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ABSTRACT

Arabidopsis thaliana Protein Interactome Database
(AtPID) is an object database that integrates
data from several bioinformatics prediction meth-
ods and manually collected information from
the literature. It contains data relevant to protein–
protein interaction, protein subcellular location,
ortholog maps, domain attributes and gene regula-
tion. The predicted protein interaction data were
obtained from ortholog interactome, microarray
profiles, GO annotation, and conserved domain
and genome contexts. This database holds 28 062
protein–protein interaction pairs with 23 396 pairs
generated from prediction methods. Among the
rest 4666 pairs, 3866 pairs of them involving 1875
proteins were manually curated from the literature
and 800 pairs were from enzyme complexes in
KEGG. In addition, subcellular location information
of 5562 proteins is available. AtPID was built via
an intuitive query interface that provides easy
access to the important features of proteins.
Through the incorporation of both experimental
and computational methods, AtPID is a rich source
of information for system-level understanding
of gene function and biological processes in
A. thaliana. Public access to the AtPID database
is available at http://atpid.biosino.org/.

INTRODUCTION

At the cellular level, a network of molecular interactions
is representative of life. Cellular transport such as the
movement of molecules and macromolecules from one
location to another within cells and the formation of
complex molecular structures make the properties of
the network more intricate. However, all of this
apparent complexity can be systematically illustrated as
a simple interaction network, particularly through an
understanding of protein–protein interaction (PPI)
networks.
The collection of all protein interactions in an organism

is typically referred to as an interactome (1). PPIs are
fundamental to virtually every aspect of cellular function
(2). PPI provides useful information of functional linkage
between interacting partnerships within cells (3).
Therefore, PPI can help to reveal signal transductions
(4,5), post-translational modifications and developmental
processes (6). In addition, it can serve to aid in the
identification of novel regulatory components and path-
ways, and provide a valuable approach to understand
functional specificities at the molecular level.
Sequence-based annotation efforts have led to the

identification of a number of cellular components,
which can be regarded as a one-dimensional annotation.
Accumulated information regarding interactions, and
advancement of various high-throughput technologies
make it possible to generate systematical, or two-
dimensional annotations (7), such as interaction maps.
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The past several years have witnessed an exponential
increase in the amount of biological data, mainly due to
the development and application of high-throughput
technologies, including gene expression microarrays and
mass spectrometry to characterize DNA, RNA and
proteins. Currently, interactomes have been created for
several model organisms, such as Saccharomyces cerevisiae
(8,9), Drosophila melanogaster (10), Caenorhabditis elegans
(11) and Homo sapiens, among others (12). In the plant
kingdom, Arabidopsis thaliana has been widely employed
as a model organism to elucidate important biological
principles. In fact, several years ago the entire sequence of
the Arabidopsis genome was reported, and most of its
genes annotated (13). However, there are still 30% of
these gene products yet to be characterized because
sequence homology was not effective at assigning gene
function. Only a few interactions of specific protein
families in A. thaliana have been reported (14,15),
however, an enhanced understanding of PPIs can suggest
important future directions for researchers to study gene/
protein relationships and functions.
Meanwhile, many experimental procedures have

been developed to analyze PPIs, including biochemical
methods [e.g. protein affinity chromatography (16–18),
affinity blotting, coimmunoprecipitation and cross-linking
(19–22)]; molecular biological methods [e.g. protein
probing, the two-hybrid system (23–25) and phage display
(26)] and genetic methods [e.g. the isolation of extragenic
suppressors and synthetic mutants (27)]. High-throughput
experimental techniques have enabled us to study PPIs
at the proteome scale. This is achieved via systematic
identification of physical interactions among all proteins
in an organism. The ever-increasing volume of PPI data
is becoming the foundation for new biological discoveries.
However, these data are distributed in numerous sources
and it has been confirmed that some data are noisy,
data quality varies significantly, and data often cannot
be verified against each other. Bioinformatics and
computational approaches have been used to assess
the reliability of high-throughput results and to gain
confidence in published data (28). The methodology can
also integrate raw data into useful information and
provide experimentally testable hypotheses, thereby
expanding our knowledge about new mechanisms
in biological processes (29–32). Other computational
prediction methods based on known protein structural
interactions can also be useful to analyze large-scale PPI
rules. This prediction methodology evaluates interaction
rules among complete genomes using protein structural
interactome maps (33). Consequently, numerous
researches using computational methods have been
carried out to investigate gene and protein functions,
PPIs and gene regulation relationships(34–39). These
approaches have been applied to interactomes of H.
(40), S. cerevisiae (41), C. elegans (37), Plasmodium
falciparum (42,43), among other organisms.
However, rapidly increasing amounts of biological data

generated from genome-wide and proteome technologies
on modern biochemistry and molecular biology need to
be well stored, compararable, organized and accessible.
An appropriate repository and maintenance system for

these data can facilitate future data mining and functional
investigations.

