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Abstract

Ecoregionalization is the process by which a territory is classified in similar areas according

to specific environmental and climatic factors. The climate and the environment strongly

influence the presence and distribution of vectors responsible for significant human and ani-

mal diseases worldwide. In this paper, we developed a map of the eco-climatic regions of

Italy adopting a data-driven spatial clustering approach using recent and detailed spatial

data on climatic and environmental factors. We selected seven variables, relevant for a

broad set of human and animal vector-borne diseases (VBDs): standard deviation of alti-

tude, mean daytime land surface temperature, mean amplitude and peak timing of the

annual cycle of land surface temperature, mean and amplitude of the annual cycle of green-

ness value, and daily mean amount of rainfall. Principal Component Analysis followed by

multivariate geographic clustering using the k-medoids technique were used to group the

pixels with similar characteristics into different ecoregions, and at different spatial resolu-

tions (250 m, 1 km and 2 km). We showed that the spatial structure of ecoregions is gener-

ally maintained at different spatial resolutions and we compared the resulting ecoregion

maps with two datasets related to Bluetongue vectors and West Nile Disease (WND) out-

breaks in Italy. The known characteristics of Culicoides imicola habitat were well captured

by 2/22 specific ecoregions (at 250 m resolution). Culicoides obsoletus/scoticus occupy all

sampled ecoregions, according to its known widespread distribution across the peninsula.

WND outbreak locations strongly cluster in 4/22 ecoregions, dominated by human influ-

enced landscape, with intense cultivations and complex irrigation network. This approach

could be a supportive tool in case of VBDs, defining pixel-based areas that are conducive

environment for VBD spread, indicating where surveillance and prevention measures could

be prioritized in Italy. Also, ecoregions suitable to specific VBDs vectors could inform ento-

mological surveillance strategies.
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Introduction

Ecoregions have been defined as areas “within which there are associations of interacting biotic
and abiotic features” [1]. Climate, orography, geological factors (abiotic) and vegetation

(biotic), are the characteristics commonly used to define homogeneous land units, within

which natural communities and species interact with the physical elements of the environment

[2]. Ecoregions are typically applied in forest conservation [3], land management programs [4]

and in environmental conservation strategies [2].

Ecoregionalization is then the process through which a territory is classified into similar

areas according to specific environmental and climatic factors. There are several datasets

already existing for Italy that reflect vegetation distribution (e.g. the CORINE Land Cover

(CLC) map [5]), and climatic conditions or bioclimatic indices [6,7], but these datasets are still

not fully integrated together. For Italy, the most recent classification available derives from a

hierarchical, deductive and divisive expert-based method, vegetation-oriented, that, at its finer

scale, divides the Italian land in 33 areas, homogeneous by climate, physiography, biogeogra-

phy and vegetation [2]. This classification has been further evolved into an ecosystem mapping

of Italy, where it was integrated with the CLC and the potential natural vegetation through an

expert-based overlay [8].

A quantitative and objective classification (nor hierarchical or supervised) that includes

land use, climatic and topographic features, which allows the identification of homogeneous

areas at finer scale, using a raster-based approach is still missing. The recent and rapid

advances in the performance and accessibility of computer hardware and statistical software

facilitate the ecoregionalization process, taking also advantage of the large volume of spatial

data availability, also remotely sensed [9].

Whether remotely sensed or ground collected, ancillary or in real time, the selection of data

sets to be included in an ecoregionalization process responds to the specific purpose for which

the similarity analysis is conducted.

In addition to the traditional fields of application explored so far, the use of the ecoregiona-

lization approach can be of interest also in the veterinary field especially when dealing with

vector-borne diseases, where the triangle vectors-host-pathogen is strictly linked to the envi-

ronment [10–13]. Suitable conditions allow the proliferation of the vectors, providing rest and

breeding sites, shapes the pathogen replication and facilitates the contact among the three

actors promoting the infectious disease transmission. A recent assessment indicated that there

is a common set of drivers to many human and domestic animal pathogens; in particular, the

82% of the most significant human and domestic animal pathogens occurring in Europe are

influenced by temperature, rainfall, humidity or wind, and this is particularly true for VBDs

[14].

Given the presence of susceptible reservoir hosts and competent vectors, areas with similar

climatic and environmental conditions, are potentially exposed to similar disease risk, even if

they are geographically very distant from each other. This simple assumption underlines much

of the spatial modelling work that has been developed so far. Numerous studies have earlier

examined the complex interactions among environment and vectors/diseases [15–18], also

through the species distribution models (SDM) applied to vector occurrence [18–22]. They are

then useful when the vectors are known and their distribution enough assessed with reliable

field dataset so to feed the model and produce accurate predictions. When an incursion of a

new VBD is observed in an area, species not previously known to be competent vector could

result implicated in the transmission of the disease, as happened with bluetongue BTV8 in

Northern Europe in 2006 [23,24] and this can limit the application of SDM so far developed.

