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Abstract

Immuno-PCR (iPCR) is one of the methods used for the detection of a wide range of ana-

lytes and features the high sensitivity of the polymerase chain reaction (PCR) method. iPCR

uses antibodies coupled to DNA, followed by the amplification of the attached DNA using

RT-PCR. Two major types of antibody-DNA conjugates are currently used, which are

obtained as a result of non-covalent (biotin-streptavidin) or covalent interactions. Using a

strain-promoted azide-alkyne cycloaddition (SPAAC), we synthesized covalent DNA-anti-

body conjugates, optimized the reaction conditions, and developed an efficient protocol for

the purification of conjugates, with which all unreacted antibodies and oligonucleotides are

separated. Covalent DNA-antibody conjugates were tested with iPCR assays that were pre-

viously developed for the detection of IgE and IgM antibodies with the use of the supramo-

lecular complex of 5’- and 3’-biotinylated DNA and streptavidin. The results show that the

modification of antibodies with amino groups did not allow us to obtain monolabeled antibod-

ies or antibodies with a strictly defined number of DNA-labels. The degree of labeling deter-

mined by the dyes introduced through the azido group reflects the actual labeling degree

statistically. If the average labeling degree for azido groups is 1.1, the conjugates contain

25% mono-labeled antibodies, 50% double-labeled antibodies, and 25% unlabeled ones.

The specificity of the monoclonal antibody to human IgE (BE5) changed after conjugation

with the oligonucleotide. The sensitivity of iPCR in the detection of IgM antibodies produced

against the LeC disaccharide using a covalent conjugate was similar to that of a supramolec-

ular complex of 5’- and 3’-biotinylated DNA and streptavidin, but the new procedure is two

steps shorter.
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Introduction

Immuno-PCR (iPCR) is a highly sensitive method for the detection of a wide range of analytes

ranging from bacterial and viral antigens and antibodies to non-protein drugs and toxins. It

combines advantages of both the polymerase chain reaction (PCR) and enzyme immunoassay

methods. iPCR is based on the usage of an antibody-DNA conjugate followed by the amplifica-

tion of the DNA label [1]. DNA-antibody conjugates are currently used for iPCR, immuno-

RCA (immunoassay with rolling circle DNA amplification) [2], proximity ligation assay (PLA)

[3], and Electrochemical Proximity Assay (ECPA) [4].

The main methods for the preparation of conjugates are based on either biotin-streptavidin

interaction or covalent binding. When biotin-streptavidin conjugates are used, biotin is intro-

duced into both the antibody and the DNA label. In the case of iPCR, after applying of detect-

ing antibodies, a solution of streptavidin is added to the wells of a plate, followed by a biotin-

containing DNA label. Thus, the antibody-streptavidin-DNA conjugate is formed during anal-

ysis. This approach is known as "universal iPCR" and is popular for its simplicity [5]. However,

an obvious disadvantage of the method is the three-stage assembly of the conjugate during

analysis, which increases the analysis time and the number of washings.

A ready-to-use antibody-DNA conjugate removes this disadvantage. The following meth-

ods are used to prepare covalent conjugates for iPCR:

1. Maleimide group + sulfhydryl group (for instance, antibody modification using SMCC

(succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate) and conjugation with

thiol-modified oligonucleotide [6]).

2. Aromatic hydrazine + aromatic aldehyde (for instance, antibody modification using

4-hydrazinonicotinate acetone hydrazone (SANH) and introduction of aldehyde group

into oligonucleotide [7]).

3. Oxidation of the antibody followed by reaction with hydrazine group of the modified oligo-

nucleotide [7].

4. Alkyne + azide. Copper(I)-catalyzed alkyne-azide cycloaddition is most widely used in

"click" chemistry. However, due to possible denaturation of proteins under the influence of

monovalent copper ions [8], copper-free click is used for bioconjugation. Gong et al.

describe the antibody modification with a hydrophilic derivative of dibenzocyclooctyne

(DBCO-PEG5-NHS) and an azidated oligonucleotide (SPAAC) [9].

The iEDDA reaction (inverse electron demand Diels–Alder reaction) between tetrazine

and trans-cyclooctene (TCO) has one of the fastest reaction constants among bioorthogonal

reactions and has also been used for conjugation [10]. Antibody was modified with tetrazine

using succinimidyl ester (NHS-s-s-PEG4-tetrazine with a linker cleavable upon reduction of

the disulfide), and the azidated oligonucleotide was modified by trans-cyclooctene via diben-

zocyclooctyne. Bertozzi described strain-promoted azide-alkyne cycloaddition (SPAAC) or

the so-called copper-free click for the first time in 2004. This method has replaced the canoni-

cal reaction catalyzed by copper due to the toxicity and protein denaturation of copper [11].

The introduction of strained cyclooctyne to the reaction with azides improves the reaction

(the reaction rate constant is 0.1–1.0 M-1 s-1), additional reagents are not required [12–16].

However, for the bioconjugation of proteins using SPAAC, it is necessary to preliminarily

introduce azide or cyclooctyne residue into the protein molecule of interest.

