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Abstract
Background: The	compositions	of	venous	(red	blood	cell–rich)	and	arterial	(platelet‐
rich)	thrombi	are	mediated	by	distinct	pathophysiologic	processes;	however,	fibrin	is	
a	major	structural	component	of	both.	The	transglutaminase	factor	XIII	(FXIII)	stabi‐
lizes	fibrin	against	mechanical	and	biochemical	disruption	and	promotes	red	blood	
cell	retention	in	contracted	venous	thrombi.	Previous	studies	have	shown	factor	XIII	
(FXIII)	inhibition	decreases	whole	blood	clot	mass	and	therefore,	may	be	a	therapeu‐
tic	target	for	reducing	venous	thrombosis.	The	role	of	FXIII	in	arterial	thrombogene‐
sis	is	less	studied,	and	the	particular	contribution	of	platelet	FXIII	remains	unresolved.
Objective: To	 determine	 whether	 FXIII	 reduction	 prevents	 experimental	 arterial	
thrombogenesis.
Methods: Using	wild‐type	mice	and	mice	with	genetically	imposed	deficiency	in	FXIII,	
we	measured	thrombus	formation	and	stability	following	ferric	chloride–induced	ar‐
terial	thrombosis.	We	also	determined	the	impact	of	FXIII	on	the	mass	of	contracted	
platelet‐rich	plasma	clots.
Results: Following	vessel	injury,	F13a+/+,	F13a+/−,	and	F13a−/− mice developed occlu‐
sive	arterial	 thrombi.	FXIII	deficiency	did	not	 significantly	 reduce	 the	 incidence	or	
prolong	the	time	to	occlusion.	FXIII	deficiency	also	did	not	alter	the	timing	of	reflow	
events	or	decrease	platelet‐rich	clot	mass.
Conclusions: FXIII	does	not	significantly	alter	the	underlying	pathophysiology	of	ex‐
perimental	arterial	thrombus	formation.

K E Y W O R D S
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Essentials

•	 Factor	XIII	(FXIII)	stabilizes	fibrin	and	promotes	red	cell	retention	in	venous	thrombi.
•	 The	role	of	FXIII	in	arterial	thrombosis	is	less	understood.
•	 FXIII	deficiency	does	not	prevent	ferric	chloride–induced	carotid	artery	thrombus	formation	in	mice.
•	 FXIII	has	nonoverlapping	roles	in	venous	and	arterial	thrombosis.

www.wileyonlinelibrary.com/journal/rth2
mailto:
https://twitter.com/aswolberg
https://orcid.org/0000-0002-2845-2303
https://twitter.com/aswolberg
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:alisa_wolberg@med.unc.edu


112  |     TANG eT Al.

1  | INTRODUCTION

Venous	 and	 arterial	 thrombosis	 are	 diseases	 with	 distinct	 patho‐
physiologic	processes.	Venous	thrombosis/thromboembolism	is	pro‐
moted	by	 inappropriate	expression	of	cell	adhesion	molecules	and	
procoagulant	activity	on	intact,	dysfunctional	endothelium	in	static	
blood,	 often	 in	 concert	with	 plasma	 hypercoagulability	 (Virchow's	
triad),	producing	red	blood	cell–rich	“red	thrombi.”1	 In	contrast,	ar‐
terial	thrombosis,	commonly	manifested	in	association	with	athero‐
sclerosis,	 develops	 after	 rupture	 of	 an	 atherosclerotic	 plaque	 that	
exposes	 subendothelium	 and	 procoagulant	 material	 (eg,	 collagen,	
tissue	factor)	to	blood,	which	stimulates	platelet	activation	and	ag‐
gregation	under	high	 shear	 flow	and	produces	platelet‐rich	 “white	
thrombi.”1,2	Although	the	compositions	of	red	blood	cell–rich	venous	
thrombi	 and	 platelet‐rich	 arterial	 thrombi	 are	 strikingly	 different,	
thrombolytic	therapy	to	dissolve	fibrin	is	effective	in	treating	both	
arterial	and	venous	thrombosis,3,4	 indicating	that	fibrin	 is	a	shared	
central	component	of	both	thrombus	compositions.

