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To overcome the problem that the traditional Gaussian mixture model (GMM) cannot well describe the skewness distribution of
the gray-level histogram of a liver CT slice, we propose a novel segmentation method for liver CT images by introducing the
Johnson-SB mixture model (JSBMM). /e Johnson-SB model not only has a flexible asymmetrical distribution but also covers a
variety of other distributions as well. In this article, the parameter optimization formulas for JSBMM were derived by employing
the expectation-maximization (EM) algorithm and maximum likelihood. /e implementation process of the JSBMM-based
segmentation algorithm is provided in detail. To make better use of the skewness of Johnson-SB and improve the segmentation
accuracy, we devise an idea to divide the histogram into two parts and calculate the segmentation threshold for each part,
respectively, which is called JSBMM-TDH. By analyzing and comparing the segmentation thresholds with different cluster
numbers, it is illustrated that the segmentation threshold of JSBMM-TDH will tend to be stable with the increasing of cluster
number, while that of GMM is sensitive to different cluster numbers. /e proposed JSBMM-TDH is applied to segment four
randomly obtained abdominal CT image sequences, and the segmentation results and robustness have been compared between
JSBMM-TDH and GMM. It is verified that JSBMM-TDH has preferable segmentation results and better robustness than GMM for
the segmentation of liver CT images.

1. Introduction

Liver cancer is a common malignant neoplasm worldwide,
and the incidence of primary liver cancer is still on the rise at
the global level [1]. /e accurate understanding of the shape
of the liver, the location and size of lesions in the liver tissue,
and the relationship between the liver and surrounding
blood vessels can help doctors to develop more effective
treatment options. In addition, accurate liver segmentation
is also conducive to three-dimensional reconstruction for
liver and virtual surgery. At present, manual delineation of
each slice by experts is still the standard clinical practice for
liver demarcation [2]. Because the segmentation of organs
and lesions has to be carried out layer by layer in CTslices, it
is pretty cumbersome and time-consuming for doctors or
experts to do this repetitive work.

In practice, CT slices are grayscale images. /e pixels in
the image reflect the X-ray absorption coefficient of the
corresponding voxels. Black areas represent low absorption
areas, that is, low-density tissues and organs of human body,
such as lungs; white areas represent high-absorption areas,
that is, high-density body parts, such as bones. /e ab-
sorption value in CT images is given in Hounsfield units
(HUs). Compared with ordinary X-ray images, CT images
have a higher density resolution. /erefore, CT images can
better show organs composed of soft tissue, such as lung,
liver, gallbladder, pancreas, and pelvis, and can well dem-
onstrate pathological changes in the tomography image. At
present, the original pixel size of the abdominal CT image is
512× 512, and the HU value of the liver varies widely. For
example, a healthy liver has smooth contours and uniform
density, and the absorption values are 60± 6HU (or
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64± 5HU). However, when the liver has about 80% stea-
tosis, the absorption values will be reduced to about − 50HU.
In contrast, the density of the liver parenchyma will increase
due to the accumulation of iron in patients with hemo-
chromatosis, whose CT scan showed that the liver paren-
chyma was clearly dense and bright, with an absorption
value as high as +140HU (so-called white liver) [3]. /ere is
no doubt that it is quite difficult to accurately segment the
liver within such a large gray range.

To solve the above problems, many scholars have pro-
posed a variety of liver CT image segmentation methods
[4–7]. Some of these algorithms require human-computer
interaction, such as active contour [8] and Livewire (in-
telligent scissors) [9, 10]. Some are semi-automatic, for
example, graph-cut [11] and region growth [12, 13] methods.
Some other methods focusing on fully automatic segmen-
tation include statistical shape models (SSMs) [14, 15] and
thresholding algorithm [16]. Neural network algorithms
aiming to achieve automatic feature extraction have also
been applied to the segmentation of medical images in recent
years [17, 18]. /e ultimate common goal of different
methods is to segment images accurately and automatically,
but this goal is still a bottleneck problem in liver CT image
segmentation, due to the complexity of abdominal CT
images and the differences between different liver mor-
phologies. In this study, we aim to study on the finite
mixture model (FMM), one kind of threshold segmentation
algorithm, to improve the segmentation accuracy of liver CT
images, and try hard to segment automatically at the same
time.