Kits for the preparation of conjugates for iPCR are commercially available, such as the Solu-

link Antibody-Oligonucleotide All-in-One Conjugation Kit (based on the aromatic hydrazine

+ aromatic aldehyde reaction) and the Innova Thunder-Link kit. A number of studies describe
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the preparation of conjugates and their application in iPCR. However, almost none of them

described the technical details of the preparation and purification. In the present study, we

synthesized the antibody-oligonucleotide conjugate by a strain-promoted azide-alkyne cyclo-

addition for use in iPCR. We focused on the optimization of the conditions for the preparation

and isolation of conjugates with a certain number of labels.

Materials and methods

Sera, allergens, and antibodies

Monoclonal mouse antibodies to human IgM (MA2) and human IgE (BE5) were purchased

from Sorbent Ltd, Russian Federation. Svirshchevskaya et al. describe the sera and the prepara-

tion of the recombinant allergen Alt a 1, as well as the biotinylation of the BE5 antibodies [17].

The BE5 binding was detected by sheep anti-mouse antibody HRP conjugate (Dako, Sweden).

iPCR using DNA-streptavidin complex

iPCR was performed using DNA-streptavidin complex in accordance with previous studies for

the detection of IgE [18] and the detection of antibodies to LeC [19].

Oligonucleotides

5’-CgTgCCgCTgTCTCTACCAT-NH2-3’ and ODN Ip3-am 5’-AGGCGAACTGTTTTGGT
CATAaCCCGCTACTGATTGTTCGCACGGaGTGCTGTGCTTGTGTAAGG-NH2-3’) were syn-

thesized using standard solid-phase phosphoramidite chemistry (Synthesizer AB3400 (Applied

Biosystems, USA), solid support 3’-Amino-Modifier C7 CPG 1000 (Glenresearch, USA)). PCR

primers (AGGCGAACTGTTTTGGTCATA and CCTTACACAAGC ACAGCAC) and the fluores-

cent probe (5’-BHQ-1 CCCGCTACTGATTGTTCGCACGG FAM-3’) were manufactured by

Lumiprobe, Russia.

Antibodies and oligonucleotide modification

A strain-promoted azide-alkyne cycloaddition was used to obtain an antibody and single-

stranded 60-base oligonucleotide (ODN) conjugates (see Fig 1). Pentynoic acid sulfotetrafluor-

ophenyl ester (STP-N3) (Lumiprobe) was used as a modifying agent for the antibody. The N-

hydroxysuccinimide ester of dibenzocyclooctyne with hydrophilic linker (DBCO-PEG4-NHS,

Jena Bioscience) was used to modify the oligonucleotide with the amino group introduced

during synthesis.

Antibody modification (general scheme)

The antibody was transferred into 0.1 M sodium bicarbonate at pH 8.3 and simultaneously

concentrated by washing 3 times with 650 μl of buffer solution on a Spin-X UF 30K MWCO

column (Corning). Different excesses of STP-N3 were added to 25 nmol of antibody, and the

reaction mixtures were incubated at room temperature for 1 h. The excess reagent was

removed using CentriPure MINI PBS Z-50 Spin Columns. The activity of the antibodies after

azidation was examined using ELISA. The completeness of the reaction was controlled as fol-

lows. An aliquot of modified antibody was mixed with a tenfold molar excess of dibenzocy-

clooctyne derivative of sulfo-Cy5 (DBCO-Sulfo-Cy5, Jena Bioscience), followed by

purification using gel filtration. The labeling level was calculated by analyzing the UV-vis

spectra.
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Oligonucleotide modification (general scheme)

Acetone/lithium perchlorate was used to precipitate 100 nmol of ODN Ip3-am, which was

then dissolved in 100 μl of buffer containing 0.1 M NaHCO3 at pH 8.3 and 80% DMSO. Next,

50 μl of 100 mM DBCO-PEG4-NHS (5 μmol) was added, and the reaction mixture was incu-

bated at room temperature for 1 h. The oligonucleotide was precipitated using acetone/lithium

perchlorate and purified by gel-filtration on an EMP CentriPure N2 while simultaneously

transferring it into a PBS solution. An aliquot of the reaction products was analyzed using RP

HPLC (Phenomenex Luna 5u C8, linear gradient of acetonitrile in 50 mM sodium acetate;

results are not provided). The reaction products were evaporated using a vacuum centrifuge

and dissolved in 50 μl of PBS. The reaction progress was controlled by mixing an aliquot of

modified oligonucleotide with a 10–20× molar excess of azido derivative of sulfo-Cy5

(sCy5-N3) (Lumiprobe, Russian Federation), followed by purification using RP HPLC.

