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Abstract. This paper focuses on searching sufficient conditions for the
solvability of systems of partial fuzzy relational equations. In the case
of solvable systems, we provide solutions of the systems. Two standard
systems of fuzzy relational equations – namely the systems built on the
basic composition and on the Bandler-Kohout subproduct – are consid-
ered under the assumption of partiality. Such an extension requires to
employ partial algebras of operations for dealing with undefined values.
In this investigation, we consider seven most-known algebras of unde-
fined values in partial fuzzy set theory such as the Bochvar, Bochvar
external, Sobociński, McCarthy, Nelson, Kleene, and the �Lukasiewicz
algebra. Conditions that are sufficient for the solvability of the systems
are provided. The crucial role will be played by the so-called boundary
condition.

Keywords: Fuzzy relational equations · Partial fuzzy logics · Partial
fuzzy set theory · Undefined values · Boundary condition

1 Introduction

Systems of fuzzy relational equations were initially studied by Sanchez in the
1970s [17] and later on, many authors have focused on this topic and it becomes
an important topic in fuzzy mathematics especially in fuzzy control. The most
concerned problem attracting a large number of researchers regards the solvabil-
ity criterions or at least conditions sufficient for the solvability of the systems.
The applications of the topic are various including in the dynamic fuzzy system
[14], solving nonlinear optimization problems and covering problem [13,15], and
many others. It is worth mentioning that the topic is still a point of the interest
in the recent research [5,10,12].

Recently, investigations of the systems of fuzzy relational equations allowing
the appearance of undefined values in the involved fuzzy sets were initiated
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[4,7]. Partial fuzzy logic which is considered as a generalization of the three-
valued logic, and the related partial fuzzy set theory has been established [1–
3,11]. Several well-known algebras were already generalized in partial fuzzy set
theory such as the Bochvar algebra, the Sobociński algebra, the Kleene algebra,
or Nelson algebra [2]. Lets us note that it seems there is no absolutely accepted
general agreement on what types of undefined values are the particular algebras
mostly appropriate for but they turned out to be useful in various areas and
applications [9].

Recently, further algebras for partial fuzzy logics motivated by dealing with
missing values were designed [6,18]. In [4], the initial investigation on the solv-
ability of the systems of partial fuzzy relational equations was provided. The
study was restricted on the equations with fully defined (non-partial) conse-
quents. In [7], the problem was extended by considering the partially defined
consequents, however, only the Dragonfly algebra [18] was considered and only
one of the systems of equations was investigated. The article [7] provided readers
with the particular shape of the solution however, under the assumption of the
solvability. However, the solvability was not ensured, no criterion was provided.
This article aims at paying this debt and focuses on the determination of the
sufficient conditions for the solvability of both standard systems of partial fuzzy
relational equations. Various kinds of algebras dealing with undefined values are
considered, in particular the Bochvar, Sobociński, Kleene, McCarthy, Bochvar
external, Nelson, and �Lukasiewicz algebras.

2 Preliminaries

2.1 Various Kinds of Algebras of Undefined Values

In this subsection, we briefly recall the definitions of several algebras of undefined
values we apply in this work. Let us consider a complete residuated lattice L =
〈[0, 1],∧,∨,⊗,→ 0, 1〉 as the structure for the whole article and thus, all the
used operations will be stemming from it. Let � denotes the undefined values
regardless its particular semantic sub-type of the undefinedness [9]. Then the
operations dealing with undefined values are defined on the support L� = [0, 1]∪
{�}, for more details we refer to [2]. Note that the operations on L� applying to
a, b ∈ [0, 1] are identical with the operations from the lattice L. The following
brief explanation of the role of � in particular algebras is based on Tables 1, 2
and 3.