During	coagulation,	 thrombin	cleaves	 fibrinogen	 to	produce	 fi‐
brin	 monomers	 that	 polymerize	 into	 an	 insoluble	 network.5 The 
fibrin	 network	 is	 subsequently	 stabilized	 by	 factor	 XIII	 (FXIII),	 a	
protransglutaminase	present	in	plasma	and	cells	such	as	platelets.6 
Activated	FXIII	(FXIIIa)	protects	clots	against	mechanical	disruption	
by	 introducing	 covalent	 ε‐N‐(γ‐glutamyl)‐lysyl	 crosslinks	 between	
fibrin	γ‐	 and	α‐chains7,8	 and	 increases	 resistance	 to	 fibrinolysis	 by	
crosslinking	fibrinolysis	inhibitors	such	as	α2‐antiplasmin,

9‒11 throm‐
bin	 activatable	 fibrinolysis	 inhibitor,12	 and	 plasminogen	 activator	
inhibitor‐213,14	to	fibrin.	Complete	FXIII	deficiency	is	rare	but	is	as‐
sociated	with	bleeding,	delayed	wound	healing,	 and	miscarriage.15 
Recent	studies	have	shown	that	FXIIIa‐mediated	fibrin	crosslinking	
also	promotes	red	blood	cell	retention	in	contracted	venous	thrombi,	
and	therefore	determines	thrombus	size.16‒18	Consequently,	FXIIIa	
inhibition	 is	 a	 potential	 therapeutic	 approach	 for	 reducing	 venous	
thrombosis.

The	 role	 of	 FXIII	 in	 arterial	 thrombosis	 is	 less	 established.	 In	
experimental	 models	 of	 thrombosis	 in	 rabbit	 femoral19	 and	 dog	
coronary20	 arteries,	 administration	 of	 the	 nonpeptidyl	 active	 site‐
directed	 FXIIIa	 inhibitor	 L‐722‐15121	 prior	 to	 thrombus	 induction	
increases	 thrombus	susceptibility	 to	 tissue	plasminogen	activator–
driven	thrombolysis.	Surprisingly,	however,	in	spite	of	observations	
that	FXIII	facilitates	platelet	recruitment	and	adhesion	under	flow,22 
FXIIIa	inhibition	with	L‐722‐151	failed	to	independently	prolong	the	
time	to	vessel	occlusion	or	reduce	thrombus	mass.19	These	observa‐
tions	suggested	that	FXIII	inhibition	may	be	useful	for	accelerating	
pharmacologic	thrombolysis	but	would	not	independently	alter	the	
course	of	arterial	thrombus	formation.

FXIII	is	highly	concentrated	within	the	platelet	cytoplasm	and	is	
externalized	during	platelet	activation.23,24	Thus,	given	the	ability	of	
FXIII	to	promote	platelet	adhesion	and	stabilize	fibrin,7‒14,22	the	find‐
ing	that	FXIII	inhibition	did	not	significantly	reduce	arterial	thrombus	
formation	 19	 was	 unexpected.	 Interestingly,	 studies	 testing	 ecto‐
pic	 expression	of	 factors	 IX	or	VIII	 in	 platelets	 for	 treating	hemo‐
philic	patients	with	inhibitors	 indicate	that	proteins	residing	within	

platelets	 are	 relatively	 protected	 from	 inhibitory	 antibodies.25,26 
Accordingly,	platelet	FXIII(a)	may	be	similarly	protected	from	small‐
molecule	inhibitors	and	therefore	able	to	contribute	to	platelet‐rich	
arterial	 thrombus	 formation	even	 in	 the	presence	of	FXIIIa	 antag‐
onists	 in	 plasma.	 It	 was	 not	 determined	 in	 the	 earlier	 studies19,20 
whether	 the	FXIIIa	 inhibitor	was	able	 to	 fully	block	platelet	FXIIIa	
during	thrombus	formation.	Thus,	the	potential	impact	of	FXIIIa	re‐
duction	 on	 arterial	 thrombogenesis	 remains	 unknown.	Herein,	we	
used	a	murine	model	of	genetically	imposed	FXIII	deficiency	to	fully	
eliminate	platelet	FXIII	activity	and	 investigate	 the	contribution	of	
this	FXIII	compartment	to	arterial	thrombus	formation	and	stability.