Emerging vector borne diseases could therefore benefit from a different approach starting
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from the definition of generic ecoregions, mapping the climatic and environmental similarity

so to inform the spatial context in which a VBD can potentially spread or persist. The idea of

identifying similar areas in terms of climatic and environmental conditions does not aim to

link a specific vector to specific conditions, but rather to highlight where the same characteris-

tics (e.g. high/low temperatures, heavy/light rain, dense/sparse vegetation, etc.) are present so

as to be able to identify a priori where a possible vector that prefers those specific conditions

could spread.

In this paper, we identified similar eco-climatic regions of Italy following a data-driven spa-

tial clustering approach and using the available, most detailed and up-to-date spatial data on

climatic and environmental factors. The variables chosen, although not exhaustive, are among

those that have been repeatedly found to be associated with a set of human and animal diseases

[14], in particular with Bluetongue [25,26] and West Nile [27–29], two vector borne diseases

affecting Italy in the last decades.

We also compare the resulting ecoregion maps with two dataset, i) the distributions of

some BT vectors and ii) the distribution of WND outbreaks, to highlight pros and cons of such

an approach.

Materials and methods

Environmental and climatic selected data

Seven variables related to topography, temperature, rainfall and vegetation, and known to be

relevant to VBDs, available for the entire Italian territory, were selected for the ecoregionaliza-

tion process.

Topography influences the water runoff and the retention of water and nutrients, affecting

the moisture of soil surface layer. Depending on the vector preferences for a mud, moist or

aquatic breeding site, the topography contributes to promote or inhibit the proliferation of lar-

val sites [17,30,31].

Temperature influences the vector population dynamics and it drives the vector compe-

tence, by accelerating the virus replication within the insects and prolonging their breeding

season [32,33].

The effect of rainfall is more controversial in literature and is highly dependent on the hab-

its of the vector species. Water pools are fundamental for the larval stage of mosquitoes and

rainfall events favour their proliferation, but at the meantime dilute the content of nutrients

decreasing their reproduction rate [16,34]. Other vector species, as Culicoides imicola, needs

moist soil but not flooded to breed [17], and high rainfall events could eliminate larval habitats

and create unsuitable environmental conditions.

Vegetation is a key parameter both to define vector habitat, and as a proxy of rainfall and

humidity. The Normalised Difference Vegetation Index (NDVI) is a wide used index in

remote sensing [35], representing the presence and density of green biomass. It is widely pres-

ent in epidemiological models to explain disease occurrences [36–38] or to describe the vector

habitats [25,39–41].

In our study, temperature and vegetation were derived from remotely sensed archives and

submitted to a Fourier decomposition: yearly time series in each pixel is decomposed in sine

curves (harmonics), each characterised by specific amplitudes and phases whose sum recom-

pose the original dataset [42]. Usually the first two harmonics are retained, as they explain the

majority of variability and are easily biologically interpretable. The first component of the

series, the harmonic 0, is an average of the values across each year and it gives the yearly mean

value of the variable (A0). The harmonic 1 is characterised by amplitude (A1) and phase (ph1)

and it describes the annual cycle of the variable. Once the yearly rasters of A0, A1 and ph1,
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were calculated per each year in the period 2007–2016, an average was calculated across the 10

years.

The seven variables included in this study were:

• Standard deviation of altitude (AltSd)

• Mean daytime Land Surface Temperature in ˚C (LstdMn)

• Mean amplitude of annual cycle of LST in ˚C (LstdAmp1)

• Peak timing of the annual cycle of LST, i.e. the day when the first harmonic of the tempera-

ture series reaches its maximum value (LstdDPk1)

• Mean greenness value (NDVIMn)

• Mean amplitude of annual cycle of greenness values (NDVIAmp1)

• Daily mean amount of rainfall in millimetres (RainMn).

Data sources, collection and manipulation

Elevation was derived from the 20 m Digital Elevation Model of Italy (http://www.pcn.

minambiente.it accessed 2nd March 2018). The standard deviation (AltSd) of the values falling

in the pixel at the reference scale (see next paragraph for details) was calculated. The standard

deviation of altitude points out the local variability of the altimetry and resulted more informa-

tive than the mean altitude that in Italy is highly correlated with mean temperature (Pearson

correlation coefficient = 0.85, p-value<0.01).

From the product MOD11A2 (MODIS/Terra Land Surface Temperature and Emissivity

8-Day L3 Global 1km Version-5), the daytime LST images (LSTD) were downloaded for ten

complete years, from 01.01.2007 to 12.31.2016 [43]. Each raster was converted into WGS84–

UTM33 coordinate system and the values into degree Celsius (˚C). The four tiles covering

Italy were mosaicked, and single raster files per date were archived, resulting in 46 images per

year.

Linear temporal interpolation, spatial interpolation and climatology procedures [44] were

run to fill missing pixel data. The dataset was then submitted to a Seasonal Trend Analysis to

perform a harmonic regression on yearly data. The average over the decade of the yearly har-

monics 0 and 1 were retained: amplitude 0 and amplitude 1 were named LstdMn and

LstdAmp1, respectively. To facilitate interpretation, phase of the first harmonic was accounted

as LstdDPk1: it is the day when the first harmonic of the temperature series reaches its maxi-

mum value and it was calculated applying the following formula

LstdDPk1 ¼ MODð450 � LSTD ph1; 360Þ

whereMOD(n, d) = n—d�INT(n/d),MOD function returns the remainder of two numbers

after division. LSTD_ph1 is the phase of the first harmonic of temperature.

n = number, is the number to be divided; d = divisor, is the number to divide with. The

parameter 450 in formula is set to always have the peak in the positive x-axis.