Synthesis and purification of covalent DNA-antibody conjugates (general

scheme)

The modified antibody and oligonucleotide were mixed at a ratio of 1:4 by active groups (the

determination of the active groups’ content is described below). The reaction mixture was kept

at room temperature overnight. The purification was carried out in several stages. To remove

Fig 1. Synthesis of covalent DNA-antibody conjugate.

https://doi.org/10.1371/journal.pone.0209860.g001
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the unreacted antibody, the reaction mixture was placed in a RESOURCE Q anion exchange

column (GE Healthcare). Chromatography was carried out in 50 mM TrisHCl at pH 7.5 with

a linear gradient of NaCl and a flow rate of 1.5 ml/min. The resulting fractions were concen-

trated and placed in a Superdex 200 10/30 Increase column (GE Healthcare). Chromatography

was carried out again in 0.1× PBS buffer at a flow rate of 0.5 ml/min. The fractions were evapo-

rated in a vacuum centrifuge and analyzed by SDS-PAGE in 6% gel (in non-reducing condi-

tions without the addition of mercaptoethanol) and 10% gel (in reducing conditions with the

addition of mercaptoethanol), followed by silver staining.

iPCR analysis with covalent DNA-antibody conjugate

iPCR was performed with direct DNA-antibody conjugate as reported previously [18–20]

except for the conjugate addition stage. The IgE analysis was carried out by coating plate wells

with the recombinant allergen Alt a 1 in carbonate-bicarbonate buffer at pH 9.6 with a concen-

tration of 2 μg/ml (50 μl per well). The coating was carried out overnight at +4˚C. Next, the

wells were washed three times with TETBS buffer, and the sera from allergic and healthy

donors were added at various dilutions to the TETBS with 20% goat serum (50 μl per well).

The plate was incubated on a shaker for 1 hour at room temperature.

After incubation, the plate was washed three times with TETBS buffer, and solutions of

monoclonal antibody conjugates with 20% goat serum were added at various concentrations

(50 μl per well). The plate was incubated on a shaker for 30 minutes at room temperature. The

wells were then washed 6 times with TETBS buffer by alternating between short (10 sec) and

long (5 min) washes, as well as 3 times for 10 seconds with TBS buffer. A PCR mixture was

introduced into the wells (35 μl per well) and covered with mineral oil (30 μl per well). The

composition of the PCR reaction was the following: 35 μl of the amplification reaction mixture

containing 3.5 μl of 10x buffer (750 mM Tris-HCl, pH 8.8, 200 mM ammonium sulfate, 0.1%

Tween-20), 0.25 mM of each dNTP, 0.6 μM of primers, 0.3 μM of fluorescent probe, and 2.5

units of Taq-polymerase (DNA-Technology, Russia).

Quantitative PCR (qPCR) was performed on a DTprime amplifier (DNA-Technology, Rus-

sia) using a protocol of initial denaturation for 5 min at 94˚C, followed by 40 cycles of the fol-

lowing: 15 sec of annealing and elongation at 60˚C and 5 sec of denaturation at 94˚C. At each

cycle, the fluorescent signal from the probe was measured at 520 nm (FAM channel). Cq values

were automatically determined for all reactions using amplifier software (RealTimePCR

v.7.9.5.25). The average value of the threshold cycle (Cq) and standard deviation were calcu-

lated for each sample.

The detection threshold was calculated as three standard deviations for Cq, which is the

value of the threshold cycle in negative samples. The threshold cycle difference (ΔCq) for dif-

ferent samples was calculated using the equation, ΔCqi = [average (Cq − Cqi)], where Cqi is a

value of the threshold cycle in the sample being studied. Samples with a ΔCq below the detec-

tion threshold were considered as negative, and those with a ΔCq greater than or equal to the

detection threshold were considered positive. The serum titer was evaluated as the maximum

serum dilution at which the corresponding sample was considered positive.

iPCR was performed for the detection of IgM antibodies to LeC as described previously

[19]. One-half of the plate wells was coated with the polymer derivative antigen (LeC-PAA),

and the other half was coated with pure polymer (PAA). After washing, a blocking solution

was added (1% BSA, 1% casein, and 1 μM oligonucleotide for blocking in TBS), followed by

the addition of samples with a known content of anti-LeC IgM (3 wells with LeC-PAA and 3

wells with PAA).

Covalent antibody-DNA conjugates for immuno-PCR
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In the case of streptavidin supramolecular complexes, the detection was performed using

biotinylated anti-IgM antibodies, followed by interaction with DNA-streptavidin complexes

and qPCR analysis. In the case of covalent conjugates, the detection was performed using the

conjugates, followed by qPCR. Next, the difference between the Cq values was calculated as fol-

lows for each sample added to the wells coated with glycan-free PAA Cq (PAA)(i) (back-

ground) and LeC-PAA: ΔCq(i) = Cq (PAA)(i)–Cq (LeC − PAA)(i). Samples with ΔCq less than

or equal to zero were considered negative, and those with values greater than zero were posi-

tive. Only ΔCq values were compared in different experiments.

Enzyme-linked immunoassay (ELISA)

ELISA of IgE was performed for the recombinant allergen Alt a 1 in the blood serum of an

allergic patient as described previously [17].

Statistical analysis

The average and standard deviation were calculated using Excel software, which was also used

to plot the Calibration curves.

Results

Optimization of the covalent conjugate preparation technique by the

example of anti-IgM antibodies

Control of the azido group introduction into antibody molecule (Ab-N3 DOL determi-

nation). The azido group introduction was controlled by reaction with DBCO-sCy5. The ini-

tial concentration of the MA2 antibody in all cases was 1 mg/ml, and the reaction was carried

out in a carbonate buffer (0.1 M, pH 8.3) for 1 hour at room temperature. The excess DBCO-

sCy5 was removed by gel filtration. The degree of labeling of antibody by the azido group (Ab-

N3 DOL) was determined as the molar ratio of Cy5 (650 nm) to antibody (280 nm) with the

following equation: Ab − N3 DOL = (ACy5 � εAb)/(AAb − ACy5 � CF280) � εCy5. A is the

absorption at the corresponding wavelength, and CF280 is a correction factor (CF280 = 0.04).