According to the idea of the threshold segmentation
algorithm, if the grayscale threshold of the liver in the CT
slice can be accurately determined, it is possible to realize the
liver segmentation automatically. In 1893, Karl Pearson
made an experiment using the method of moments to fit a
mixture of two normal components to the crabs’ data, which
proved the FMM could improve the accuracy of clustering
[19]. Since then, FMM was adopted to improve the accuracy
of threshold segmentation methods. In 1972, Chow and
Kaneko applied FMM in medical images to segment the left
ventricle from cine angiograms with two Gaussian distri-
butions [20].

/ere are two core points in FMM, one is the selection of
the probability density function of the mixed components
and the other is the parameter estimation of the mixture
model. /e most common mixed component probability
distribution used in FMM is the Gaussian distribution,
because in many cases there is a normal distribution in
univariate and multivariate data. /erefore, the Gaussian
mixture model (GMM) has been widely used in the seg-
mentation of the images [21–24]. In addition to the Gaussian
distribution, gamma distribution, Student’s t distribution,
exponential distribution, and Rayleigh distribution also
commonly appear in FMM [25–27], and their probability
density diagrams with different parameters are shown in
Figure 1, respectively.

/e upper, middle, and lower slices of the liver CT image
sequence are shown in Figures 2(a)∼2(c)), respectively.
Figures 2(d)∼2(f ) give the corresponding gray-level

histograms of Figures 2(a)∼2(c)). Although the peak shape
of gray-level histogram has symmetry to some extent, its
asymmetry is also very obvious, which is different from the
symmetric characteristic of Gaussian distribution and the
asymmetric characteristic of the exponential, Rayleigh dis-
tribution, etc. /erefore, it is very difficult to fit the peak
shape accurately with any single distribution shown in
Figure 1.

To solve the problem, many researchers have focused on
forming a mixture model using distribution functions that
can better fit the shape of a single peak. /e research ideas
mainly concentrate on the following three kinds of mixture
models.

/e first kind of mixture model is forming an asym-
metric generalized Gaussian distribution (AGGD) by in-
troducing shape parameters or functions into the
generalized normal distribution to describe the skew
characteristic [28, 29], so that it can describe not only a
symmetric distribution but also an asymmetric distribution.
However, the expression of the AGGD is complicated by
embedding the gamma function. In the case of using the EM
algorithm for maximum-likelihood estimation (MLE), all
AGGD parameters in the mixture model are represented by
highly nonlinear equations, which makes the numerical
solutions cumbersome and sensitive to initial EM values
[30].

Combining Gauss with other distributions to form a new
model is the second idea. Wilson selected two Gaussian
distributions and one uniform distribution to fit the low-
gray and high-gray regions of the brain MRA data histo-
gram, respectively [31]. Hassouna proposed a linear com-
bination of a finite mixture model using one Rayleigh
distribution and two Gaussian distributions [32]. Hence, for
different problems, people need to determine in advance
which existing models can be used to form a new probability
distribution model, and the number of each distribution also
needs to be determined in advance. /erefore, this kind of
model is not flexible, and it is also difficult to realize seg-
mentation automatically.

/e third way is to combine the components of the
mixed model with the non-Gaussian distribution. Lee and
McLachlan introduced a finite mixture of canonical fun-
damental deviation t (CFUST) distributions for asymmetric
and possibly long-tailed clusters [33]. Sefidpour and Bou-
guila proposed and investigated the segmentation of spatial
color images using the Dirichlet and Beta-Liouville distri-
butions [34]. /e normal inverse Gaussian distribution
(NIG) is chosen by Karlis and Santourian to deal with
skewed subpopulations [35]. Franczak et al. studied the
asymmetric Laplace distribution (ALD) for clustering and
classification [36]. NIG and ALD belong to the family of
generalized hyperbolic (GH) distributions designed by
Barndorff-Nielsen [37]. Browne and McNicholas extended a
special case for the generalized hyperbolic distribution [38].
Wraith and Forbes studied the properties of these distri-
butions in multiscale and their application in multivariate
clustering [39]. Although there are many combination
methods of non-Gaussian distribution, only a few methods
are used for the segmentation in medical images, especially
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in liver CT images. /erefore, the study on the segmentation
of liver CT images still needs further research.