AtPID was developed using A. thaliana as the model
system for a comprehensive resource of PPIs. All data in
AtPID were deposited from either manual text mining or
bioinformatics predictions. This database contains 28 062
interaction pairs, of which 3866 involve 1875 proteins
obtained from the literature and 800 pairs were from
enzyme complexes in KEGG. In addition, bioinformatics
predictions or literature surveys provided 5562 proteins
with subcellular location information. Intuitive and user-
friendly query interfaces have made all the features of
AtPID easily accessible. This database provides invaluable
resources for researchers to study PPIs and protein
functions in Arabidopsis, data can also be used to address
questions regarding gene functions and biological pro-
cesses in other taxa. AtPID is a non-commercial public
access database (http://atpid.biosino.org/) that provides
data download services for standalone analyses or data
mining, including protein interaction properties and other
areas of interest in plant biology.

DATA SOURCES AND PROCESSING

Data resources for reconstruction of interaction network

The power and expressivity of any network lies largely in
the data model used to represent molecular interactions.
From a computational perspective, we applied uniform
systematic benchmarks and statistical approaches
to specifically train our PPI network for Arabidopsis.
In addition, to assure data quality, we treated each
resource separately as weighted features and reconstructed
the PPI network through the proper integration of various
protein interaction datasets according to the Naı̈ve
Bayesian Network theory. In this way, meaningful
biological data is made available through AtPID. Here
protein interaction data are generated in the following
ways: experimental results are obtained from related
papers in PubMed and other available databases; and
data are made accessible from bioinformatics predictions.
The details of interaction data generation are described
below.

Manually collected protein interactions were extracted
from not only thousands of published articles, but
also IntAct (44), BIND (45) and TAIR databases (13).
We deposited protein interaction data possessing physical
evidence or experimental references related to the associa-
tion between two proteins into AtPID. To ensure the
reliability of these data, we also conducted a validation
process. First, we mapped PPI collected from the
literature lacking AGI locus identifiers to IPI (46) and
removed symbols without a match. We applied uniform
AGI symbols to proteins in AtPID for further analysis.
We found 3866 PPI pairs involving 1875 proteins using
this filtration process. Additionally, protein pairs in
enzyme complexes were also inferred as a part of GSP
based on the assumption that subunits in an enzyme
complex have high functional association and potential
physical interactions. Enzyme complexes from KEGG
(47) were obtained to extract the intersection of
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interactions from text mining and complexes of enzymes
directly garnered from the KEGG database. We subse-
quently used the decision tree to determine how many
proteins belonging to an enzyme complex resulted in a less
false positive and higher accuracy. Because many subunits
or components of an enzyme complex are mapped
from sequence similarity with other species or orthologs,
we compared true protein interaction data to reduce noise
and redundant information. Eventually, 800 unique pairs
were obtained through enzyme complex after excluding
the redundancies from the 3866 pairs via text mining.
Consequently, a total of 4666 interaction pairs involving
2285 proteins were generated (Table 1). Such protein
interaction resources, called GSP (Golden Standard
Positive) are stored in AtPID and used to score
the interaction network that assigns each predictive
interaction pair with quantized measures.