The extinction coefficients for the antibody (εAb, 280 nm) and sCy5-DBCO (εCy5, 650 nm)

were assumed to be 210,000 L � mol-1 � cm-1 and 251,000 L � mol-1 � cm-1, respectively. The

results are presented in Table 1.

ODN-DBCO reactivity monitoring (ODN-DBCO DOL determination). As a result of

analytical RP-HPLC of the oligonucleotide reaction with dibenzocyclooctyne-activated ester,

two peaks of reaction products were obtained with a total yield of 80%. Spectrophotometric

analysis of the conjugates of DBCO and sCy5-N3 derivatives demonstrated that each of the

products is reactive with a yield of 70%. Thus, the content of reactive ODN-DBCO oligonucle-

otide was about 60%. Since both reaction products were reactive, we did not perform chro-

matographic purification of the dibenzocyclooctyne derivative of the oligonucleotide.

ODN-DBCO DOL was defined as the molar ratio of ODN to Cy5 in the ODN-DBCO reac-

tion product with Cy5-N3 at room temperature overnight. Excess Cy5-N3 was removed by

double reprecipitation of the reaction product in acetone/lithium perchlorate. The molar ratio

of ODN to Cy5 was determined spectrophotometrically. The coefficients of the molar extinc-

tion of ODN and Cy5 were 613,500 L � mol-1 � cm-1 (260 nm) and 250,000 L � mol-1 � cm-1

Table 1. The average degree of MA2 antibody labeling with an azido group depending on STP-N3 excess.

Excess of STP-N3, multiplicity 1.5 3 5 8 11 20

Ab-N3 DOL 0.9 1.5 2.3 2.9 3.8 6.4

https://doi.org/10.1371/journal.pone.0209860.t001

Covalent antibody-DNA conjugates for immuno-PCR

PLOS ONE | https://doi.org/10.1371/journal.pone.0209860 January 4, 2019 6 / 19

https://doi.org/10.1371/journal.pone.0209860.t001
https://doi.org/10.1371/journal.pone.0209860


(650 nm), respectively, and the correction factor Cy5 for 260 nm was 0.03. Thus, in a conjuga-

tion reaction with the azidated antibody, a mixture of ODN and DBCO-NHS reaction prod-

ucts was used after removing the excess reagent by gel filtration and determining the content

of the reactive group.

Optimization of ODN-DBCO excess and monitoring of conjugation reaction. The

optimal excess of ODN-DBCO sufficient for conjugation was determined using an antibody

concentration of 1 mg/ml and reaction at room temperature overnight. We investigated the

completeness of the conjugation reaction under these conditions with different excesses of

ODN-DBCO (1× (equimolar), 2×, 4×, and 8×). To achieve this, an antibody with Ab-N3

DOL = 6.4 was obtained using a 20-fold excess of STP-N3. ODN-DBCO was added at ratios of

1:1, 1:2, 1:4, and 1:8 (by active groups) to equal aliquots of the antibody.

After performing the conjugation reaction with ODN, a 3-fold excess of sCy5-DBCO was

added to the reaction mixture. This substance interacts with the azido groups of the modified

antibody that were unreacted in the previous step (reaction with ODN-DBCO) for 24 hours at

room temperature. The conjugate was isolated on a Superdex 200 10/30 Increase column. The

completeness of the reaction (η) of the antibody with ODN was calculated from the molar

ratio of ODN and Cy5 in the reaction product using the following equation: η = (A260 /

εODN)/ ((A260 / εODN) + (A650 / εCy5)) � 100%. The extinction coefficients for ODN

(εODN, 260 nm) and sCy5-DBCO (εCy5, 650 nm) were taken to be 613,500 L � mol-1 � cm-1 and

251,000 L � mol-1 � cm-1, respectively. The results are presented in Table 2.

An aliquot of the 1:1 reaction mixture was placed in a RESOURCE Q anion exchange col-

umn. There was almost a complete absence of unmodified antibody, as shown in Fig 2a, and

the retention time was 9.16 min. The results of the gel-filtration of the 11.7-min peak from the

anion exchange column are shown in Fig 2b, and the retention time of conjugate is 18–20 min.

Later, a 4-fold excess of ODN was used to ensure the completeness of the reaction under given

conditions.

Preparation and testing of conjugates with different antibody-ODN ratios. Conjugates

were obtained with different degrees of antibody labeling with oligonucleotide (mono-, bi-,

tri-, etc.) in the antibody azidation by using 2- and 6-fold excesses of STP-N3. Ab-N3 DOL for

these antibodies was 1.1 and 2.6, respectively. These results are in good agreement with the

data in Table 1. The conjugation was carried out by mixing and incubating the solutions of the

azidated antibody and oligonucleotide with DBCO overnight at room temperature. After

determining the amount of active reaction groups (Ab-N3 DOL and ODN-DBCO DOL), the

excess of oligonucleotide introduced into the reaction was calculated. In each case had a 4-fold

excess of reactive ODN-DBCO relative to the azido groups of the antibody. The presence of

unreacted azide groups of the antibody was tested by introducing a 10-fold excess of

sCy5-DBCO. Fig 3 presents a chromatogram from the RESOURCE Q anion exchange column

and the electrophoregram obtained during the first stage of purification of the reaction prod-

uct of azidated MA2 antibody (DOL 1.1) with ODN-DBCO.