2  | METHODS

2.1 | Mice

Procedures	 were	 approved	 by	 the	 University	 of	 North	 Carolina	
Institutional	 Animal	 Care	 and	 Use	 Committee.	 F13a+/+,	 F13a+/−,	
and F13a−/−	mice	were	 backcrossed	 6	 generations	 on	 a	 C57BL/6J	
background.27

2.2 | Murine arterial thrombosis model

Mice	 (8‐19‐week	old	 [14.6	±	2.6	weeks,	mean	±	 standard	devia‐
tion]	male	 and	 female	 littermates)	 were	 anesthetized	with	 1.5%	
isoflurane	in	oxygen	(2	L/min	flow	rate).	The	right	common	carotid	
artery	was	exposed	after	midline	cervical	incision.	A	Doppler	flow	
probe	connected	to	a	flowmeter	(Model	TS420;	Transonic	Systems,	
Ithaca,	NY,	USA)	was	used	 to	monitor	 flow	 in	 the	 carotid	 artery	
and	 data	 were	 acquired	 via	 a	 PowerLab	 4/35	 (ADInstruments,	
Dunedin,	 New	 Zealand).	 After	 the	 carotid	 artery	 was	 prepared,	
10%	or	7.5%	ferric	chloride	(FeCl3)	on	1	×	1‐mm	filter	paper	was	
placed	on	 the	 artery	 for	 2	minutes,	 then	 removed,	 and	 the	 ves‐
sel	was	washed	3	times	with	warm	saline.	We	previously	showed	
that	these	conditions	yield	a	mixture	of	stable	and	unstable	ves‐
sel	occlusions,	providing	 sensitivity	 to	mechanisms	 that	 increase	
or	 decrease	 thrombus	 formation.28	 After	 injury,	 blood	 flow	was	
monitored	continuously	for	45	minutes.	The	time	to	occlusion	was	
defined	as	the	time	between	the	onset	of	FeCl3	administration	and	
the	onset	of	60	consecutive	seconds	of	loss	of	flow.	Time	to	reflow	
was	 defined	 as	 time	 between	 the	 time	 to	 occlusion	 and	 time	 at	
which	blood	flow	transiently	or	permanently	increased	to	10%	of	
the	baseline	flow.

2.3 | Platelet‐rich plasma clot contraction

Mice	 were	 anesthetized	 with	 3%	 isoflurane	 in	 oxygen	 (2	 L/min	
flow	rate),	and	blood	was	drawn	from	the	inferior	vena	cava	into	
3.2%	 citrate	 (10%	 vol/vol,	 final).	 Platelet‐rich	 plasma	 (PRP)	 was	
prepared	 by	 sequential	 centrifugation,	 diluted	 with	 autologous	
platelet‐poor	 plasma	 to	 obtain	 the	 concentrations	 of	 platelets	
indicated,	and	clotted	 in	siliconized	aggregometry	 tubes	at	37°C	
by	 adding	 tissue	 factor	 and	 calcium	 chloride	 (CaCl2;	 1	 PM	 and	
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10	mmol/L,	 final,	 respectively),	 as	 described.18	 Contracted	 clots	
were	weighed	at	2	hours.