Considering the asymmetric skew characteristic of the
gray histogram of the liver CT image, and inspired by the
skew characteristic of Johnson-SB distribution, we pro-
pose a novel mixture model with the combination of
Johnson-SB distribution to segment the liver CT image. In
the following paper, the Johnson-SB mixture model and
the optimized parameters with the EM algorithm are
introduced firstly in Section 2. Secondly, Section 3 gives
the implementation details of the segmentation algorithm
based on the Johnson-SB mixture model, and the effects of
cluster number on the segmentation threshold are also
analyzed and compared between GMM and Johnson-SB
mixture model in this section. /en, the segmentation
experimental results of four randomly obtained abdom-
inal CT image sequences from different image databases

are provided in Section 4. Finally, conclusions are drawn
in Section 5.

2. Finite Johnson-SB Mixture Model

In 1949, Johnson deduced a curve system called the Johnson
system, which contains Johnson-SB, Johnson-SL, and
Johnson-SU. /e symbol SL means “log-normal system,” SB
means “bounded system,” and SU means “unbounded sys-
tem” [40]. /e Johnson system can closely approximate
many continuous distributions by one of the three func-
tional forms, so it is very flexible to fit variety curves. Many
of the commonly used continuous distributions, such as
normal, log-normal, gamma, beta, and exponential, are
special cases of the Johnson system; therefore, it has more
advantages to fit curves with the Johnson system than any
other single distribution [41].
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Figure 1: Probability density of normal, gamma, exponential, Student’s t, and Rayleigh distributions. (a) μ: mean, σ: standard deviation. (b)
α: shape parameter, β: scale parameter. (c) μ: mean. (d) x: position parameter, ]: degrees of freedom. (e) B: scale parameter.
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Figure 2: Upper, middle, and lower slices of the liver CT image and their histograms. (a)/e upper slice. (b)/e middle slice. (c)/e lower
slice. (d) Gray-level histogram of (a). (e) Gray-level histogram of (b). (f ) Gray-level histogram of (c).
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2.1. Johnson-SB Distribution. Johnson-SB is one of the three
distributions of the Johnson system. It corresponds to the
distribution of a continuous random variable x in which a
particular transformation is applied to obtain a normal
distribution. /e transformation is as follows:

z � c + δln
x − ξ

λ + ξ − x
􏼠 􏼡, (1)

where x is a given continuous random variable. In this study,
x is the grayscale value of the pixel in the CT image. x ∈ (ξ,
ξ + λ), ξ �min (x), λ�max (x) − min (x), and c and δ are
shape parameters, δ > 0, c ∈ (− ∞, +∞). Z is a standard
normal random variable, and its probability density function
is as follows:

p(z) �
1
���
2π

√ .e
− z2/2

. (2)

We write

z � c + δf(y), y �
x − ξ

λ + ξ − x
, and f(y) � ln

x − ξ
λ + ξ − x

􏼠 􏼡,

(3)

where z is the inverse function of y.
According to the transformations of continuous random

variable,

p(y) � δf′(y)p(z) �
δ
���
2π

√ .f′(y).e
− 1/2[c+δf(y)]2

. (4)

/en, the probability density function (PDF) with regard
to x is as follows:

p(x) �
δ
���
2π

√ .
λ

(x − ξ)(λ + ξ − x)
.e

− 1/2[c+δln(x− ξ/λ+ξ− x)]2
.􏼨 (5)

Figure 3 shows some typical probability density function
curves of Johnson-SB with different parameters./e range of
horizontal coordinates is from 0 to 255, and the vertical
coordinates are the corresponding probability density
function values. Figure 3(a) presents the curves with dif-
ferent δ and c � 0, and it is a normal distribution in the
middle. Figures 3(b)∼3(e) present the curves with different δ
and c � 0, respectively, and they have better skew charac-
teristics, especially at the two ends of the abscissa. It can be
seen that c controls the position of the function, and the
distributions of the function are normal distribution, neg-
atively skewed distribution, and positively skewed distri-
bution when c � 0, c> 0, and c< 0, respectively.