The chromatogram demonstrates the presence of unreacted antibody (peak 1). Fractions 2

and 3 showed no bands of free or labeled antibodies on the electrophoregram (the concentra-

tion is below the sensitivity of the detection method). Fraction 4 contains a monolabeled anti-

body, and fraction 5 contains mono- and double-labeled antibodies. Fraction 6 mainly

Table 2. Completeness of cycloaddition reaction under given conditions at different ratios of MA2 antibody and

ODN by active groups.

Antibody: ODN ratio by active groups 1:1 1:2 1:4 1:8

Completeness of reaction 80% 96% 100% 100%

https://doi.org/10.1371/journal.pone.0209860.t002

Covalent antibody-DNA conjugates for immuno-PCR

PLOS ONE | https://doi.org/10.1371/journal.pone.0209860 January 4, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0209860.t002
https://doi.org/10.1371/journal.pone.0209860


contains double- and triple-labeled antibodies, but it also contains mono-, quadruple-, and

even quintuple-labeled antibodies.

The conjugation reaction was done using 250 μg of azidated antibody. The antibody from

peak 1 did not react with sCy5-DBCO, suggesting that there were no azido groups in the

Fig 2. Anion-exchange (a) and gel-filtration (b) chromatograms of antibody (Ab-N3 DOL = 6.4) and

oligonucleotide 1:1 reaction products treated with 3-fold excess of sCy5-DBCO. (a) 9.16 min: unmodified antibody;

11.7 min: conjugates and unreacted ODN. (b) 18.6 min: conjugates; 22–27 min: unreacted ODN.

https://doi.org/10.1371/journal.pone.0209860.g002
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antibody structure. The amount of antibody without azido groups was 60 μg, which corre-

sponds to 25% of the amount of antibody taken in the conjugation reaction. Thus, with a label-

ing degree of antibody Ab-N3 DOL equal to 1.1, up to 25% of it remains unchanged. This

indicates a wide distribution of the labeling degree and suggests the presence of up to 25% of

the antibodies with two ODNs in the reaction mixture. Therefore, we were not able to obtain a

monolabeled antibody with a high yield under these conditions.

To increase the yield of the conjugate, it would be reasonable either to obtain a mixture of

mono- and double-labeled antibodies (Ab-N3 DOL nearly 1.5) or to reuse (modify) the anti-

body from fraction 1. After a chromatographic purification (Fig 4a) on the RESOURCE Q

anion exchange column, fractions were isolated from the reaction mixture with the antibody

MA2 Ab-N3 DOL = 2.6. The distribution of the number of labels per antibody varied from 1

(fraction 5, about 180 kDa by the length marker) to 6 (fractions 8 and 9) (Fig 4b). There was

no peak corresponding to the unreacted antibody.

Subsequently, all fractions were purified by gel filtration on a Superdex 200 10/30 Increase

column to remove the unbound oligonucleotides. The electrophoregram of the fractions

obtained is shown in Fig 5. One can see that the repeated fractionation of the target peak allows

for the isolation of fractions with an exact label content. Among the obtained fractions, we

have chosen the following fractions for use in iPCR: fraction 5–12, which contains one label

per antibody molecule according to the results of electrophoresis; fraction 7–3, which contains

Fig 3. Results of anion-exchange chromatography obtained by purification of conjugation reaction products involving an antibody with Ab-N3

DOL = 1.1. (a) Anion-exchange chromatogram of conjugation reaction products involving an antibody with Ab-N3 DOL = 1.1. The numbers of

fractions are indicated on the enlarged fragment (fraction 1: unreacted antibody; fractions 2–6: peak 11–12.5 min). Right: SDS-PAGE in reducing (b)

and non-reducing (c) conditions. The sample numbers correspond to the fractions, MA2 is the original antibody. L: protein ladder (b: PageRuler

Prestained Protein Ladder, 10 to 180 kDa; c: Spectra Multicolor Broad Range Protein Ladder).

https://doi.org/10.1371/journal.pone.0209860.g003
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two labels per antibody molecule (with an admixture of 3 labels); fraction 8–3, which contains

three labels per antibody molecule (with an admixture of 2 and 4 labels); and fraction 9–1,

which contains four to five labels per antibody molecule.

Quantitative determination of IgM antibodies to the LeC disaccharide in serum using

the iPCR method with covalent MA2-ODN conjugate. To select an optimal working dilu-

tion of conjugates for iPCR, qPCR data were first obtained for 100-fold titrations of conjugates

in deionized water. qPCR was performed with dilutions of conjugates and ODN solutions with

known concentrations (100 pM and 1 pM) as standards (qPCR was performed in three repeats

with standards and in two repeats with conjugates dilutions). The efficiency of the PCR reac-

tion was 92%. The concentration of the initial solutions of conjugates varied from 0.7 to

4.4 μM. Dilutions of the conjugate with one label (fraction 5–12; Fig 5) with final concentra-

tions of 40 pM, 400 pM, and 4 nM were used for iPCR. The iPCR was performed according to

the procedure described in Materials and methods (Fig 6).