2.4 | Statistical methods

Sample	size	calculations	were	based	on	simulations	that	used	the	
observed	occlusion	 rate	as	 the	 true	value	 to	simulate	5000	data	
sets	 and	 the	 statistical	power	was	calculated	with	a	 chi‐squared	
test.	For	incidence	of	vessel	occlusion,	differences	between	geno‐
type	and	type	of	occlusion	(stable,	unstable,	or	no	occlusion)	were	
analyzed	with	 2‐way	 analysis	 of	 variance.	 For	 time	 to	 occlusion	
and	 time	 to	 reflow,	 differences	 between	 groups	 were	 analyzed	
by	 the	 Kruskal‐Wallis	 test.	 For	 PRP	 clot	weight,	 differences	 be‐
tween	 groups	were	 analyzed	by	1‐way	 analysis	 of	 variance	with	
Dunnett's	multiple	comparisons	post	hoc	test.	Statistical	analyses	
were	 performed	 using	 R	 3.5.129	 and	 Prism	 version	 7	 (GraphPad	
Software,	La	Jolla,	CA,	USA).

3  | RESULTS AND DISCUSSION

To	 investigate	 the	 contribution	 of	 FXIII	 to	 arterial	 thrombosis,	
we	used	a	murine	model	of	genetically	 imposed	FXIII	deficiency	
(F13a+/+,	 F13a+/−,	 and	 F13a−/−)	 that	 enabled	 us	 to	 eliminate	 both	
plasma	 and	 platelet	 FXIII.	 Complete	 blood	 counts	 do	 not	 differ	
between	these	genotypes,18	and	P‐selectin	positivity	and	annexin	
V	binding	of	FXIII‐positive	and	‐negative	platelets	in	response	to	
convulxin	or	thrombin,	alone	or	in	combination,	are	indistinguish‐
able.30	 Compared	 to	 F13a+/+	 mice,	 F13a+/− and F13a−/−	 mice	 ex‐
press	reduced	plasma	and	platelet	FXIII	in	a	gene	dose‐dependent	
manner.18,30	Platelets	 from	F13a+/+,	F13a+/−,	and	F13a−/− mice un‐
dergo	contraction.16,18	Importantly,	F13a−/−	mice	have	no	FXIII	ex‐
pression	in	plasma	or	platelets	and	no	evidence	of	compensatory	
upregulation	of	 transglutaminase	activity	 in	FXIII‐deficient	heart	
tissue	or	platelets.18,31

We	applied	FeCl3	to	the	carotid	artery	of	F13a+/+,	F13a+/−,	and	
F13a−/−	mice;	this	model	triggers	robust	formation	of	platelet‐rich	
thrombi	and	is	a	commonly	used	model	of	arterial	thrombosis.32,33 
Representative	 flow	 tracings	 for	 mice	 that	 did	 not	 experience	
vessel	 occlusion,	 mice	 with	 stable	 occlusions	 at	 the	 end	 of	 ob‐
servation	period,	and	mice	with	unstable	occlusions	are	shown	in	
Figure	1A‐C.	Following	vessel	injury,	F13a+/+,	F13a+/−,	and	F13a−/− 
mice	developed	occlusive	arterial	thrombi.	FXIII	deficiency	did	not	
significantly	 increase	 the	 frequency	 of	 nonoccluded	 vessels	 or	
alter	the	incidence	of	mice	that	had	stable	or	unstable	occlusions	
at	the	end	of	the	observation	period	(Figure	1D).	Although	3	more	
F13a−/−	 mice	 failed	 to	 develop	 occlusive	 thrombi	 compared	 to	
F13a+/+	mice,	a	sample	size	calculation	comparing	the	observed	oc‐
clusion	rate	to	5000	simulations	suggested	more	than	60	mice	per	
genotype	would	be	required	to	achieve	statistically	significant	dif‐
ferences	between	these	groups.	A	previous	report	detected	sex‐
specific	pathology	 in	F13a−/−	mice	 (males	show	increased	cardiac	
fibrosis	and	reduced	survival).31	However,	there	was	no	difference	

in	 the	 incidence	of	 vessel	 occlusion	 in	males	 and	 females,	 and	a	
subgroup	analysis	of	male	mice	projected	more	than	20	mice	per	
genotype	would	be	 required	 to	 reveal	 a	 significant	difference	 in	
occlusion	incidence.	Of	mice	that	exhibited	an	occlusive	event,	the	
time	to	occlusion	was	not	different	for	F13a+/+,	F13a+/−,	or	F13a−/− 
mice (P	=	0.9,	Figure	1E).