2.2. Johnson-SB Mixture Model (JSBMM) and Optimizing
Parameters

2.2.1. Johnson-SB Mixture Model (JSBMM). /e finite mix-
ture model (FMM) refers to the linear superposition of
distribution functions of the same type but with different
parameters. In the discrete case, the probability density
function of a finite mixture distribution can be expressed as a
p-dimensional random vector X [42].

p(x|Θ) � 􏽘
K

k�1
Φkpk x|θk( 􏼁, (6)

where x⊂X is the pixel grayscale value in the CT image,
θk � (δk, ck), pk (x|θk) is the density of the kth component,
and Θ� (Φ1, . . ., Φk; θ1, . . ., θk) is the vector of parameters.
Note that p (x|Θ) in Eqn (3) defines a density that is called a
K-component finite mixture density. Here, the weight of the
kth mixing proportion Φk satisfies the following relations:

0≤Φk ≤ 1 k � 1, 2, 3, . . . , K, (7)

and

􏽘

K

k�1
Φk � 1. (8)

According to Eqn (3), the probability density of a
Johnson-SB mixture model is defined as follows:

p(x|Θ) � 􏽘
K

k�1
Φkpk x|δk , ck( 􏼁. (9)

Here,

pk x|δk , ck( 􏼁 �
δk���
2π

√ .
λ

(x − ξ)(λ + ξ − x)
.e

− 1/2[c+δln(x− ξ/λ+ξ− x)]2
,

(10)

is the probability density of a random variable X for a
Johnson-SB distribution with the parameters δk and ck.

2.2.2. Optimizing Parameters with EM Algorithm. /e
vector of parameters Θ typically introduced by the log-
likelihood function is defined as follows:

L(Θ) � lnp(X|Θ) � 􏽘

N

i�1
lnp xi|Θ( 􏼁 � 􏽘

N

i�1
ln 􏽘

K

k�1
Φkpk xi|δk , ck( 􏼁,

� 􏽘

N

i�1
ln 􏽘

K

k�1
Φk

δk���
2π

√ .
λ

xi − ξ( 􏼁 λ + ξ − xi( 􏼁
.e

− 1/2[c+δln(x− ξ/λ+ξ− x)]2
.

(11)

Here, xi is the ith discrete grayscale value and N is the
number of discrete dots of CT image.

/e detailed derivation of the parameters given in
equations (6)–(8) is presented in Appendix A.

3. Segmentation Algorithm Based on JSBMM

3.1. Implementation Details. /ere are mainly four steps to
implement the segmentation algorithm based on JSBMM,
and the details of each step in Algorithm 2 are introduced as
follows.

3.1.1. Obtaining the Approximate Gray Value (LV_A).
/e Hounsfield unit (HU) value of liver tissue varies from
patient to patient. In addition, the X-ray tube of the CT
machine will age with longtime use, which results in the
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intensity decrease in the X-ray source. /erefore, the liver
HU values of different CT image sequences are usually
different. Clearly, it is not possible to identify all liver scan
sequences with the same HU range value.

We canmake full use of the continuity of CTscan section
images to solve this problem. CT scans require patients to
hold their breath during data collection, and this process

usually takes no more than 20 seconds [43]./erefore, in the
same CT image sequence, the range of gray values between
all liver slices varied a little. It is feasible to obtain the liver
HU value of this sequence using the slice image with the
largest liver area.

Figure 4(a) shows the frontal outline of the liver, and
Figures 4(b)∼4(d) give the upper, middle, and lower slice
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Figure 3: Probability density function curves with different parameters.

Input: initial values of θk � (Φk, δk, ck) (k� 1, 2, 3, . . ., K)
Output: final converged values of θk � (Φk, δk, ck)
(1) Give the initial values of θk � (Φk, δk, ck)
(2) while θk is not converged do
(3) E-step: calculate the possibility of each xi coming from the kth submodel, based on the current parameters θk. Pi,k � P(Φk|xi, θk) �

Φk.δk/
���
2π

√
.λ/(xi − ξ)(λ + ξ − xi).e

− 1/2[c+δln(x− ξ/λ+ξ− x)]2 /􏽐
K
j�1 Φj.δj/

���
2π

√
.λ/(xi − ξ)(λ + ξ − xi).e

− 1/2[c+δln(x− ξ/λ+ξ− x)]2􏽮 􏽯.

(4) M-step: optimize the model parameters Φk, δk, ck of the new iteration by using maximum likelihood.

