such as

impaired perceptual decision making. Baldassi et al. [59] showed

that intrinsic noise may account for perceptual decision errors

under crowding conditions. Such perceptual decision errors are

usually made with high confidence, and the underlying cortical

activity in the sensory visual cortex strongly correlates with the

subjective percept [60]. This may have implications for the

understanding of bottom-up contributions to hallucination and

delusion formation in schizophrenia, as several lines of evidence

indicate that fixed, false beliefs may arise from erroneous sensory

processing [54,61–64]. Our finding of larger critical spacing in

schizophrenia implies a smaller uncrowded window and a more

corrupted visual field, compromising the quality of visual input to

thalamic nuclei [61]. This, in turn, may damage coherent

thalamocortical oscillations, which are critical to normal cognitive

functioning. Moreover, deficits in synchronized neural oscillations

have been related to disconnectivity between and within cortical

areas and thus may underlie the fragmentation of mind and

behavior in schizophrenia [65]. Indeed, patients report impres-

sions such as ‘‘If I look at my watch, I see a watch, watchstrap,

face, hands and so on, then I have got to put them together to get

it into one piece’’ [66].

Figure 3. Mean critical spacing for schizophrenia patients (Sz)
and healthy controls (Hc) by eccentricity. Critical spacing was
larger in the schizophrenia group than in the control group. Error bars
represent the standard error of the mean.
doi:10.1371/journal.pone.0045884.g003
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Perceptual organization
In crowding, the perception of a peripherally viewed target is

impaired by adjacent distracters, leading to a cluttered percept. As

described in the introduction, crowding is usually considered to

result from spatial pooling of information that yields the

perception of a textural representation of the visual periphery.

Although the neuronal correlates and computations that result in

crowding are still undetermined, it is assumed that the underlying

mechanisms comprise contour integration [67], feature binding

[68,69] and spatial attention [70]. Converging lines of evidence

indicate that schizophrenia patients are impaired in their ability to

organize low-level visual information into coherent patterns such

as groups, contours, perceptual wholes and object representations

[71–75]. For example, Silverstein et al. [74] used a psychophys-

ically well-controlled contour integration paradigm and found that

schizophrenia patients performed poorly if they had to detect a

smooth contour among discrete but aligned elements embedded in

a background of random distracters. In addition, Must et al. [71]

reported that, in schizophrenia patients, the detection of an

oriented target is less facilitated by the presence of collinear

flankers than in healthy individuals and Dakin et al. [72] showed

that suppression of visual context is weaker in schizophrenia

patients than in healthy subjects. Such perceptual organization

deficits have been related to abnormal lateral interactions of local

processing units in early visual cortex [76].

It has been shown [69,77] in healthy subjects that target-

distracter similarity, or good continuation between target and

distracters, leads to perceptual grouping and thus increases

crowding, whereas target-distracter dissimilarity or ‘‘wiggle’’ of

target and distracter elements alleviates crowding. Therefore,

perceptual organization deficits in schizophrenia patients may be

expected to result in weaker crowding. However, our finding of

stronger crowding in schizophrenia is contrary to this expectation.

There are several possible explanations for this inconsistency. First,

previous studies using perceptual organization tasks in schizo-

phrenia patients may have favored central over peripheral visual

processing because stimuli were presented centrally rather than

peripherally. Perceptual organization deficits observed in central

vision might differ from those observed in peripheral vision, a view

corroborated by May et al. [78], who showed that contour

integration may be strongly impaired by crowding effects at

extreme eccentricity. Second, Hess et al. [79] reported that

contour linking due to long-range horizontal interactions is absent

in the visual periphery. Therefore, it is conceivable that the neural

mechanisms underlying perceptual organization may differ

between the fovea and the visual periphery. Third, it has been

shown [74,80] that perceptual organization deficits strongly

correlate with the disorganized syndrome of schizophrenia and

that clinically stabilized outpatients may lack perceptual organi-

zation deficits. In fact, we found no significant correlations

between crowding measures and the PANSS disorganization

score, and 75% of the patients in our study were stabilized

outpatients. Therefore, it seems plausible that perceptual organi-

zation deficits do not account for the crowding deficits that we

observed.