The highest value of ΔCq (5.25) for an anti-LeC concentration of 200 ng/ml was obtained

using a conjugate concentration of 40 pM. For concentrations of 400 pM and 4 nM, values of

4.95 and 4.5 were obtained, respectively. The background value Cq(PAA) directly depends on

the conjugate concentration used in iPCR. Thus, the average Cq(PAA) was 19.4 for 4 nM, 21.5

for 400 pM, and 25.3 for 40 pM. Therefore, we set the working conjugate concentration as 40

Fig 4. Results of anion-exchange chromatography obtained during purification of the conjugation reaction products involving an antibody with

Ab-N3 DOL = 2.6. (a) Anion-exchange chromatography of the conjugation reaction products involving an antibody with Ab-N3 DOL = 2.6. (b)

SDS-PAGE under non-reducing conditions. 5–9: fractions collected between 11 and 13 minutes. L: Spectra Multicolor Broad Range Protein Ladder.

https://doi.org/10.1371/journal.pone.0209860.g004
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Fig 5. Results of the second stage of purification of conjugation reaction involving antibody Ab-N3 DOL = 2.6. (a)

Gel-filtration chromatography of fractions obtained after anion-exchange chromatography (Fig 4) of conjugation

reaction with the antibody Ab-N3 DOL = 2.6. (b) Electrophoregram of fractions collected during gel-filtration

chromatography. The track numbers correspond to the designated fractions. MA2 is the original antibody. L: Spectra

Multicolor Broad Range Protein Ladder.

https://doi.org/10.1371/journal.pone.0209860.g005
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pM, which provides a low background signal and the largest ΔCq for a sample with a high con-

centration of anti-LeC IgM.

Testing of conjugates with different numbers of oligonucleotides per

antibody

Conjugates for the detection of anti-LeC IgM antibodies in serum. The following conju-

gates were selected: 5–12 with one label per antibody; 7–3 with two labels (with an admixture

of 3 labels); 8–3 with three labels (with an admixture of 2 and 4 labels), and 9–1 with four to

five labels. In the first stage, an attempt was made to align the conjugates by antibody content,

for which the titrations of the conjugates were tested in qPCR. The quantity of oligonucleotide

was converted to the quantity of antibodies based on an evaluation of the ratio presented in

electrophoregrams. The following concentrations of conjugates by ODN were used in iPCR

(the antibody concentration is the same): 1 label: 40 pM; 2 labels: 80 pM; 3 labels: 120 pM; 4–5

labels: 180 pM.

Taking into account the data obtained from the electrophoregram, we can consider the

concentration of the antibody and antibody conjugate as a whole to be almost the same for all

conjugates (approximately 40 pM). The average background value of Cq (PAA) for all conju-

gates during iPCR was 22.7–24.6. Fig 7 shows the results of testing the conjugates in the iPCR

on a panel of samples with a known concentration of anti-LeC IgM, as well as a comparison

with the DNA-streptavidin complex (DNA-Stvd) used earlier.

Conjugates with 1 and 2 labels exhibited the same sensitivity as the DNA-streptavidin con-

jugate (6 ng/ml). For a 3-label conjugate, the lowest detectable target concentration was 20 ng/

ml, and that for a conjugate with 4 and 5 labels was 60 ng/ml. Accordingly, the sensitivity of

the method decreases drastically with the increase of the labeling degree of the detecting anti-

body in this case. There was no noticeable difference for conjugates with 1 and 2 labels. Bear-

ing in mind the wide distribution of antibody labeling with the azido group, we believe that

Fig 6. Results of monolabeled conjugate testing (concentrations: 40 pM, 400 pM, and 4 nM) by iPCR of samples with a known

concentration of anti-LeC IgM.

https://doi.org/10.1371/journal.pone.0209860.g006
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obtaining an antibody with an Ab-N3 DOL of 2 is optimal. This will ensure a 100% conversion

of the antibody to the conjugate with the main product being double-labeled.

Conjugate for the detection of IgE antibodies in serum. Conjugates of ODN—BE5 anti-

body to human IgE were obtained as described above for the conjugate of anti-IgM antibodies,

so a detailed description of the results is not provided. A conjugate with two labels was used in

iPCR. In the case of the BE5-ODN conjugate, we found a non-specific binding to blood serum

components of both allergic and healthy donors (Fig 8). This phenomenon was observed in

iPCR analysis in both the presence and absence of the sorbed Alt a 1 allergen at concentrations

of the BE5-ODN conjugate of tens of ng/ml (Fig 8a and 8b). When analyzing the allergic

patient serum by ELISA, a similar nonspecific signal was also observed in the 20-fold dilution,

but at higher concentrations of ODN-BE5 conjugate, the signal was on the scale of micrograms

per milliliter (Fig 8c). We did not observe this phenomenon in the case of unconjugated anti-

body (Fig 8c) and BE5-streptavidin-DNA complex [18], as well as in the case of incubation

with unconjugated oligonucleotide. Therefore, we believe that the observed nonspecific bind-

ing is a result of changes in the structure of the antibody molecule during its chemical

modification.