Q(θk) � 􏽘
N

i�1
􏽘

K

k�1
Pi,k ln Φk + ln δk + lnλ/

���
2π

√
(xi − ξ)(λ + ξ − xi) − 1/2[ck + δk ln(xi − ξ/λ + ξ − xi)]

2
􏽮 􏽯,

ck � − 􏽘
N

i�1
[Pi,k ln(xi − ξ/λ + ξ − xi)]/􏽘

N

i�1
Pi,kδk � − A/Bδk,

δ2k � B/􏽘
N

i�1
[Pi,kln

2
(xi − ξ/λ + ξ − xi)] − A

2/B � B/C − A
2/B,

Φk � 􏽘

N

i�1
Pi,k/N � B/N

where A � 􏽐
N
i�1[Pi,kln(xi − ξ/λ + ξ − xi)], B � 􏽐

N
i�1 Pi,k, C � 􏽐

N
i�1[Pi,kln

2(xi − ξ/λ + ξ − xi)].

(5) end while

(6) return θk � (Φk, δk, ck)

ALGORITHM 1: EM algorithm for JSBMM.

(1) Obtain an approximate grayscale value of the liver (LV_A) of a given CT image sequence.
(2) for each slice in the CT image sequence do
(3) Find the maximum grayscale value of the liver (LV_M) near the LV_A in the gray-level histogram of the CT slice.
(4) At the LV_M point, divide the gray-level histogram into left and right parts. Fit the left and right histograms by using Algorithm 1

to determine the grayscale segmentation points of the liver.
(5) Binarize the liver section according to the grayscale segmentation points solved in step 4, and then obtain the final liver

segmentation image after mathematical morphology processing.
(6) end for

ALGORITHM 2: Segmentation algorithm based on JSBMM.
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images of the liver CT scan sequence, respectively. It can be
seen that the liver is almost completely surrounded by the
ribs, and the liver image at about 1/3 of the entire sequence is
the largest one [44]. For example, if a complete sequence of
CTscans of the liver has 90 slices, the liver slice near the 30th
slice will be more significant than others.

Figures 5(a) and 5(c) show two liver slices taken from
two different CT scan sequences, which locate at 1/3 of each
sequence. Grayscale-level statistics were performed at about
1/4 of the body section, shown as the dotted line in
Figures 5(a) and 5(c)./e approximate grayscale value of the
liver (LV_A) can be easily calculated after removing the
grayscale values of black and white zones. Figures 5(b) and
5(d) are the corresponding gray-level histograms with a
sampling width of 10 pixels for the positions shown as the
dotted lines in Figures 5(a) and 5(c), respectively. Here, the
horizontal coordinates are the grayscale values, and the
vertical coordinates are the statistical numbers of the cor-
responding grayscale values. /e grayscale values with
maximum statistical numbers are 131 and 178 as shown in
Figures 5(b) and 5(d), respectively, which are taken as the

approximate grayscale value of the liver (LV_A) in
Figures 5(a) and 5(c), respectively. It should be noted that
the maximum statistical number of the grayscale value 0
should be omitted, although it is more than 2000, because it
means the black zone and is useless for the segmentation of
the liver.

3.1.2. Finding the Maximum Gray Value (LV_M).
Although liver HU values do not change significantly
during the scan process, there also exist some slight
changes. To segment each slice accurately, it is necessary
to further locate the maximum grayscale value of the liver
(LV_M) close to the LV_A on the gray-level histogram of
each slice.

For instance, Figure 6(a) shows the slice of the upper part
of the liver CT sequence shown in Figure 5(c). Figure 6(c)
displays the slice of the lower part in the same sequence.
Figure 6(b) gives the gray-level histogram of Figure 6(a), and
the gray-level histogram of Figure 6(c) is shown in
Figure 6(d). Because the value of LV_A shown in Figure 5(d)

(a) (b) (c) (d)

(e)

Figure 4: Frontal outline and the upper, middle, and lower sections of the liver CT scan sequence.
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Figure 5: Slices of 1/3 of the liver and the corresponding LV_A. (a) A slice of 1/3 of the liver in the first sequence. (b)/e LV_A of (a) is 131.
(c) A slice of 1/3 of the liver in the second sequence. (d) /e LV_A of (b) is 178.
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is 178, the corresponding LV_M values of Figures 6(a) and
6(c) are 179 and 176, as shown in Figures 6(b) and 6(d),
respectively. Here, it needs to be stated that we should
choose the peak value closest to 178 as LV_M, because 178 is
determined in Figure 5(d).