The value � in the Bochvar (abbr. B when denoting the operations) algebra
works as an annihilator and so, no matter which values a ∈ L� is combined
with it, the result is always �. In the Sobociński (abbr. S) algebra, � acts like
a neutral element for the conjunction and the disjunction as well. It means
that the conjunctive/disjunctive combination of any value a ∈ L� with � results
in a. In the Kleene algebra (abbr. K), the operations combining � and 0 or
1 comply the ordering 0 ≤ � ≤ 1, otherwise they coincide with the Bochvar
algebra operations when � is combined with a /∈ {0, 1}. The �Lukasiewicz algebra
(abbr. L) and the Nelson (abbr. N) algebra are identical with the Kleene algebra
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regarding their conjunctions and disjunctions however, the difference lies in the
implication operations. In particular, in the �Lukasiewicz case �→L � = 1 holds,
and in the Nelson case the equalities �→N 0 = 1 and �→N � = 1 hold, while
in both cases, the Kleene implication results into � again. The McCarthy (abbr.
Mc) algebra interestingly combines the Kleene and the Bochvar behavior with
the distinction between the cases whether � appears in the first argument or in
the second argument of the operation.

Let us recall two useful external ones [9]: ↓ is given by ↓α = 0 if α = � and
↓α = α otherwise; and ↑ is given by ↑α = 1 if α = � and ↑α = α otherwise.
The external operations play a significant role in the so-called Bochvar external
algebra (abbr. Be) as it applies operation ↓ to � and lowers it to 0 in any
combinations with a ∈ L�.

Table 1. Conjunctive operations of distinct algebras (α, β ∈ (0, 1]).

Bochvar Bochvar external Sobociński Kleene McCarthy Nelson �Lukasiewicz

α � � 0 α � � � �

� β � 0 β � � � �

� � � 0 � � � � �

� 0 � 0 0 0 � 0 0

0 � � 0 0 0 0 0 0

Table 2. Disjunctive operations of distinct algebras (α, β ∈ [0, 1)).

Bochvar Bochvar external Sobociński Kleene McCarthy Nelson �Lukasiewicz

α � � α α � � � �

� β � β β � � � �

� � � 0 � � � � �

� 1 � 1 1 1 � 1 1

1 � � 1 1 1 1 1 1

Table 3. Implicative operations of distinct algebras (α ∈ (0, 1], β ∈ (0, 1)).

Bochvar Bochvar external Sobociński Kleene McCarthy Nelson �Lukasiewicz

α � � ¬α ¬α � � � �

� β � 1 β � � � �

� � � 1 � � � 1 1

� 1 � 1 1 1 � 1 1

0 � � 1 1 1 1 1 1

� 0 � 1 0 � � 1 �
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2.2 Systems of Fuzzy Relational Equations

Let us denote the set of all fuzzy sets on a universe U by F(U). Then two
standard systems of fuzzy relational equations are provided in the forms:

Ai ◦ R = Bi, i = 1, 2, . . . ,m (1)
Ai � R = Bi, i = 1, 2, . . . ,m (2)

where Ai ∈ F(X), Bi ∈ F(Y ), i = 1, . . . ,m for some universes X,Y . The direct
product ◦ and the Bandler-Kohout subproduct (BK-subproduct) � in systems (1)
and (2) are expanded as follows:

(Ai ◦ R)(y) =
∨

x∈X

(Ai(x) ⊗ R(x, y)) , (Ai � R)(y) =
∧

x∈X

(Ai(x) → R(x, y)) .

In [8], the authors defined so-called boundary condition and shown, that it
is a sufficient condition for the solvability of the direct product systems (1).
In [16], using the so-called skeleton matrix, it was shown that it serves as the
sufficient condition also for the solvability of (2) and in [19], an alternative proof
not requiring the skeleton matrix was presented.

Definition 1. Let Ai ∈ F(X) for i ∈ {1, . . . , m} be normal. We say, that Ai

meet the boundary condition if for each i there exists an xi ∈ X such that
Ai(xi) = 1 and Aj(xi) = 0 for any j �= i.