For predicting PPIs in AtPID, we applied computa-
tional approaches, including conserved protein interac-
tions (i.e. interologs) (48), gene expression data (49,50),
genomic context (i.e. gene neighbor algorithm) (51,52),
gene fusion (Rosetta Stone method) (53,54), phylogenetic
profiles (55,56) and GO annotation. The optimized
phylogenetic profiles were constructed and assessed
using the method of Sun et al. (57). Orthologous PPIs
in A. thaliana were obtained according to ortholog
function transfer. Ortholog map files in Inparanoid (58)
and DIP interaction data for other organisms were also
collected (59). To infer Arabidopsis protein interactions,
we mapped several model organismal (e.g. S. cerevisiae,
D. melanogaster, C. elegans and H. sapiens) protein
interaction data and orthologs to Arabidopsis. In addition,
we used the atlas of Arabidopsis development microarray

data (Acc.no: ME00319) from the TAIR database (13)
to identify co-expressed genes.
Non-redundant proteins with GO annotation from the

Gene Ontology Consortium were identified. These data
were used to calculate the Shared Smallest Biological
Processes (SSBP) value of each pair for all proteins
employing GO annotation methods (40). Interacting
proteins often function in the same biological process.
Therefore, proteins involved in the same process are more
likely to interact than proteins in distinct processes.
Furthermore, proteins exhibiting high functional specifi-
city are more likely to interact than proteins functioning in
more comprehensive processes. Based on this assumption,
we first identified all biological process terms shared by
two proteins. Subsequently, we counted how many other
proteins are assigned to each of the common terms and
produced the shared biological process term with the
smallest count (SSBP). In general, the smaller the SSBP
count, the more specific the biological process term, and
the greater the functional similarity between two proteins.
In this way, we used SSBP to predict PPIs.
We also investigated the assumption that some of the

operons contained within a particular organism may be
conserved across other organisms based on the Gene
Neighbors method. The conservation of an operon’s
structure provides additional evidence that genes within
an operon are functionally coupled and are perhaps
components of a protein complex or pathway.
Finally, we adopted the gene fusion method. The

underlying assumption of the method is that if a
composite protein is uniquely similar to two component
proteins in another species, the component proteins are
most likely to interact (53). Gene-fusion events were
identified in complete genomes, based solely on sequence
comparisons. These data enable the inference of func-
tional associations among proteins.

The Bayesian Networks approach

The predictive datasets from such individual methods
were integrated employing Naı̈ve Bayesian Networks (40).
The Bayesian Networks approach was used to integrate
more than seven predictive data sources and to subse-
quently build a model to infer novel PPIs for Arabidopsis.
The essence of the approach is to provide a mathematical
rule, given some predictive evidence, to explain how to
adjust the odds that a pair of proteins interacts, either in
a true interaction instance (GSP) or correspondingly,
in negative protein interactions, known as GSN (Golden
Standard Negative). No direct information regarding
the absence of specific protein interactions is available.
However, protein localization data provides indirect
evidence, given we assume that proteins in different
cellular compartments do not interact (60). Hence, GSN
values were constructed based on this assumption using
subcellular localization data from the SUBA database
(61). Individual likelihood ratios were easily calculated by
counting the number of protein pairs with values that
overlap with the GSP and GSN sets in the predictive
dataset.

Table 1. Overview of GSP resources

PPI Resources Number
of.PPI
pairs

Number of
proteins in
PPI pairs

GSP PPI [1] Literatures
from PubMed

1259 740

[2] InAct 1528 677
[3] BIND 1475 538
[4] TAIR 1073 698
[1]�[4] 3866 1875

Protein
complexes

[5] KEGG
(enzyme complex)

1700 856

Total [1]�[5] 4666 2285

[1] Manually collected protein interactions are extracted directly from
thousands of published articles in PubMed. [2] InAct provides a freely
available, open source database system for protein interaction data in
EMBL-EBI. All interactions are derived from literature curation or
direct user submissions. [3] BIND is a new resource to perform cross-
database searches of available sequence, interaction, complex and
pathway information. It integrates a range of component databases
including Genbank and BIND, the Biomolecular Interaction Network
Database. [4] TAIR provides ‘Tair Protein Interaction’ file by Matt
Geisler at its FTP (ftp://ftp.arabidopsis.org/home/tair/Proteins/).
[5] KEGG, a reference knowledge base linking genomes to biological
systems and environments, provides resourceful enzyme complex
information. [1]�[4] After mapping various symbols to AGI, we
found 3866 PPI pairs involving 1875 proteins with literature supports.
[1]�[5] combined with enzyme complexes from KEGG, the total
number of GSP is up to 4666 involving with 2285 proteins.
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The confidence scores (LR) for each inferred PPI pair
were the sum of the logarithmic form of all seven
individual likelihood ratios from corresponding methods.
The AtPID querying results page depicts the LR score
from each method with open, partially or completely filled
circles that indicate positive correlations with the con-
fidence level of the interaction relationship. The detailed
number of each predictive dataset is shown in Table 2 and
all predictive datasets can be downloaded from the AtPID
website.