3.1.3. Determining the Segmentation Points. /e position of
peak and skewness characteristics of the gray-level histo-
gram of liver slices are uncertain and nonuniqueness, so it is
difficult to take full advantage of the JSBMM in describing
skewness if JSBMM is applied directly to fit the whole gray-
level histogram. To make full use of the advantages of
Johnson-SB in describing the skew characteristics, we di-
vided the gray-level histogram into the left and right parts at
LV_M to ensure that the gray level of the liver is just at the
boundary of the histogram, to improve the Johnson-SB
segmentation accuracy.

/e LV_M of Figure 6(c) is 176. At the LV_M point, the
gray-level histogram shown in Figure 6(d) is divided into the
left part and the right part, and the grayscale values of the
segmentation points are obtained using JSBMM to fit the
gray-level histograms. Figures 7(a) and 7(b) give the fitting
results of the left part and the right part, respectively. /e
grayscale value of the segmentation point of the left part is
157, which is the intersection of the two rightmost fitting
curves shown in Figure 7(a). /e grayscale value of the
segmentation point of the right part is 190, which is the
intersection of the two leftmost fitting curves shown in
Figure 7(b). However, if there is a peak of one fitting curve
appearing between the intersection point of the other two
fitting curves and the LV_M, the grayscale value of this peak
will be taken as the segmentation point, which can get better
segmentation results. For example, the grayscale value of the
segmentation point of the right part should be 188, because
the grayscale value of the peak is 188, which appears before
the intersection of 190. /erefore, the range of the grayscale
value for liver segmentation in Figure 6(c) is set from 157 to
188, which is the range of the segmentation thresholds for
Figure 6(c).

3.1.4. Binarizing the Images and Processing with Mathe-
matical Morphology. Mathematical morphology is a tool for
extracting image components. Erosion, dilation, and filling

are three basic morphological set transformations. /ese
transformations involve the interaction between image and
structuring element [45]. Figure 7(c) is obtained by binar-
izing Figure 6(c). /e final boundary of the liver segmen-
tation can be drawn as shown in Figure 7(d) after the
procession of filling, erosion, and expansion algorithms in
mathematical morphology.

3.2. Effect of Cluster Number on the SegmentationCresholds.
A key point of FMM is how to select the cluster numbers to
realize a better fitting, and underfitting or overfitting may
occur if the cluster number is selected inappropriately [46].
In this study, the cluster number means the number of
curves in a cluster used to fit the gray-level histogram. To
analyze the effect of different cluster numbers on segmen-
tation thresholds, we choose two different slices to be seg-
mented by GMM and JSBMM in the following Section 3.2.1
and Section 3.2.2, respectively. /e initial location of the
grayscale value is another consideration to affect the seg-
mentation threshold. In this study, the initial locations are
evenly arranged within the range of the grayscale values of
the entire image.

3.2.1. Segmentation Cresholds of GMM with Different
Cluster Numbers. Table 1 gives the segmentation thresholds
of the upper, middle, and lower slices from two different CT
image sequences. By analyzing the segmentation thresholds
with different cluster numbers n, it can be found that the
segmentation thresholds are changeable with the change in
n, while they do not tend to be stable with the increasing n.
In this study, n denotes the cluster numbers used to fit the
gray-level histogram, and n is the same as K in Algorithm 1.

To illustrate the effect on the segmentation results with
different cluster numbers, we give some segmentation results
of the upper slices of the sequences S1 and S2. Here, Figure 8
shows the threshold segmentation results of the upper slices
with n� 6, 8, 10, 12, and 14 using GMM, respectively. /e
first row and the second row give the segmentation results
and thresholds for the upper slice of the first sequence S1.
/e third row and the fourth row give the results and
thresholds for the upper slice of the second sequence S2.

By comparing the segmentation results in the first row, it
is not difficult to find that the results of the first three
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Figure 6: Maximum gray value of the liver (LV_M) in CTslice image. (a)/e upper section. (b) LV_M of Figure 6(a), (c)/e lower section.
(d) LV_M of Figure 6(c).
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columns with n� 6, 8, and 10 are similar, because the three
segmentation results include some other organs that do not
belong to the liver. Although the segmentation result in the
fourth column with n� 12 only includes the liver, the seg-
mentation result is a little smaller liver than that of the fifth
column with n� 14. /erefore, the segmentation result with
n� 14 is relatively more reasonable by comparing with the
other four results for the first sequence.