The NDVI dataset was downloaded for the reference period from the product MOD13Q1

(MODIS/Terra Vegetation Indices 16-Day L3 Global 250m Grid SIN V006) [45], geographi-

cally processed and resulting in 23 images per year. Each yearly NDVI dataset was submitted

to a Fourier decomposition as described for LST; the average over the decade of the yearly har-

monics of amplitudes 0 and 1, were retained and named NdviMn and NdviAmp1, respec-

tively. The phase of the harmonic 1 (representing the day of the year when the greenness reach
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its maximum value) is a variable highly dependent on the type of cultivation and averaging the

values across the decade could mislead the ground truth. As the objective of this study is not to

investigate the characteristics of field cultivation in Italy, we decide to not include it in the

analyses.

Daily rainfall rasters for ten years, from 01.01.2007 to 12.31.2016, were downloaded from

DEWETRA web application (http://dewetra.cimafoundation.org/dewetra/ accessed 2nd March

2018): these rasters derive from ground weather stations managed by the Italian Civil Protec-

tion, interpolated trough the GRISO method at a 0.02 degrees [46]. The daily mean amount of

rainfall was considered as variable (RainMn), being representative of the total rainfall of the

year [47].

Pixels corresponding to lakes and cities were set to NoData in all dataset to avoid spurious

and artificial effects of reflectance wavelength on these surfaces.

The geographical manipulation was performed in ArcMap 10.3.1 ESRI with routines in

Python language; the Fourier analyses in Idrisi Taiga software and with Idrisi Macro Language.

Routines in R software (https://www.r-project.org/ accessed 2nd March 2018) and the Modis

Reprojection Tool (https://lpdaac.usgs.gov/tools/modis_reprojection_tool accessed 2nd March

2018) were used to download and process the MODIS images. The processing archive size and

number of files is reported in S1 Table.

The spatial resolutions for our analyses were: i) 2 km (driven by DEWETRA rainfall data

spatial resolution); ii) 1 km (driven by LSTD data spatial resolution) and iii) 250 m (driven by

NDVI spatial resolution). From the original resolution of each dataset, an aggregation was per-

formed to obtain the datasets at the three resolutions (2 km, 1 km and 250 m). The S2 Table

reports the aggregation methods.

Statistical analysis

For each of the three spatial resolutions (2 km, 1 km and 250 m), the following analyses were

run.

All variables were standardized to a mean of zero and a standard deviation of one. A Princi-

pal Component Analysis (PCA) with a varimax rotation used to make the factors orthogonal

and more interpretable, was first performed to take into account the correlation among the

variables. The first three principal components were used as the axes for the environmental

data space and the basis for the ecoregionalization and their scores were scaled in a 0–255

range for an RGB colour triplet representation [48,49]. All the values in the 10th percentile

were assigned to zero; all the values higher than the 90th percentile were set to 255, linearly

scaling all the others. In this way we mapped the first, second, and third principal component

scores of each pixel to a red–green–blue (RGB) colour triplet. Pixels containing similar cli-

matic and environmental combinations are coloured similarly.

The three components were then processed in a multivariate geographic k-medoids cluster

analysis, a classical partitioning method that aggregates the dataset of n objects into k clusters

known a priori [50]. The partition algorithm around medoids minimizes the average quadratic

error between all points and the point centre of the cluster. The ‘optimal’ number of clusters

was identified using the Silhouette technique on a priori groupings ranging between 10 and 50

[51]. This range was chosen to keep all landscape variability in Italy but avoiding a too frag-

mented clusterization.

Pixels belonging to the same cluster were displayed with the colour of the medoid of the

corresponding cluster, thus colours reflect the distance in terms of information: similar colours

reflect smaller distances between the cluster medoids, i.e. the pixels have similar environmental

characteristics.
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Once the ecoregionalization process was run at each spatial resolution, the three outputs

were compared; for each pairwise combinations of resolutions i and j (250 m vs 1 km, 250 m

vs 2 km, 1 km vs 2 km), we calculated:

• a confusion matrix with the percentage of the area that migrated from each cluster of resolu-

tion i to all clusters of resolution j;

• a confusion matrix with the Euclidean distance among the medoids in the 7-dimension

space of the normalised variables to define the environmental similarity between each cluster

of resolution i and clusters of resolution j.

This process provides a measure of the agreement between resolutions i and j.
All the statistical analyses were performed in R software version 3.3.2 (R Core team, https://

www.r-project.org/) using rasterVis [52], sp [53] and raster packages for spatial analysis and

visualization, fpc package [54] for cluster analysis, rgl package [55] and vioplot [56] for clusters

representation.