Spatial attention
Dysfunctional spatial attention might better explain increased

crowding in schizophrenia patients. Several studies [70,81,82]

have shown that visual crowding may result from limitations set by

spatial attention, and accumulating evidence [83–85] indicates

that spatial attention is impaired in schizophrenia. Moreover,

deficits in spatial attention in peripheral vision may be related to

deficits in the magnocellular system, also termed the ‘‘where’’

pathway, because this is the system that mediates the perception of

spatial relationships in the visual periphery [23,24,86]. Increased

crowding in schizophrenia would be in line with a more limited

peripheral visual system due to dysfunctional spatial attention. The

interaction between crowding and spatial attention may be better

understood in light of the findings of Zhang et al. [87]. They

showed that in order to improve localized visual discrimination,

the primary visual cortex constructs a bottom-up saliency map of

visual space, which then guides attentional shifts by reporting local

attentional attraction. Saliency maps are important processing

interfaces in crowding [88] and visual search [89]. Results from

electrophysiological and neuroimaging studies [82,90–93] also

indicate that the interaction between spatial attention, magnocel-

lular processing and crowding may be mediated by sensory visual

cortical areas, which is in line with the evidence of impairments at

the earliest stages of visual processing in schizophrenia patients

[76].

Visual search and span of apprehension
Our findings may help to explain the conflicting results reported

by previous studies on visual search in schizophrenia [9–15].

There is increasing evidence that crowding critically modulates the

performance of visual tasks requiring detection of a target amidst

multiple distracters [41,94–97]. Vlaskamp and Hooge [98] showed

that crowding reduces target-distracter discriminability and slows

visual search times by up to 76%. In addition, crowding has been

closely associated with the ‘‘functional visual field’’ or ‘‘span of

apprehension’’, i.e., the radial area around the fixation point from

which information can be extracted at a glimpse [99]. The

boundary of this area is defined as the eccentricity beyond which

crowding occurs. Target and distracters inside this boundary

appear uncrowded; thus, it is termed the ‘‘uncrowded window’’

[16]. Our finding of larger critical spacing in schizophrenia

patients indicates a smaller functional visual field, and this is

supported by a number of studies that reported a smaller

functional visual field in schizophrenic patients [9,10,100,101].

Developmental dyslexia
A smaller functional visual field as a result of increased crowding

has also been reported in dyslexic subjects, where, due to the

detrimental effect on letter discriminability, it is interpreted as an

important constitutive factor for reading deficits [102,103].

Although a direct link between schizophrenia and dyslexia remains

to be established, substantial evidence [104,105] indicates that a

variety of characteristics, including visual processing deficits, visual

anomalies of perception, mixed handedness and reading impair-

ment, are common to both disorders and may be a consequence of

a shared underlying pathogenetic mechanism. This shared

mechanism may also underlie deficits in other perceptual domains,

such as auditory processing [106] and multimodal integration

[107]. Structural and functional brain abnormalities of cortical

regions surrounding the temporoparietal junction have regularly

been found in dyslexia and schizophrenia and may be candidate

loci of visual dysfunction in these disorders, as they are closely

linked to auditory processing, orienting of spatiotemporal atten-

tion, and reading acquisition [108]. However, converging lines of

evidence [104,105,109,110] indicate that it may be subcortical

magnocellular dysfunction that underlies both schizophrenia and

dyslexia, in particular with regard to visual processing and

associated cognitive abnormalities. This is supported by the

finding that, in both disorders, structural and functional lateral-

ization is reduced, as evidenced by abnormal symmetry of the

planum temporale and a high rate of mixed handedness

[110,111], and reduced lateralization [106] has been attributed
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to magnocellular dysfunction. Thus, magnocellular dysfunction

may be an important pathophysiologic mechanism underlying

visual processing deficits in both schizophrenia and developmental

dyslexia.

Face recognition
A similar mechanism may also contribute to face recognition

deficits in schizophrenia, although current evidence to support

this hypothesis is equivocal [28]. On the one hand, there is

evidence that abnormal structural and functional deficits of the

fusiform face area, a temporal cortical region relevant to

processing of faces, may primarily mediate the well-documented

face recognition deficits in schizophrenia [112]. On the other

hand, it has been suggested that activity of the fusiform face area

is preserved when processing faces [113] and that basic visual

processing deficits related to magnocellular dysfunction, along

with their amplified modulatory effect on the fusiform face area,

might better account for previous findings [114,115]. We

therefore suggest that crowding dysfunctions may substantially

contribute to face recognition deficits in schizophrenia. This

hypothesis is supported by Shin et al. [116], who reported that

schizophrenic patients exhibited extremely poor facial recogni-

tion when they had to discriminate faces with different spacing

between facial features. Additionally, Martelli et al. [117] showed

that, in healthy subjects, crowding occurs among facial features

within a single face and thus may severely impair face

recognition. However, whether or not the crowding of facial

features affects face recognition in schizophrenic patients remains

to be tested in future studies.

Compensatory mechanisms
As discussed above, dysfunctional crowding in schizophrenia

may be related to perceptual alterations and cognitive disturbanc-

es. However, in this study, we did not find any significant

correlations between crowding measures and clinical symptoms,

perhaps because our clinical sample consisted primarily of

clinically stabilized outpatients. The absence of any correlation

indicates that the observed crowding deficits were not related to

symptoms, and thus may be considered permanent and stable. It is

therefore conceivable that the patients’ brain may have adapted

to, at least in part, compensate for crowding deficits. A global

compensatory mechanism was reported in brain-damaged patients

with spatial neglect after they wore an optical prism and was

attributed to a recalibration of internal spatial maps by fronto-

parietal networks [118]. The poor quality of sensory data in

schizophrenic patients may likewise necessitate increased top-

down control to enable them to make sense of their visual world.