Theorem 1 [8,16]. Let Ai fulfill the boundary condition. Then systems (1)–(2)
are solvable and the following models are solutions of the systems, respectively:

R̂(x, y) =
m∧

i=1

(Ai(x) → Bi(y)), Ř(x, y) =
m∨

i=1

(Ai(x) ⊗ Bi(y)).

3 Sufficient Conditions Under Partiality

As we have recalled above, the standard systems of fuzzy relational equations
are solvable if the antecedents fulfil the boundary condition [8]. Of course, the
question whether the solvability of partial fuzzy relational equations can be
ensured by the same or similar condition appears seems natural. As we will
demonstrate the answer is often positive. Moreover, we investigate some specific
cases of solvable systems even if the boundary condition is not preserved.

Let F�(U) stands for the set of all partially defined fuzzy sets (partial fuzzy
sets) on a universe U , i.e., let

F�(U) = {A | A : U → L�}.

The following denotations will be used in the article assuming that the right-
hand side expressions hold for all u ∈ U :

A = ∅ if A(u) = 0,
A = ∅� if A(u) = �,

A = 1 if A(u) = 1.
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Moreover, let us introduce the following denotations for particular parts of
the universe U with respect to a given partial fuzzy set A ∈ F�(U):

Def(A) = {u | A(u) �= �}, A0 = {u ∈ U | Ai(u) = 0},

A� = {u ∈ U | Ai(u) = �}, AP = {u ∈ U | Ai(u) /∈ {0, �}}.

3.1 Bochvar Algebra and McCarthy Algebra

Let us first consider the use of the Bochvar operations in the systems:

Ai ◦B R = Bi, i = 1, . . . ,m, (3)
Ai �B R = Bi i = 1, . . . , m. (4)

We recall that in the Bochvar algebra the � behaves like an annihilator i.e.,
when it combines with any other values the result is always �. Thus, when there
is an x ∈ X such that Ai(x) = � the inferred output Bi is a fuzzy set to which all
the elements have an undefined membership degree, i.e., Bi = ∅�. It immediately
leads to the following theorems with necessary conditions demonstrating that the
solvability of both systems falls into trivial cases as long as the partial fuzzy sets
appear on the inputs.

Theorem 2. The necessary condition for the solvability of system (3) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: As there exists x ∈ X such that Ai(x) = �, one can check
that the following holds for any R ∈ F�(X × Y ):

(Ai ◦B R)(y) = �∨B

∨
B

x�∈Ai�

(Ai(x)⊗B R(x, y)) = �

which leads to that Bi has to be equal to ∅�. �

Corollary 1. If Bi = ∅� for all i ∈ {1, . . . , m} then system (3) is solvable.

Sketch of the proof: Based on a simple demonstration that R�
B ∈ F�(X × Y )

given by R�
B(x, y) = � is a solution. �

Theorem 3. The necessary condition for the solvability of system (4) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: The proof is similar to the proof of Theorem2. �

Corollary 2. If Bi = ∅� for all i ∈ {1, . . . , m} then system (4) is solvable.
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Sketch of the proof: Based on a simple demonstration that R�
B ∈ F�(X × Y )

given by R�
B(x, y) = � is a solution. �

Theorems 2 and 3 are direct consequences of the “annihilating effect” of � in
the Bochvar algebra. Whenever the input is undefined, the consequents have to
be even fully undefined.

Now, we focus on the systems applying the McCarthy algebra:

Ai ◦Mc R = Bi, i = 1, . . . , m, (5)
Ai �Mc R = Bi, i = 1, . . . ,m. (6)

As the McCarthy operations provide the same result as the Bochvar opera-
tions whenever � appears in their first argument, we naturally come to results
about solvability of (5)–(6) that are the analogous to the results about solvability
of (3)–(4).