Entomological and disease case studies

To discuss the possible use of the ecoregionalization process, two case studies were investigated

verifying the overlapping between specific ecoregions (output result at 250 m resolution) and

the spatial distribution of C. imicola and C. obsoletus/scoticus bluetongue vector and West Nile

disease outbreaks. Although the WNV has a complex life cycle, involving several bird species

as reservoir hosts, in Italy the West Nile virus circulation and transmission are indisputably

closely linked to the presence and distribution of its main vector, Culex pipiens s.l. [57,58].

BT vectors dataset. An Entomological Surveillance National Plan for bluetongue is in

place since 2000 in Italy [59], stating field protocols for the collection of Culicoides and labora-

tory protocols for insects identification [60]. Information on single night catches is collected in

a centralised database, from which presence/absence and abundance of Culicoides species

incriminated as BTV vectors were derived: C. imicola and C. obsoletus/scoticus (this taxon

including the two cryptic species C. obsoletus and C. scoticus) [61,62]. Collections performed

during winter period (December-March), with a number of insects lower than 5 per night and

with no specimens belonging to one of the considered vector species were removed, and only

correctly georeferenced sites were kept for the analysis. From the original 150,000 collections

from August 2000 to August 2017, those analysed for C. imicola were 73,182, located in 3,630

sites across Italy; 6,898 collections were analysed in 1,511 sites for C. obsoletus/scoticus. For

each cluster, the percentage of positive sites (a positive site is defined as a site with at least one

specimen of the considered vector species collected at least in one night) and the average abun-

dance in positive sites (through the whole period considered), were calculated. Since the num-

ber of sites was variable in the clusters, the uncertainty of the percentage was calculated using a

Beta distribution and its 95% confidence intervals.

WN outbreaks dataset. The re-occurrence of WND in Italy in 2008 heavily affected the

Po river delta in Northern Italy, leading to the establishment of an integrated national surveil-

lance plan that combines human cases reported by local health authorities and animal surveil-

lance data [63–65]. Besides, extensive entomological regional surveillance plans were put in

place in the endemic areas of Northern Italy, nevertheless the entomological data are not avail-

able at national level. As reported by Calzolari et al. [57], in the endemic area of Pianura

Padana, a robust entomological monitoring allowed the early detection of WNV in Culex
pipiens s.l. pools before the occurrence of human cases. Thus we can assume that outbreaks

locations represent a good proxy for Culex pipiens s.l. presence being this vector the species

most involved in the WNV circulation in Italy [57,58].
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WND outbreaks reported in Italy in the frame of the animal surveillance were then investi-

gated to verify consistency with ecoregions. No human cases were included for privacy reason,

but this does not affect the results as their distribution is within the geographical distribution

of animal cases [64].

WN virus detection and seroconversions in horses and birds, equine clinical cases and posi-

tive entomological collections were derived from the Italian National Surveillance Information

System (https://www.vetinfo.sanita.it/ accessed 2nd March 2018) collecting the notification of

animal disease outbreaks in Italy [66].

Results

Ecoregionalization

Fig 1 shows the seven environmental and climatic input variables processed for PCA. The S1

Fig reports the correlation matrix among the seven variables.

The varimax rotation matrix highlights the relations between the input variables and the

factors derived from PCA (Table 1 for 250 m resolution, S3 and S4 Tables for 1 km and 2 km

respectively). The proportion of variance of the first three components was 79.35% at 250 m,

80.06% at 1 km, and 79.78% at 2 km spatial resolutions.

The first three factors of the PCA were associated to the colour triplet Blue-Green-Red: PC1

“Mountains”, which was mainly driven by steep slopes, low mean temperature, high precipita-

tions, was associated to the Blue colour in reverse mode (i.e. light blue is associated to higher

values of PC1, darker blue goes to pixels with low PC1); PC2 “Vegetation greenness”, charac-

terised by low seasonal temperature variation and high vegetation presence, was associated to

the Green colour in reverse mode; PC3 “Length of hot season”, characterised by a long hot sea-

son was associated to the Red colour (S2 Fig). When applying this RGB colour scheme, the

resulted map showed similar pixels in similar colours (Fig 2).

The multivariate k-medoids geographic clustering, applied to the optimal number of clus-

ters identified by the Silhouette (S3 Fig), produced 11 clusters at 2 km spatial resolution, 10

clusters at 1 km and 22 clusters at 250 m (Fig 3). The total number of pixels in each ecoregion

map is 79,619 (2 km), 312,673 (1 km) 4,869,825 (250 m) respectively (S5 Table).

The main characteristics of each ecoregion are shown through violin plots of the input vari-

ables (Fig 4 for 250 m resolution; S4 and S5 Figs for 1 and 2 km spatial resolutions); the shape

and the size of the violins describe the distribution of the values around the centroid, i.e. it is a

quantitative measure of variability of each factor within an ecoregion.

At 250 m resolution, clusters representing mountainous areas (1–7) have a prevailing pur-

ple-pink colour with low mean temperature, above average seasonal variance in temperature,

low average values of vegetation greenness and high annual variations in vegetation, with con-

sistent rains and high local variance in elevation. The green-based clusters (approx. 8–17) have

a common high value of average vegetation, with the variance across the year depending on

the land cover (low variation for forests, high for cultivated fields). The differences among the

clusters of this group are mainly related to topography, rain and temperature variation. The

group of clusters (approx. 18–22) are red-based, highlighting their characteristics of general

high mean temperature, high variance across the year and presence of long hot season, low

rainfall rates and flat areas. The clusters are differentiated by distinct crop types reflecting in

different amount and seasonality of vegetation indices.