DATABASE CONTENTS AND USAGE

All of the information in AtPID is derived from expert
curation and deliberate computation. The process of
creating a release AtPID database begins with extracting
the published and other relevant information from various
databases (Figure 1). Automated and manual quality
assurance procedures are administered to verify data
completeness and consistency. If necessary, material in the
development database is revised and a new database
version is generated.
Ortholog maps, domain attributes and network displays

are developed with crosslinks to other relevant external
resources (62). Following the final testing of data and the
web server, the new database was made available via the
public website. The latest release (14 July 2007) contains
28 062 PPI pairs involving 12 506 proteins. Of the PPI
pairs, 23 396 pairs were inferred by the integration of
several methods, while the other 3866 pairs involving 1875
proteins were manually curated from the literature and
other 800 pairs were determined from enzyme complexes
from KEGG. In addition to protein interaction data, we
added subcellular location annotations to nearly 5000
proteins from SwissProt and SUBA databases (61,63)
and popular prediction tools, including TargetP (64),
Predotar (65) and MitoProtII (66), which can promote
subproteome and protein function research.

AtPID spans roughly 41% of the estimated 30 480
peptides with interaction annotations in the Arabidopsis
genome and reflects the labor-intensive nature of manual
curation. Our future plans are to manually mine
thousands of protein interactions to acquire information
through bulk importation of data from other sources or
experimental results. Thus increasing PPI information and
power as a resource. PPI will also provide enhanced
resource training data for reconstructing interaction
networks with higher accuracy and larger coverage of
the Arabidopsis genome. In turn, the database can aid
users in querying more detailed information about
interaction pathways or maps comprising of interesting
protein attributes.

Practical applications of AtPID: querying interactions

The AtPID website can be browsed similar to an online
library. The website’s home page, depicted in Figure 1,
features the ‘QUICK START’ main interaction
querying box with links to each of the seven method
theories used in AtPID, the AtPID database statistics, and
announcements regarding the function of the website.

PPI query is the main function of AtPID, which makes
available manually collected PPI data and predicted PPI
through integrated data resources. Query flow is illus-
trated in Figure 2 and demonstrates how querying a
protein name or protein pair on the query page accesses
PPI information (http://atpid.biosino.org/query.php).
AtPID allows several types of query keywords used by
other databases, including UniProtKB/Swiss-Prot ID,
TAIR AGI, Entrez Gene name, REFSEQ
PROVISIONAL ID (NCBI) or International Protein
Index (IPI) symbols. We defined three types of submis-
sions. (i) ‘Simple search’ allows the user to submit a single
protein. This search is appropriate when the user would
like to know which other protein(s) have the highest
probability of interacting with the protein of interest.
The search results include the GSP and PPI predictions.
(ii) ‘Pair search’ allows the user to submit a protein pair
to ascertain if an interaction between two proteins has
been documented. (iii) ‘Multiple search’ allows a user to
query more than two proteins. A comma separate format
is required to access an interaction network among
multiple proteins. All returned pages inform the user of
related protein annotations by text and graphs. For
example, the user is interested in the HAP3A protein,
which encodes a subunit of the CCAAT-binding complex
and binds to the CCAAT box motif present in some plant
promoter sequences. The ‘Search Results’ show a sum-
mary of the protein attributes in the first table, including
the ‘Locus’, gene/protein symbol, the number of interac-
tions (six from GSP and seven by inference), function
description and database cross-references to Entrez,
TAIR, IPI, UniProtKB/TrEMBL, UniParc and KEGG
(Figure 3).