Theorem 4. The necessary condition for the solvability of system (5) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: Analogous to Theorem 2. �

Theorem 5. The necessary condition for the solvability of system (6) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: Analogous to Theorem 3. �

Although the necessary conditions formulated in Theorems 4 and 5 are identi-
cal for McCarthy and Bochvar algebra, the sufficient condition for the McCarthy
algebra has to also take into account the differences in the operations of these
two otherwise very similar algebras.

Corollary 3. If Bi = ∅� and Ai �= ∅ for all i ∈ {1, . . . , m} then system (5) is
solvable.

Sketch of the proof: As in the case of Corollary 1 the proof is based on a simple
demonstration that R�

Mc ∈ F�(X × Y ) given by R�
Mc(x, y) = � is a solution

however, the case of the empty input that would lead to the empty output has
to be eliminated from the consideration. �

Corollary 4. If Bi = ∅� and Ai �= ∅ for all i ∈ {1, . . . , m} then system (6) is
solvable.

Sketch of the proof: As in the case of Corollary 2 the proof is based on a simple
demonstration that R�

Mc ∈ F�(X × Y ) given by R�
Mc(x, y) = � is a solution

however, the case of the empty input that would lead to the output constantly
equal to 1, has to be eliminated from the consideration. �
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3.2 Bochvar External Algebra and Sobociński Algebra

In this section, we present the investigation of the solvability of systems of partial
fuzzy relational equations in the case of the Bochvar external algebra and in the
case of Sobociński algebra. Let us start with the Bochvar external operations
employed in the systems:

Ai ◦Be R = Bi, i = 1 . . . ,m, (7)
Ai �Be R = Bi, i = 1 . . . ,m. (8)

Theorem 6. Let Ai meet the boundary condition. Then

(Ai ◦Be R̂Be)(y) = Bi(y), for y ∈ Def(Bi),

where

R̂Be(x, y) =
m∧

Be
i=1

(Ai(x)→Be Bi(y)) .

Sketch of the proof: Based on the definition of the Bochvar external operations,
Ai(x)→Be Bi(y) �= �, no matter the choice of x, y, and hence:

(
Ai ◦Be R̂Be

)
(y) ≤

∨
Be

x∈X

(Ai(x)⊗Be ((Ai(x))→Be Bi(y))) .

We may split the right-hand side expression running over X into two expres-
sions, one running over Ai0 ∪ Ai�, the other one running over AiP and show,
that each of them is smaller or equal to Bi:

∨
Be

x∈Ai0∪Ai�

(Ai(x)⊗Be (Ai(x)→Be Bi(y))) = 0 ≤ Bi(y)

∨
Be

x∈AiP

(Ai(x)⊗Be (Ai(x)→Be Bi(y))) ≤ Bi(y)

which implies (Ai ◦Be R̂Be)(y) ≤ Bi(y).
Now, we prove the opposite inequality. Based on the assumption of the bound-

ary condition, let us pick xi such that A′
i(xi) = 1 and Aj(xi) = 0, j �= i. Then

we may check

(Ai ◦Be R̂Be)(y) ≥ Ai(xi)⊗Be R̂Be(xi, y) = Bi(y)

which completes the sketch of the proof. �

If we assume that the output fuzzy sets Bi are fully defined we obtain the
following corollary.

Corollary 5. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (7) is solvable and R̂Be is its solution.
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The following theorem and corollary provides us with similar results for the
BK-subproduct system of partial fuzzy relational equations (8).

Theorem 7. Let Ai meet the boundary condition. Then

(Ai �Be ŘBe)(y) = Bi(y), for y ∈ Def(Bi)

where

ŘBe(x, y) =
m∨
Be

i=1

(Ai(x)⊗Be Bi(y)) .

Sketch of the proof: Due to the external operations, Ai(x)⊗Be Bi(y) �= � holds
independently on the choice of x and y. Jointly with the property c→Be a ≤
c→Be b that holds for a ≤ b it leads to the inequality

(
Ai �Be ŘBe

)
(y) ≥

∧
Be

x∈X

(Ai(x)→Be (Ai(x)⊗Be Bi(y))) .