The robustness of the three output results was evaluated through the total area migrating

from one cluster at resolution i to the more similar ones in resolution j. The three pairwise

comparisons show that the 80% of the area of a classification migrated to the most similar and

to the second most similar clusters of the other classification (Fig 5).
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Entomological and disease case studies

As Fig 6 shows, C. imicola distribution is clustered in specific areas of Southern Italy. Con-

versely, Culicoides obsoletus/scoticus is widespread across the country. The number of trapping

sites and collections performed per cluster is reported in Table 2. Ecoregions 1, 2 and 6 had no

trapping site as they represent mountain areas with no (or few) livestock.

Fig 7 shows the vector taxa as quantified by the proportion of positive sites (sites in which

the species was present) by cluster (left) and the maximum number of collected midges in one

night collection (i.e. maximum number of specimens) per positive site (right). The figure

shows how C. imicola is mostly distributed within the two reddish ecoregions 21 and 22,

where the percentage of positive sites is 43% (95% confidence interval 39%-47%) and 61%

(95% confidence interval 56%-66%) respectively. When considering only the positive C. imi-
cola sites (n = 851), the majority of sites are either located in ecoregions 21 and 22 (487 pres-

ence sites) or within 2 km from these two ones (278 positive sites).

C. obsoletus/scoticus, are widespread among all the ecoregions identified, showing adapt-

ability to a wide range of climatic and environmental conditions: for C. obsoletus/scoticus the

percentage of positive sites ranged from 71% to 100% in all the clusters, although some of

them (i.e. clusters 3, 4, 5, 11) have only few sites as proven by the wide confidence interval bar.

Fig 8 reports the spatial distribution of 1,259 WND outbreaks notified in the frame of the

animal surveillance in Italy in the years 2008–2016, overlayed to the ecoregions 9, 14, 17 and

21. Despite the even distribution of equine farms across the country, the 87% of outbreaks are

located in the four mentioned ecoregions.

Discussion

In this paper, a multivariate statistical clustering algorithm was applied to seven climatic and

environmental variables to classify the Italian territory in similar regions at three spatial resolu-

tions, 250 meters, 1 km and 2 km delineating 22, 10 and 11 ecoregions, respectively.

The coarser ecoregion division (2 km pixel resolution) accurately captures intuitively

understood environmental differences in Italy. As in the most recent hierarchical classification

available [2], although not properly comparable because of the differences in data and

approach applied, the map distinguishes the high mountains of Alps (cluster 1), the pre-Alps

and Apennines chain (clusters 2 and 3), the flat and cultivated areas of Po valley and of part of

South peninsula (clusters 4 and 8), the hilly rainy areas on the Tyrrhenian coast with stable

Fig 1. Raster input variables. The input variables are: mean daytime land surface temperature (LstdMn), mean amplitude of annual cycle of land surface

temperature (LstdAmp1), peak timing of annual cycle of land surface temperature (LstdDPk1), daily mean amount of rainfall (RainMn), mean amplitude

of annual cycle of greenness values (NDVIAmp1), mean greenness value (NDVIMn), standard deviation of altitude (AltSd).

https://doi.org/10.1371/journal.pone.0219072.g001

Table 1. Relationship between the input variables and the factors of the PCA at 250 m spatial resolution.

PC1 (blue) PC2 (green) PC3 (red) PC4 PC5 PC6 PC7

LstdMn 0.53 -0.17 0.04 -0.22 0.23 -0.27 0.72

LstdAmp1 0.35 0.52 -0.14 0.07 -0.07 -0.68 -0.34

LstdDPk1 0.05 0.33 0.83 -0.15 0.38 0.12 -0.13

NDVIMn -0.01 -0.67 0.16 -0.42 0.04 -0.38 -0.44

NDVIAmp1 -0.34 0.35 -0.35 -0.76 0.23 0.03 0.06

RainMn -0.49 -0.08 -0.08 0.41 0.64 -0.39 0.12

AltSd -0.48 0.08 0.36 -0.08 -0.58 -0.39 0.37

Cumulative proportion of variance 0.39 0.64 0.79 0.87 0.93 0.97 1.00

https://doi.org/10.1371/journal.pone.0219072.t001
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vegetation along the year (clusters 5 and 7), the pre-Apennines hills (most of the territory

below 600 m a.s.l.) (cluster 6), the very hot areas of southern Italy and islands without rain

with little vegetation fluctuating during the year (cluster 9) and very flat (cluster 10), the undu-

lating very hot landscapes (cluster 11). This coarser classification is consistent with the one at 1

km resolution which defined 10 ecoregions. The number of classes increases to 22 at 250 m

pixel resolution, giving further details nested in the broader patterns of the previous two

classifications.

Rather than rely on expertise or follow a hierarchical deductive method [2], the process

reads the environmental information in the 7-space data, and statistically groups them, assign-

ing a colour to each group: similar colours (in the RGB palette) mean similar environment.