On a neural level, top-down control of sensory perception is

implemented by frontal and parietal cortical areas through

modulation of visual cortex activity [119]. Indeed, compensation

of low-level visual deficits through increased recruitment of higher-

level cortical areas has consistently been reported in schizophrenic

patients [120–123]. For example, Knebel et al. [120] used visual

evoked potentials to show that, in parafoveal vision of schizo-

phrenic patients, deficits of early visual processing are compen-

sated for later in the visual hierarchy.

In addition to top-down control strategies, patients may also

adapt under natural conditions their eye and/or head movement

pattern to compensate for crowding deficits. Because they have a

smaller uncrowded window, the amount of information they can

extract at a glance is reduced. Consequently, they would need to

increase the number of fixations to compensate for this deficit.

However, evidence to support this prediction is inconclusive,

perhaps because low- and high-level deficits in cortical processing

may lead to different eye scanning abnormalities in schizophrenia.

Abnormal smooth pursuit and antisaccades, for example, are well

documented in schizophrenia and probably reflect deficits in

prefrontal cortex, specifically in the frontal eye fields [124]. On the

other hand, compensatory eye and/or head movement patterns

due to a smaller functional visual field may also be plausible in

schizophrenia. Olevitch et al. [125] registered spontaneous head

movements of schizophrenic patients during a reading task and

found that patients initiated head movements at a smaller visual

angle than controls, and Roberts et al. [109] used a psychophys-

ically well-controlled reading paradigm and found that the

number of saccades was increased and the observed eye movement

patterns were closely related to reduced sensitivity to parafoveal

information in schizophrenia patients.

One may think that another strategy to compensate for a

smaller functional visual field would be to increase the viewing

distance. However, if fixation is maintained on a point in the

scene while viewing distance is increased, target size and

eccentricity both decrease in proportion to the spacing of target

and distracters. Although this ‘‘zooming out’’ will broaden the

focus of the scene, the stimulus input at the retina leaves the

critical spacing unchanged [16]. Therefore, increasing viewing

distance might not be a viable strategy for schizophrenic patients

to compensate for a smaller functional visual field. However, as

far we are aware, no studies to date have systematically

examined visual performance of schizophrenic patients in

relation to viewing distance. It would be informative to test this

relationship in a future study.

Limitations
All targets and distracters were masked with overlapping high-

energy backward masks to minimize the processing time for the

stimuli. This reduces eye movements towards target stimuli and

therefore ensures peripheral processing. However, backward-

masking deficits have been documented in schizophrenia

[126,127] and thus may have confounded the observed crowding

effects. Although we cannot exclude this possibility entirely, we

consider it unlikely for two reasons. First, all stimuli in the

crowding task were equally masked across all conditions, which is

contrary to the condition-specific deficits observed, and second,

although target detection is differentially modulated by masking

and crowding, feature detection is impaired in masking but spared

in crowding [18]. Our results show that feature detection was

equal in both groups, as evidenced by similar accuracy levels

during the target-only condition. We therefore conclude that the

crowding effects are specific and not confounded by masking

effects.

The small sample size and the higher variance of critical spacing

in the schizophrenia group compared with the control group

means that this study was underpowered for detecting critical

spacing deficits at both eccentricities. This might explain the lack

of an eccentricity effect and a group by eccentricity interaction on

critical spacing in the ANOVA’s. In addition, to ensure that the

length of the testing session was tolerable to the participants, we

only tested visual crowding at two eccentricities. Therefore, we

cannot make direct conclusions about the full extent of the visual

periphery. It would be very interesting to examine critical spacing

in schizophrenia patients across a broader range of eccentricities in

future studies.

Conclusions
This study provides evidence that processing in the visual

periphery of schizophrenic patients is impaired. Most notably, we

report for the first time that crowding, a critical and ubiquitous
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process of peripheral vision, is impaired in schizophrenia. Our

findings indicate that it is important to consider object spacing in

relation to eccentricity in future studies of visual processing in

schizophrenia, and that studying crowding might help us better

understand visuospatial deficits associated with this illness. In

particular, our findings imply that crowding deficits in schizo-

phrenia might underlie perceptual alterations and cognitive

dysfunction. For future studies, it would be enlightening to

examine the relationship between visual crowding and magnocel-

lular-biased processing, as well as cognitive, emotional and social

functioning in a large sample of schizophrenia patients, preferably

using multi-sensory modalities.
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