For y ∈ Def(Bi) we get the following inequalities
∧

Be
x∈Ai0∪Ai�

(Ai(x)→Be (Ai(x)⊗Be Bi(y))) = 1 ≥ Bi(y),

∧
Be

x∈AiP

(Ai(x)→Be (Ai(x)⊗Be Bi(y))) ≥ Bi(y)

that jointly prove that (Ai �Be ŘBe)(y) ≥ Bi(y). In order to prove the opposite
inequality, we again pick up the point xi in order to use the boundary condition.

�

If the consequents Bi in system (8) are fully defined we obtain the following
corollary.

Corollary 6. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (8) is solvable and ŘBe is its solution.

Now let us focus on the following systems applying the Sobociński operations:

Ai ◦S R = Bi, i = 1 . . . ,m, (9)
Ai �S R = Bi, i = 1 . . . ,m. (10)

Theorem 8. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (9) is solvable and the following fuzzy relation

R̂S(x, y) =
m∧

S
i=1

(Ai(x)→S Bi(y))

is its solution.
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Sketch of the proof: The proof uses an analogous technique as the proof of The-
orem 6. �

Theorem 9. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (10) is solvable and the following fuzzy relation

ŘS(x, y) =
m∨
S

i=1

(Ai(x)⊗S Bi(y))

is its solution.

Sketch of the proof: The proof uses an analogous technique as the proof of The-
orem 7. �

Remark 1. Let us mention that the fuzzy relations introduced in the theorems
above as the solutions to the systems of partial fuzzy relational equations are not
the only solutions. They are indeed the most expected solutions as their construc-
tion mimics the shape of the preferable solutions of fully defined fuzzy relational
systems, but, for instance, fuzzy relation

Ř′
S(x, y) =

m∨
S

i=1

(↑ Ai(x)⊗S Bi(y))

has been shown to be a solution of the system (10) under the assumption of its
solvability [4]. And the solvability can ensured by the boundary condition, see
Theorem9.

3.3 Kleene Algebra, �Lukasiewicz Algebra and Nelson Algebra

Let us start with the focus on the systems employing the Kleene operations:

Ai ◦K R = Bi, i = 1 . . . ,m, (11)
Ai �K R = Bi, i = 1 . . . ,m. (12)

Theorem 10. Let for all j ∈ {1, . . . ,m} one of the following conditions holds

(a) Aj is a normal fuzzy set and Bj = 1,
(b) Aj �= ∅ and Bj = ∅�.

Then system (11) is solvable and moreover, the following partial fuzzy relation

R̂K(x, y) =
m∧

K
i=1

(Ai(x)→K Bi(y))

is one of the solutions.
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Sketch of the proof: By proving that R̂K is a solution we prove also the solvabil-
ity of the system. Let us take arbitrary j and assume that condition (a) holds.
Then, for x′ ∈ X such that Aj(x′) = 1 we can prove that Aj(x′)⊗K R̂K(x′, y) = 1
and hence, the following holds

(Aj ◦K R̂K)(y) =
∨

K
x�=x′

(
Aj(x)⊗K R̂K(x, y)

)
∨K 1 = 1.

Now, let us assume that (b) holds for the given j. Then independently on the
choice of x and y, R̂K(x, y) ∈ {�, 1}, and based on the following facts

∨
K

x∈Aj0

(
Aj(x)⊗K R̂K(x, y)

)
= 0,

∨
K

x∈Aj�∪AiP

(
Aj(x)⊗K R̂K(x, y)

)
= �

we may derive (Aj ◦K R̂K)(y) = �.
In both cases (a) and (b), the result of (Aj ◦K R̂K) was equal to the consequent

Bj and the proof was made for arbitrarily chosen index j. �

Theorem 11. Let for all j ∈ {1, . . . , m} one of the following conditions holds

(a) Aj is a normal fuzzy set and Bj = ∅,
(b) Aj �= ∅ and Bj = ∅�.