The top of Alps in northern Italy and the top of Apennine chain are more purple/blue-related

(Blue = “mountains”), and they are characterized by steep slopes, low mean temperature and

high precipitations. Southern Italy, Sardinia and Sicily islands are more reddish (Red =

“Length of hot season”) being dominated by long hot season, with a mix of green (Green =

“Vegetation greenness”), so getting to orange-brown. Green areas are related to high vegeta-

tion (either as cultivated areas or natural landscapes) and to moderate seasonal temperature

variation, the latter mitigated by the presence of vegetation leaves.

Pixels with similar environments should be classified in the same ecoregion even if widely

separated geographically [67]. For this reason, the geographical position of the pixels and the

geographical neighbourhood were deliberately taken out from the clustering process so to

identify clusters also spatially disjoint. Notwithstanding, ecoregions tend to be geographically

cohesive because of the spatial autocorrelation usually present in the environmental data [48].

There is generally a gradient in colour among close pixels, highlighting similarity in the envi-

ronmental conditions and information consistency, and when present, the salt and pepper

effect is mainly due to the typical fragmented land use of Italian territory.

The ecoregions maps show a geographical coherence at the three spatial resolutions (250 m,

1 km, 2 km): the 80% of the pixels of a resolution migrated to the most similar and to the sec-

ond most similar cluster of the other resolutions. This means that moving from a coarser to a

finer spatial resolution (or vice-versa), the area covered by the corresponding pixels is classified

similarly (in terms of colours, i.e. of eco-climatic characteristics). The choice of the resolution

to be selected/to be produced depends mainly on the final use of the classification.

Fig 2. RGB classification: Pixels similar in terms of climate and environment are similar in colours. The three spatial resolutions 2 km, 1 km, 250 m are

reported from left to right for a zoomed area (black box on the left map of Italy).

https://doi.org/10.1371/journal.pone.0219072.g002
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To our knowledge, this is the first attempt at producing a quantitative data-driven approach

to delineate eco-climatic areas in Italy using variables associated to VBDs and VBDs vectors.

The idea arises from the potential application of such a layer in support to surveillance and

control management.

It is reasonable to assume a more probable spread of a VBD within each ecoregion, given

the similar characteristics, rather than between different clusters. This is a first useful informa-

tion from a public health perspective. Pixels of the same colour belong to the same cluster, and

Fig 3. Cluster results at the spatial resolutions of 2 km, 1 km, 250 m from left to right, for whole Italy (A) and in a zoomed area (B).

https://doi.org/10.1371/journal.pone.0219072.g003
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therefore have, on average, the same environmental characteristics. The WND case study high-

lights a strong correspondence between the location of WND cases and few greenish ecore-

gions (9, 14, 17 and 21 at 250 m spatial resolution). Since 2008, WND strongly hit Northern

Italy and in particular the Po Valley [68]. This intensively cultivated area is characterized by

the presence of rivers and wetlands where ornithophilic mosquitoes and migratory birds are in

Fig 4. Violin plots depicting the characteristics of the seven input variables in the 22 ecoregions (250 m spatial resolution). The white marker is the

median of the data, the box indicates the interquartile range, with a kernel density overlaid. The red line reports the average value across all clusters. Each

violin has the same color of the corresponding ecoregion.

https://doi.org/10.1371/journal.pone.0219072.g004
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Fig 5. Migration area of the pixels from the resolution i to the more similar clusters in resolution j. The three pairwise comparisons show that the

80% of the area of a classification migrated to the most similar and to the second most similar clusters of the other classification.

https://doi.org/10.1371/journal.pone.0219072.g005

Fig 6. Spatial distribution of C. imicola, C. obsoletus/scoticus in Italy. The maximum specimens catched in the most

favourable period (April–November) in the period August 2000- August 2017.

https://doi.org/10.1371/journal.pone.0219072.g006
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close contact, allowing the transmission of WNV and the establishment of enzootic cycle of

infection. The natural areas as well as the agricultural and urban areas, characterized by the

constant presence of stagnant water provide potential breeding habitats for different mosquito

species, including Culex pipiens s.l., considered the main vector of WNV, and of other Flavivi-
rus such as USUTU virus, in the whole Italian Peninsula [57,58]. Although 80% of the WND

outbreaks fall in the greener 3 ecoregions mentioned, the 7% are found in reddish cluster 21

representing risk areas in the southern part of Italy. The low percentage of cases in these areas

and their clustered distribution inside the ecoregion, can be explained by the local presence of

specific factors, additional to the ones included in the present ecoregion definition, such as

humid areas and migratory bird settlements (e.g. ponds in Oristano province in Western Sar-

dinia; Lentini Lake in Eastern Sicily, Stagnone Lagoon and Marsala salt ponds in Western

Sicily).

Second, the spread of disease from one part of Italy to another geographically distant, but

belonging to the same ecoregion, would be an important risk factor to take into account for

disease control measures. The spatial structure of the ecoregions in relation to known infec-

tions could therefore be used to prioritize animal movement control such as to prevent infec-

tions from one geographic part of an ecoregion to another.