To eliminate nonspecific binding, we tried to optimize the conditions of the immunoassay

and introduced an additional blocking step between the stages of the sorption of allergen and

the addition of the analyzed serum (compared to the method described for the DNA-streptavi-

din complex [18]). Blocking was performed with TBS buffer with various components: 1%

BSA, 10% goat serum, 0.73 mM sucrose, 0.5% tween-20, 0.02% tween-20 with 1% BSA, 2%

Fig 7. Results of the different degrees of labeling conjugates tested by iPCR on a panel of samples with a known concentration of anti-LeC IgM.

The numbers of labels per AB corresponds to conjugates with the same number of ODN molecules per antibody. DNA-Stvd is a variant of iPCR using a

streptavidin supramolecular complex [19].

https://doi.org/10.1371/journal.pone.0209860.g007
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Fig 8. Titration curves of allergic and healthy donor sera obtained from the iPCR analysis of IgE on the

recombinant allergen Alt a 1. (a) Titration curves of allergic sera. (b) Titration curves of healthy donor. Data are

shown for the BE5-ODN conjugate with two labels at a concentration of 10 ng/ml concentration. (c) Titration curves

of the BE5-ODN conjugate and unconjugated antibody BE5 in ELISA when analyzing the serum of an allergic patient

(20-fold dilution). The assay was performed on strips with and without sorbed antigen.

https://doi.org/10.1371/journal.pone.0209860.g008
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skim milk, 0.5% triton X100, 0.1% gelatin, and 1% human immunoglobulin. However, the

introduction of an additional blocking step did not allow us to eliminate nonspecific binding.

Discussion

Attainment, isolation, purification, and analysis of conjugates

Covalent DNA-antibody conjugates were obtained using the cycloaddition reaction of azides

and alkynes. This necessitated the introduction of an azide group into the antibody. We chose

to introduce the azido group into the antibody at the amino group via 4-sulfotetrafluorophenyl

(STP) ether, which reacts with amino groups like NHS ethers and forms a strong amide bond

[21]. This method is one of the simplest ones available.

Previously, we attempted to obtain a conjugate by the cycloaddition reaction of azides and

alkynes catalyzed by monovalent copper (the "copper click" method). However, the complex of

monovalent copper with THPTA often leads to precipitation when mixed with the antibody

solution (although not for all antibodies). This is consistent with the fact that copper ions can

cause protein denaturation [8]. When selecting the reaction conditions for human IgG prepa-

ration, we succeeded in identifying conditions under which the antibody did not precipitate at

a low catalyst concentration. However, with a 20-nucleotide ODN model with a linear alkyne,

only 30% of the antibodies were labeled. In contrast, when using the 60-nucleotide ODN with

a linear alkyne, no conjugate was obtained at all if the reaction mixture was kept in argon

atmosphere for the entire conjugation time.

The main problem was the isolation of the conjugate and its purification from unreacted

ODN. We did not succeed in isolating the conjugate by anion-exchange chromatography on

the RESOURCE Q anion exchange column. Although the retention time of unreacted azidated

antibody is much less than that of ODN (9.16 and 11.7 min, respectively), the conjugate is not

eluted between them as expected. Furthermore, at 11 min, mono- and double-labeled conju-

gates are eluted before the main peak of the ODN, and 4-5-labeled conjugates are eluted after

the main peak of the free ODN (there was no peak separation at 260 nm). The chromatography

was performed in a wide range of pH (4.5–7.5), but this did not improve the separation of the

conjugate and ODN in a linear gradient of NaCl.

We performed a reaction with pentynoic acid sulfotetrafluorophenyl ester at pH 8.3. At this

pH, both the N-terminal α-amino group (pKa 8.95) and the ε-amino group of lysine (pKa

10.53) were reactive and are referred to as reactive amino groups [22, 23]. Analysis of the

resulting conjugates indicated that when the azido group is introduced into the antibody using

STP or NHS esters, there was a wide distribution of the labeling degree of antibody by the

azido group. The average degree of antibody labeling by the azido group only statistically

reflects the presence of labels on the antibody. Thus, it was shown that when Ab-N3 DOL is

1.1, 25% of the antibodies contained no azido groups, up to 25% contained 2 azido groups,

and up to 50% contained one azido group (Fig 3). The selected scheme for the purification of

the reaction products allows for the removal of the unmodified antibody at the anion-exchange

chromatography stage and the excess ODN at the gel filtration stage. Nevertheless, it was

impossible to obtain only the mono-labeled conjugate with a yield exceeding 50%. Obtaining a

predominantly double-labeled conjugate in this case seems to be more rational.

Gong et al. obtained similar labeling degrees of antibody with a similar excess of DBCO--

PEG5-NHS reagent [9]. The use of four molar equivalents of DBCO-PEG5-NHS resulted in

2.3 DBCO molecules per antibody after the reaction. In turn, this yielded a conjugate with 1.2

ODNs per antibody after reaction with a 4-fold excess of azidated oligonucleotide (45 bases).

Unfortunately, the authors did not explain the incomplete involvement of DBCO-groups in
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the conjugation. They investigated the effect of the unlabeled antibody in the conjugate and

showed that the 12.5% impurity of unlabeled antibody in the conjugate does not affect Cq.