Then system (12) is solvable and moreover, the following partial fuzzy relation

ŘK(x, y) =
m∨
K

i=1

(Ai(x)⊗K Bi(y))

is one of the solutions.

Sketch of the proof: Let us take an arbitrary j and assume that (a) holds. Then,
for x′ ∈ X such that Aj(x′) = 1 we can prove that Ai(x′)→K ŘK(x, y) = 0 and
hence, the following holds

(Ai �K ŘK)(y) =
∧

K
x∈X�{x′}

(
Ai(x)→K ŘK(x, y)

) ∧K 0 = 0.

Now, let us assume that (b) holds for the given j. Then ŘK(x, y) ∈ {�, 1}
independently on the choice of x and y, and based on the following facts

∧
K

x∈Ai0

(
Ai(x)→K ŘK(x, y)

)
= 1,

∧
K

x∈Ai�∪AiP

(
Ai(x)→K ŘK(x, y)

)
= �

we may derive (Aj �K ŘK)(y) = �.
In both cases (a) and (b), the result of (Aj ◦K R̂K) was equal to the consequent

Bj and the proof was made for arbitrarily chosen index j. �
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Theorem 12. Let for all j ∈ {1, . . . ,m} the following condition holds

(c) Bj = 1.

Then system (12) is solvable and moreover, the following fuzzy relation

Ř′
K(x, y) =

m∨
K

i=1

(↑ Ai(x)⊗K Bi(y))

is one of the solutions.

Sketch of the proof: The proof is based on the following three equalities
∧

K
x∈Ai0

(
Ai(x)→K Ř′

K(x, y)
)

= 1

∧
K

x∈Ai�

(
Ai(x)→K Ř′

K(x, y)
)

= 1

∧
K

x∈AiP

(
Ai(x)→K

m∨
K

i=1

(↑ Ai(x)⊗K Bi(y))

)
≥

∧
K

x∈AiP

(Ai(x)→K Ai(x)) = 1.

�

The use of the �Lukasiewicz operations and the Nelson operations give the
same results and very similar to the use of the Kleene operations. Therefore, we
will study the system jointly for both algebras of operations, in particular, we
will consider

Ai ◦γ R = Bi, i = 1 . . . ,m, (13)
Ai �γ R = Bi, i = 1 . . . ,m. (14)

where γ ∈ {L,N} will stand for the the �Lukasiewicz and Nelson algebra, respec-
tively. Therefore, the following results will hold for both algebras.

Theorem 13. Let for all j ∈ {1, . . . ,m} one of the following conditions holds

(a) Ai is a normal fuzzy set and Bi = 1,
(b) Ai �= ∅ and Bi = ∅�.

Then system (13) is solvable and moreover, the following partial fuzzy relation

R̂γ(x, y) =
m∧

γ
i=1

(Ai(x)→γ Bi(y))

is one of the solutions.

Sketch of the proof: The proof uses an analogous technique as the proof of The-
orem 10. �
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Theorem 14. Let for all j ∈ {1, . . . , m} one of the following conditions holds

(a) Aj is a normal fuzzy set and Bi = ∅,
(b) there exists x ∈ X such that Aj(x) /∈ {0, �} and Bi = ∅�,
(c) Bi = 1.

Then system (14) is solvable and the following partial fuzzy relation

Řγ(x, y) =
m∨

γ
i=1

(Ai(x) ⊗γ Bi(y))

is one of the solutions.

Sketch of the proof: Under the assumption that (a) holds, the proof uses the
same technique as the proof of Theorem 11.

When proving the theorem under the assumption of the preservation of (b),
we stem from the fact that Aj(x) →γ Řγ(x, y) = 1 when Aj(x) = �, and from
the fact that Aj(x) →γ Řγ(x, y) = � when Aj(x) /∈ {0, �}, and hence, we come
to the conclusion that (Aj �γ Řγ)(y) = � for any y ∈ Y .