The second table of the ‘Search Results’ presents
inferred PPI pairs belonging to GSP listed with supporting
evidence, including literature references from PubMed
and experimental detection methods from text mining.
Each interactant can be linked to a new ‘Pair Search

Table 2. Overview of the number of individual predictive dataset

Number of
predictive
PPI pairs

Number of
proteins in
the PPI pairs

O: Ortholog interaction
datasets

3045 1359

G: Shared biological
function:GO Ontology

553 523

E: Co-expression 14 837 8024
F: Gene fusion method 6570 5671
N: Gene neighbors method 2008 1637
P: Phylogenetic

profile method
15 723 8751

D: Enriched domain pair 2182 1288
AtPIDa 28 062 (putative PPI

with GSP)
12 506

23 396 (putative PPI
without GSP)

11 706

aThrough integration by Naı̈ve Bays Network, AtPID achieved 28 062
PPI pairs with 23 396 pairs from prediction methods. There are seven
individual datasets from various approaches, identified by O, G, E, F,
N, P and D. The details of each method can be browsed on AtPID
FAQ.
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Results’ window. The third table displays any potential
interactant of HAP3A (Figure 3). Each of the seven
prediction approaches is depicted by a letter acronym
within a circle. When the user places the cursor over each
circle, it displays the full name of the method. The circle
under eachmethod indicates the confidence strength for the
predicted method and the related protein. The more the
circle is filled, the more likely the pair of proteins is to
interact. The corresponding score for the specific method is
displayed when the cursor is held over the circle.
‘Network Display’ above the information table provides

the link to a new window that displays the interaction
network about HAP3A (Figure 4). In the ‘Network
Display’ page, the query protein is represented as a triangle;

Figure 1. The home page of AtPID.

Figure 2. An overview of querying flow.
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Figure 3. The AtPID interface of PPI Simple Search Results for the queried protein, HAP3A. There are generally three tables: (1) protein attributes
with gene model descriptions and PPI summary, showing how many protein pairs can be predicted and the inferred interactions overlapped
with GSP. (2) The second table represents interactants of the queried protein, HAP3A. Users can view what the experimental evidence is to support
this consequence and link to corresponding literature(s). (3) The third table represents potential interactants of the queried protein, HAP3A,
by Naı̈ve Bays integration across the seven approaches. Each approach is graphically represented by circles. When the cursor is over a circle, it will
display the corresponding score (LR) for the method.
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the functional Partners of the queried protein are
represented by a circle, derived from the first level displayed
in the PPI network that directly linked to the query protein.
The associated functional partners of the queried protein
are shown as squares, derived from the second level in
the network. A red node represents a protein with known
function (i.e. annotated), whereas a gray node represents an
unknown functional protein (i.e. without annotation).
The line between each protein indicates the functional
relationship; a red line infers the interaction from text
mining, and a blue line indicates the predictive function
relationship. By holding the cursor over each protein, the
related annotation for the protein is displayed and allows
the user to navigate the network and easily check a
proteins’ relationship. ‘Text Format Output’ will export the
interaction pair information in text format.

In the ‘Pair Search Results’ window when users submit
potential interaction pairs, the domain attribute of one
partner protein (e.g. AT1G09030) can be viewed graphi-
cally (Figure 5). Each module is linked to Pfam and when

the user places the cursor over the module, details of the
domain will also be displayed. Thus, AtPID provides
comprehensive knowledge through a friendly and con-
venient interface that should be easy to use by biologists.

Software development

The database server is located at SIBS (Shanghai Institute
of Biological Science) data service platform. Therefore,
clients around the world can readily access the AtPID
database. The AtPID development environment is apa-
che+php+mysql, which allows for more efficient calcula-
tion rate performances and augmentation of the program.

CONCLUSIONS

AtPID is an online repository of A. thaliana protein
interactions. AtPID serves as a major reference site
for PPIs using Arabidopsis as a model plant system. The
database collection will regularly integrate new accessions

Figure 4. AtPID interface of the (Network Display) window for the queried protein, HAP3. In the (Network Display) window, we can view the
interaction network involved with queried protein(s) and the neighbor component(s) intuitively. (Text Format Output) can export the interaction pair
information for further analysis.
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as they become available. A number of new features and
applications are currently under construction, such as a
gene regulation and dynamic PPI network that function
under different conditions with increased gene expression
and proteomics data.
Currently, the subcellular localization predictions of A.

thaliana are available for both the chloroplast and
mitochondrion and the predictive organellar proteins
have been added into AtPID. In addition, we plan to
conduct further assessments of proteins to other cellular
and/or subcellular locations, including nuclear, cytoplas-
mic and extracellular proteins.
Another important field of research is to elucidate

the relationships between phenotype and genotype.
For example, we plan to collect data relevant to mutants
and their respective phenotypes. These highly varied
types of data will be available through AtPID in the
near future.
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