Third, this approach could also inform entomological surveillance strategies identifying

similar places far apart in which to intensify or reduce the sampling activity. In the case of C.

imicola in Italy, this BT vector revealed a strong association with two ecoregions, the 21 and

22. Culicoides imicola has already been proved to be associated with specific habitat character-

ised by high mean temperatures, dry environments, flatten and sunny surfaces, low vegetation

Table 2. Number of trapping sites and collections per ecoregion for Culicoides imicola, C. obsoletus/scoticus.

ecoregion C. imicola dataset C. obsoletus/scoticus dataset

Number of sites Number of collections Number of sites Number of collections

1 0 0 0 0

2 0 0 0 0

3 10 643 3 16

4 3 9 2 2

5 12 373 5 16

6 0 0 0 0

7 47 1511 23 70

8 48 2717 32 137

9 100 6817 55 638

10 68 5244 48 382

11 5 9 2 2

12 151 2373 75 191

13 26 133 15 37

14 76 4756 46 395

15 422 6228 180 831

16 307 3549 162 369

17 320 10372 148 877

18 376 4963 139 955

19 484 8693 194 733

20 150 1561 52 156

21 684 7974 213 602

22 341 5257 117 489

TOTAL 3,630 73,182 1,511 6,898

https://doi.org/10.1371/journal.pone.0219072.t002

Ecoregionalization in Italy: A first step towards a targeted vector borne disease surveillance

PLOS ONE | https://doi.org/10.1371/journal.pone.0219072 July 3, 2019 14 / 21

https://doi.org/10.1371/journal.pone.0219072.t002
https://doi.org/10.1371/journal.pone.0219072


[17,69,70] and in Italy the combination of these favourable factors clearly delineates the two

specific ecoregions. These two ecoregions are mainly located in Sardinia, Sicily, Ionian part of

toe of Italy, Tyrrhenian coast of Lazio and Tuscany, where the distribution of C. imicola is doc-

umented. The ecoregion map here produced highlights that these clusters (at risk) are also

present in river valleys of Adriatic coast where few or none cases were reported, and in the

area laying between Apulia and Basilicata regions; a deeper entomological investigation might

verify if and which local conditions may locally decrease the vector population (type of crops,

farming types, absence of water for larval sites, etc.).

If the approach captures the environmental preferences of Culicoides imicola, whose distri-

bution in Italy is spatially constrained, it seems less accurate with the Culicoides Obsoletus/sco-
ticus, a species with a broader distribution across the country. Culicoides obsoletus/scoticus is a

taxon not showing evidence of prevalence in specific ecoregions, in agreement with previous

studies [62,71]. In terms of abundances, the highest values were found in ecoregions character-

ized by high vegetation indices, but with different seasonal patterns. The two cryptic species C.

obsoletus and C. scoticus are both related to vegetation, but with C. scoticus associated to more

natural environments and C. obsoletus being a more widespread species, including urban areas

[25,62]. Culicoides obsoletus in Italy is largely the most abundant of the two [62,72], thus it

might have played a major role in the even distribution of positive sites. A more detailed set of

variables [25] could derive a tailored ecoregionalization for these two species.

In general terms, the availability of specific environmental datasets is a key point in the

development of such an approach. Some variables such as soil composition, permeability and

capacity of retain water are key factors in defining vector habitat [71], but detailed information

covering the entire Italian territory is not available and the ecoregionalization might be lacking

in considering this aspect.

An additional consideration is the role of hosts in defining ecoregions. This aspect, deliber-

ately taken out from our generic classification, it is important when tailoring the method to a

Fig 7. Distribution of C. imicola (A) and C. obsoletus/scoticus (B) in the 22 Italian ecoregions, as quantified by the

proportion of positive sites by cluster (left) and the maximum catches per positive site (right).

https://doi.org/10.1371/journal.pone.0219072.g007
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specific pathogen/disease because the ecoregions will be based not only on climatic and envi-

ronmental factors (suitability for the vector), but also on the availability of hosts (suitability for

the disease).

Future perspectives

The multivariate clustering method can be extended to a geospatiotemporal clustering in

which multi-dimensional datasets of temporal variables would be used for describing and

tracking the similarity of ecosystem properties through time, either retrospective or forward.

This could be used to detect changes in landscape features that may underline the areas of

emergence of new diseases, the resurgence of old ones, or changes in transmission opportuni-

ties of established vector-borne pathogens [12].

Applied in Italy on weekly or monthly basis, a “dynamic ecoregion” definition would help

to define which areas are similar in which period, and it might represent an added value in

case of virus entrance in a specific time of the year so to adopt priority intervention and control

measure in similar areas at higher risk. Moreover the method could be replicated including

datasets on present and future climatic conditions, to investigate the evolution of ecoregions in

Italy under climate change scenarios [21,26].

Fig 8. Spatial distribution of 2008–2016 WND outbreaks reported in Italy in the frame of animal surveillance overlaid to the clusters 9, 14, 17 and 21

where the 87% of outbreaks was located (map). In the graph, the percentage of outbreaks (in dark grey) and equine farms (in light grey) per ecoregion are

reported.

https://doi.org/10.1371/journal.pone.0219072.g008
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Although it still remains a rich and complex process requiring different expertise, ecoregio-

nalization could contribute in the development of accurate early warning systems so to timely

prevent and control VBDs spread through a harmonized and targeted surveillance systems, in

space and time, for host and vectors.
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53. Bivand RS, Pebesma E, Gómez-Rubio V. Applied Spatial Data Analysis with R [Internet]. 2nd ed.