We	 also	 examined	 the	 impact	 of	 FXIII	 on	 thrombus	 stability	
by	recording	the	first	instance	of	spontaneous	reflow	(permanent	
or	transient)	in	mice	that	initially	exhibited	vessel	occlusion	for	at	
least	60	seconds.	These	included	reflow	in	the	8	F13a+/+,	7	F13a+/−,	
and 6 F13a−/−	mice	with	unstable	occlusions,	 as	well	 as	 transient	
events	 in	1	F13a+/+,	 2	F13a+/−,	 and	2	F13a−/− mice that ultimately 
formed	 stable	occlusions.	Of	 these	mice,	 the	 time	 to	 reflow	was	
not	 different	 between	 genotypes	 (P	 =	 .6,	 Figure	 1F).	 Extent	 of	
reflow	 (transient	 vs.	 permanent)	were	 also	 similar	 between	 gen‐
otypes.	An	additional	series	of	experiments	using	7.5%	FeCl3	also	
did	not	show	differences	in	the	time	to	occlusion	between	F13a+/+ 
and F13a−/−	mice	(data	not	shown).	Thus,	consistent	with	the	prior	
studies	using	a	pharmacologic	FXIIIa	inhibitor	in	rabbits,19	our	find‐
ings	show	that	FXIII(a)	reduction	does	not	prevent	arterial	throm‐
bus	formation	in	mice.

Following	activation	and	aggregation,	platelets	contract,	which	
consolidates	the	thrombus	over	time;	this	process	likely	occurs	after	
vessel	occlusion.34	During	venous	 thrombosis,	 FXIII	 deficiency	 re‐
duces	 red	 blood	 cell	 retention	 in	 thrombi	 during	 contraction,	 and	
therefore	 reduces	 venous	 thrombus	 mass.16‒18	 Because	 arterial	
thrombi	 have	 low	 red	 blood	 cell	 content,2	we	 also	 specifically	 as‐
sessed	the	impact	of	FXIII	deficiency	on	contracted	clot	mass	in	the	
absence	of	red	blood	cells.	Although	increasing	the	platelet	count	in	
PRP	reduced	clot	mass	(by	increasing	serum	extrusion),	there	was	no	
effect	of	FXIII	on	final	PRP	clot	mass	(Figure	1G).	Together	with	the	
observation	that	PRP	from	F13a+/+,	F13a+/−,	and	F13a−/−	mice	shows	
similar	clot	contraction	kinetics,18	these	data	suggest	that	FXIII	does	
not	decrease	the	formation	or	mass	of	contracted	platelet‐rich	arte‐
rial thrombi.

Previous	 studies	 in	 rabbits	 and	dogs19,20	 showed	 that	 pharma‐
cologic	FXIII	 inhibition	accelerates	thrombolysis	 in	response	to	ad‐
ministration	of	therapeutic	lytic	agents,	suggesting	that	prophylactic	
FXIII	 inhibition	may	 facilitate	 thrombus	dissolution.	Notably,	 how‐
ever,	in	both	the	pharmacologic19,20	and	now	genetically	engineered	
animal	models,	FXIII	reduction	failed	to	alter	the	events	 leading	to	
the	 formation	 of	 occlusive	 thrombi.	 Collectively,	 these	 data	 from	
multiple,	 independent	 experimental	models	 of	 arterial	 thrombosis	
suggest	 FXIIIa	 does	 not	 contribute	 prominently	 to	 the	 molecular	
events	 that	 promote	 artery	 occlusion,	 and	 that	 inhibiting	 FXIIIa,	
alone,	would	not	prevent	the	initial	formation	of	arterial	thrombi	or	
associated	tissue	ischemia.

Although	FXIII	is	abundant	in	platelets23	and	therefore	present	
at	high	concentrations	within	 the	platelet‐rich	arterial	 thrombi,	 its	
potential	functional	role	remains	unclear.	During	platelet	activation,	
cytoplasmic	FXIII	is	released	slowly	and	has	a	relatively	short	half‐
life	on	the	platelet	surface.24	Thus,	any	functional	effects	of	platelet	
FXIII	 activity	on	arterial	 thrombi	may	arise	 later	 in	 the	pathologic	
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process.	Further	studies	are	necessary	to	understand	the	function	
of	the	evolutionarily	preserved	abundance	of	FXIII	in	platelets.