It should be noted that a sharp decrease of ΔCq (a decrease of the target signal) was

observed for only the content of impurity of the unlabeled antibody above 400% relative to the

conjugate content. In the range of 25–400%, the decrease of ΔCq does not exceed one. We did

not study the tolerance of our systems of the presence of unlabeled antibodies, despite the pos-

sibility of not performing the purification from unreacted antibody in the case of such a strong

tolerance detection. Van Buggenum determined the position of the reactive lysine residues in

mouse IgG upon modification by a 5-fold excess of tetrazine-NHS [10]. It turned out that

there residues in the heavy chain were reactive (12 lysine residues in the molecule comprising

2 in the light chain and 10 in the heavy one). Unsurprisingly, all the reactive lysine residues

were on the antibody surface and were available to the solvent.

Thus, the usage of NHS (or STP) chemistry did not allow us to produce an antibody labeled

with a strictly defined number of labels or at least with a small spread in the number of labels

—we always obtained a mixture. To solve this problem, it seems necessary to introduce the

azido group in a different way. It is likely that methods based on the modification of glycan

residues would improve the situation. Monoclonal antibodies contain one conserved N-glyco-

sylation site at position N297 in each heavy chain. In this case, about 20% of the antibodies

also contain a second N-glycosylation site in the variable region of the heavy chain [24]. Gly-

can motifs on antibodies are diverse (up to 30 variants), and monoclonal antibodies in culture

can be synthesized in various glycoforms [25]. Nevertheless, enzyme processing can produce a

homogeneous glycan composition [26]. The best solution for recombinant antibodies would

be to use modified aminoacyl-tRNAs that carry amino acids with introduced functional

groups that are inserted into a particular site during translation [27]. Another alternative is the

SpyTag/SpyCather technique [28].

iPCR with covalent conjugates

Anti-IgM-ODN conjugate for anti-LeC antibody detection in sera. The usage of a

supramolecular complex and covalent direct conjugates on the example of the anti-LeC IgM

detection system resulted in similar sensitivity for mono- and double-labeled conjugates and

the supramolecular complex (Fig 7). It should be noted that the protocol based on direct con-

jugates is shorter by several stages (1 hour of incubation and 3 wash steps). However, the same

result can be achieved by using pre-prepared and gel-filtered DNA-biotin-streptavidin com-

plexes with introduced antibodies, which were first described by Niemeyer in 1999 [29]. The

increase of the labeling level of antibody in the example of the anti-LeC IgM detection system

led to a decrease of the sensitivity, which was first observed at 3 ODN molecules per antibody

and showed no significant difference between the conjugates with one and two labels.

Anti-IgE-ODN conjugate for anti-allergen antibody detection in sera. iPCR assay of

anti-IgE conjugates showed that the specificity of the BE5 antibody changed. We used DBCO--

PEG4-NHS for ODN modification, which is similar to what Gong et al. used for antibody

modification [9]. They did not observed any changes in specificity of the antibodies. We

expected that a higher solubility of the reagent and the extended linker between dibenzocy-

clooctyne and NHS-group would reduce the effect of ODN on the affinity and specificity of

the antibodies. However, the specificity of the BE5-ODN conjugate prepared using the

DBCO-PEG4-NHS reagent also changed.

The positions of the reactive amino groups where azido groups are introduced followed by

the attachment of ODN seem to be very important. The position of the lysines available for the

reaction of amino groups on the surface of the antibody is specific for each antibody. This was
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confirmed by the fact that we obtained conjugates with the MA2 antibody with preserved anti-

body specificity if the antibody amino groups were modified, and so did other authors with

several other antibodies. It is should be noted that the biotinylated BE5 antibody did not

change in specificity after streptavidin was added to the supramolecular complex of 5’- and 3’-

biotinylated ODN and streptavidin [18]. The biotinylation of antibody BE5 was carried out

with the N-hydroxysuccinimide ester of biotin attached to the same reactive amino groups as

STP-N3. Nevertheless, further streptavidin binding in the ODN-complex did not affect the

specificity of the BE5 antibody.

Conclusions

We obtained covalent DNA-antibody conjugates using SPAAC reaction, and the method for

the preparation and purification of the conjugates was optimized. The possibility of using

these conjugates in iPCR was analyzed. After modification of the antibodies by amino groups,

it was impossible to obtain monolabeled antibodies or antibodies with a strictly defined num-

ber of labels. The degree of labeling determined by the dyes introduced to azido groups only

statistically reflected the final result.

One of the two monoclonal antibodies used in this study (anti-IgE BE5) lost its specificity

after covalent (direct) conjugation with ODN. The sensitivity for the detection of IgM antibod-

ies against LeC by iPCR using covalent conjugate proved to be similar to that measured for

iPCR using the supramolecular complex of 5’- and 3’-biotinylated ODN and streptavidin,

which we examined in a previous study [19]. However, the procedure became two steps

shorter and at least 1 hour faster.

Supporting information

S1 Fig. SDS-PAGE in non-reducing (a) and reducing (b) conditions for fractions collected

during anion-exchange chromatography purification of the conjugation reaction products

involving an antibody with Ab-N3 DOL = 2.6.
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