Springer-Verlag New York; 2013 [cited 2018 May 15]. 405 p. (use R!; vol. 10). Available from: https://

www.springer.com/it/book/9781461476177

54. Hennig C. fpc: Flexible Procedures for Clustering. Version: 2.1–11 [Internet]. 2015 [cited 2018 May 15].

Available from: https://CRAN.R-project.org/package=fpc

55. Adler D, Murdoch D, et al. rgl: 3D Visualization Using OpenGL. Version: 0.96.0 [Internet]. 2016 [cited

2018 May 15]. (https://CRAN.R-project.org/package=rgl). Available from: https://CRAN.R-project.org/

package=rgl

56. Adler D. vioplot: Violin plot. Version: 0.2 [Internet]. 2005 [cited 2018 May 15]. (https://CRAN.R-project.

org/package=vioplot). Available from: https://CRAN.R-project.org/package=vioplot

57. Calzolari M, Pautasso A, Montarsi F, Albieri A, Bellini R, Bonilauri P, et al. West Nile Virus Surveillance

in 2013 via Mosquito Screening in Northern Italy and the Influence of Weather on Virus Circulation.

PLoS ONE. 2015; 10(10):e0140915. https://doi.org/10.1371/journal.pone.0140915 PMID: 26488475

58. Mancini G, Montarsi F, Calzolari M, Capelli G, Dottori M, Ravagnan S, et al. Mosquito species involved

in the circulation of West Nile and Usutu viruses in Italy. Vet Ital. 2017 Jun 30; 53(2):97–110. https://doi.

org/10.12834/VetIt.114.933.4764.2 PMID: 28675249

59. Giovannini A, Paladini C, Calistri P, Conte A, Colangeli P, Santucci U, et al. Surveillance system of blue-

tongue in Italy. Veterinaria Italiana. 2004; 16.

60. Goffredo M, Meiswinkel R. Entomological surveillance of bluetongue in Italy: methods of capture, catch

analysis and identification of Culicoides biting midges. Vet Ital. 2004; 40(3):260–265. PMID: 20419674

61. Goffredo M, Catalani M, Federici V, Portanti O, Marini V, Mancini G, et al. Vector species of Culicoides

midges implicated in the 2012-2014 Bluetongue epidemics in Italy. Vet Ital. 2015 Jun; 51(2):131–8.

https://doi.org/10.12834/VetIt.771.3854.1 PMID: 26129664

62. Goffredo M, Meiswinkel R, Federici V, Di Nicola F, Mancini G, Ippoliti C, et al. The ‘Culicoides obsoletus

group’ in Italy: relative abundance, geographic range, and role as vector for Bluetongue virus. Vet Ital.

2016 Sep 30; 52(3–4):235–41. https://doi.org/10.12834/VetIt.35.100.1 PMID: 27723032

63. Napoli C, Iannetti S, Rizzo C, Bella A, Di Sabatino D, Bruno R, et al. Vector Borne Infections in Italy:

Results of the Integrated Surveillance System for West Nile Disease in 2013 [Internet]. BioMed

Research International. 2015 [cited 2018 Oct 12]. Available from: https://www.hindawi.com/journals/

bmri/2015/643439/

64. Rizzo C, Napoli C, Venturi G, Pupella S, Lombardini L, Calistri P, et al. West Nile virus transmission:

results from the integrated surveillance system in Italy, 2008 to 2015. Euro Surveill [Internet]. 2016 Sep

15 [cited 2018 Oct 11]; 21(37). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5032855/

65. Rizzo C, Salcuni P, Nicoletti L, Ciufolini MG, Russo F, Masala R, et al. Epidemiological surveillance of

West Nile neuroinvasive diseases in Italy, 2008 to 2011. Eurosurveillance. 2012; 17(20):20172. PMID:

22642945

66. Colangeli P, Iannetti S, Cerella A, Ippoliti C, Di Lorenzo A, Santucci U, et al. The national information

system for the notification of animal diseases in Italy. Vet Ital. 2011 Sep; 47(3):303–12, 291–301.

67. Cheruvelil KS, Yuan S, Webster KE, Tan P-N, Lapierre J-F, Collins SM, et al. Creating multithemed eco-

logical regions for macroscale ecology: Testing a flexible, repeatable, and accessible clustering method.

Ecology and Evolution. 2017 May; 7(9):3046–58. https://doi.org/10.1002/ece3.2884 PMID: 28480004

68. Calistri P, Giovannini A, Hubalek Z, Ionescu A, Monaco F, Savini G, et al. Epidemiology of West Nile in

Europe and in the Mediterranean basin. Open Virol J. 2010 Apr 22; 4:29–37.

69. Acevedo P, Ruiz-Fons F, Estrada R, Márquez AL, Miranda MA, Gortázar C, et al. A Broad Assessment
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