The	 FeCl3	 model	 used	 here	 triggers	 thrombosis	 via	 oxidative	
stress	and	red	blood	cell	adhesion	to	the	vessel	wall,35 which could 
alter	early	events	in	thrombus	initiation.	In	addition,	the	use	of	vessel	
occlusion	as	an	end	point	may	not	detect	subtle	effects	on	thrombus	
formation.	However,	platelet	accumulation	and	thrombus	growth	in	
the	FeCl3	model	 still	 recapitulate	key	aspects	of	arterial	 thrombo‐
sis,35	and	 this	model	 remains	a	gold	standard	 in	studies	of	arterial	
thrombosis.32,33	Moreover,	our	findings	are	consistent	with	those	of	
a	prior	model	that	used	a	copper	coil	to	induce	arterial	thrombosis	
in	rabbits.19

We	previously	 showed	FXIII	promotes	 fibrin‐mediated	 red	blood	
cell	retention	in	whole	blood	clots	and,	consequently,	determines	ve‐
nous	thrombus	size	in	mice.16‒18	Therefore,	FXIII	 is	a	potential	thera‐
peutic	target	for	reducing	venous	thrombosis.	Although	fibrin	is	a	major	
component	of	both	arterial	and	venous	thrombi,	our	data	suggest	that	
the	potential	of	FXIII	inhibition	to	reduce	venous	thrombus	formation	
does	not	translate	to	the	setting	of	arterial	thrombosis.	These	negative	
findings	 are	 important	 for	 understanding	 the	molecular	mechanisms	
leading	to	thrombosis	and	honing	the	development	of	antithrombotic	
drugs	 to	 reduce	 thrombus	 formation.	 FXIII’s	 nonoverlapping	 roles	
in	 these	 2	 presentations	 highlights	 the	 contrasting	 pathophysiologic	
mechanisms,	with	implications	for	prophylaxis	and	treatment	strategies.

F I G U R E  1  FXIII	deficiency	does	not	significantly	reduce	arterial	thrombus	incidence,	formation,	or	mass.	Thrombosis	was	induced	
in F13a+/+,	F13a+/−,	and	F13a−/−	mice	by	10%	FeCl3	application	to	the	carotid	artery.	Representative	flow	tracings	that	resulted	in	(A)	no	
occlusion,	(B)	stable	occlusion,	or	(C)	unstable	occlusion.	Gray	shaded	areas	represent	time	of	vessel	preparation,	FeCl3	administration,	and	
vessel	washing,	during	which	flow	could	not	be	monitored	(interpolated	line	added).	The	time	to	occlusion	(TTO)	and	time	to	reflow	(TTR)	are	
indicated.	(D)	Incidence	of	mice	with	stable	occlusions	at	the	end	of	the	observation	period,	unstable	occlusions,	and	mice	with	no	occlusion	
for	each	genotype.	Numbers	indicate	the	number	of	mice	for	each	outcome.	(E)	Time	to	occlusion.	Each	point	represents	a	separate	mouse:	
F13a+/+	(filled	shapes),	F13a+/−	(half‐filled	shapes),	F13a−/−	(open	shapes),	males	as	circles,	females	as	triangles;	lines	show	medians.	(F)	Time	
to	first	reflow	event	(transient	or	permanent).	Each	point	represents	a	separate	mouse	as	in	panel	E;	lines	show	medians.	(G)	Weight	of	
contracted	PRP	clots	from	F13a+/+,	F13a+/−,	and	F13a−/−	mice.	PRP	contained	10,	50,	200,	or	400	×	109	platelets/L,	as	indicated.	Data	show	
means	±	standard	error	of	the	mean	(N	=	3‐6	per	condition);	*P	<	0.005	compared	to	400	×	109	platelets/L
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