Let us consider case (c). Using the fact that Aj(x) →γ Řγ(x, y) = 1 in case
of Aj(x) = � and also for Aj(x) �= � we come to the same conclusion, we prove
that (Ai �γ Řγ)(y) = 1 for arbitrary y ∈ Y . �

All the results presented above can be summarized in Table 4.

Table 4. Sufficient solvability conditions for systems of partial fuzzy relational equa-
tions: Ai ◦τ R = Bi, Ai �τ R = Bi where τ ∈ {B, Mc, Be, S, K, L, N}.

Distinct
algebras

Ai ◦τ R = Bi Ai �τ R = Bi

Sufficient conditions Solutions Sufficient conditions Solutions

Bochvar Bi = ∅� R�
τ Bi = ∅� R�

τ

MaCarthy Ai �= ∅, Bi = ∅� R�
τ Ai �= ∅, Bi = ∅� R�

τ

Bochvar
external and
Sobociński

Ai – boundary and
Bi ∈ F(Y )

R̂τ Ai – boundary and
Bi ∈ F(Y )

Řτ

Kleene Ai – normal, Bi = 1 R̂τ Ai – normal, Bi = ∅ Řτ

Ai �= ∅, Bi = ∅� Ai �= ∅, Bi = ∅�

Bi = 1 Ř′
τ

�Lukasiewicz
and Nelson

Ai – normal, Bi = 1 R̂τ Ai – normal, Bi = ∅ Řτ

Ai �= ∅, Bi = ∅� ∃x : Ai(x) /∈ {0, �}
and Bi = ∅�

Bi = 1
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4 Conclusion and Future Work

We have attempted to find, formulate and prove sufficient conditions for the
solvability of systems of partial fuzzy relational equations. Distinct well-known
algebras dealing with undefined values have been considered, namely Bochvar,
Bochvar external, Sobociński, Kleene, Nelson, �Lukasiewicz, and McCarthy alge-
bras. Let us recall that the choice of many algebras to apply to such a study
was not random but to cover various types of undefined values and consequently,
various areas of applications. We have obtained distinct sufficient conditions for
distinct algebras. Some of the conditions seem to be rather flexible, e.g., for the
case of Bochvar external and Sobociński, it was sufficient to consider the bound-
ary condition met by the antecedent fuzzy sets. On the other hand, most cases
showed that the solvability can be guaranteed under very restrictive conditions.
Although apart from the Bochvar case, the conditions are not necessary but only
sufficient, from the construction of the proofs and from the investigation of the
behavior of the particular operations it is clear, that in such algebras, very mild
conditions cannot be determined.

For the future work, we intend to complete the study by adding also necessary
conditions and by considering also the Dragonfly and Lower estimation algebras
that seem to be more promising for obtaining mild solvability conditions simi-
larly to the case of Sobociński or Bochvar external algebra. Furthermore, there
exist problems derived from the solvability modeling more practically oriented
research that are not expected to be so demanding on the conditions such as
the solvability itself. By this, we mean, for instance, modeling the partial inputs
incorporated into the fully defined systems of fuzzy relational equations. Indeed,
this models very natural situations when the knowledge (antecedents and con-
sequents) is fully defined but the input is partly damaged by, e.g., containing
missing values etc.

Finally, we plan to study the compatibility (or the sensitivity) of the used
computational machinery with undefined values with respect to ranging values
that can possibly replace the �. This investigation should show us which algebras
are the most robust ones when we know in advance that � belongs to a certain
range or � is described using natural language such as “low values”, or “big
values”, etc.
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1. Běhounek, L., Daňková, M.: Towards fuzzy partial set theory. In: Carvalho, J.P.,
Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.)
IPMU 2016. CCIS, vol. 611, pp. 482–494. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40581-0 39
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