Comparing the results of row 3 for the second sequence,
it is obvious that the results of the first two columns with
n� 6 and 8 are not correct, and the segmentation result of
the third column with n� 10 is a little smoother than that of
the fourth one with n� 12, while the segmentation result of
the fifth column with n� 14 turns to be rougher boundary
due to overfitting. /us, the better segmentation result can
be obtained when n is 10 for the second sequence. As can be
seen from Figure 8, the segmentation results of GMM are
sensitive to cluster numbers, and it is not easy for GMM to
use fixed cluster number to get accurate segmentation re-
sults, which is a difficulty in the application of GMM, es-
pecially for a large number of images that need to be
segmented.

Here, it is needed to be stated that the red contours in the
figures in Figure 8 indicate the error zones of the seg-
mentation. It is the same meaning in the following figures.

3.2.2. Segmentation Cresholds of JSBMM with Different
Cluster Numbers. Figures 9∼11 give the segmentation
thresholds and the results of the upper, middle, and lower

slices of the first liver CT sequence S1, and here, the seg-
mentation thresholds are obtained with JSBMM-TDH, which
means the gray-level histogram is divided into left and right
parts, and it is denoted as thresholds of dividing histogram
(TDH). While thresholds of whole histogram (TWH) mean
that the segmentation thresholds are obtained with JSBMM
under the whole gray-level histogram, and it is denoted as
JSBMM-TWH. /e segmentation results of JSBMM-TWH
are not given in Figures 9∼11, and only the segmentation
thresholds are summarized in the TWH column given in
Table 2./e segmentation results of JSBMM-TDHwith n� 6,
8, 11, and 13 are shown in Figures 9(a)∼9(d), respectively.
Figures 9(e)∼9(n) show the segmentation thresholds of the
left and right parts with n� 6∼15, respectively.
Figures 10(a)∼10(n) and 11(a)∼11(n) give the corresponding
segmentation results and thresholds of JSBMM-TDH for the
middle and lower slices, respectively.

/e segmentation thresholds with n� 6∼15 for the up-
per, middle, and lower slices are summarized in the cor-
responding TDH column given in Table 2. It is obvious that
the segmentation thresholds almost tend to be stable when n
is bigger than 12. While the segmentation thresholds in
TWH column are also changeable, even n is bigger than 12,
which is similar to the trend of GMM. By analyzing and
comparing the range of segmentation thresholds between
JSBMM-TDH and JSBMM-TWH with the same n, it can be
seen that most of the upper limit values are close to each
other, but the lower limit values of JSBMM-TDH are smaller
than that of JSBMM-TWH, and the differences are mostly
around 10.
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Figure 7: Grayscale values of segmentation points and the binarized result.

Table 1: Segmentation thresholds of two different CT image sequences using GMM.

Cluster number (n)
Segmentation thresholds

Slices of sequence S1 Slices of sequence S2
Upper Middle Lower Upper Middle Lower

6 153∼201 168∼196 158∼204 115∼149 117∼149 115∼147
7 157∼201 168∼195 162∼194 109∼150 117∼150 115∼148
8 153∼202 165∼197 157∼196 122∼148 121∼145 120∼144
9 175∼193 169∼197 175∼188 112∼149 117∼152 116∼148
10 154∼201 172∼190 158∼196 124∼150 122∼150 121∼145
11 173∼195 169∼193 168∼191 113∼148 118∼153 116∼149
12 174∼194 168∼194 169∼191 126∼150 124∼150 124∼147
13 177∼193 172∼184 168∼189 115∼147 117∼150 116∼149
14 173∼194 169∼190 166∼191 127∼150 124∼150 125∼146
15 173∼194 168∼193 168∼191 117∼144 118∼142 117∼145
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Figure 8: Segmentation results and thresholds of GMM with different cluster numbers. (a) n� 6. (b) n� 8. (c) n� 10. (d) n� 12. (e) n� 14.
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Figure 9: Continued.
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Figure 9: Segmentation thresholds of JSBMM-TDH with different cluster numbers for the upper slice. (a) n� 6. (b) n� 8. (c) n� 11.
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Figure 10: Continued.
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Analyzing and comparing the segmentation results of
(a)∼(d) shown in Figures 9∼11, respectively, the better
segmentation results can be obtained for the upper,
middle, and lower slices when n is 13. /erefore, con-
sidering the trend of segmentation thresholds given in
Table 2, we determine to take n � 13 as the fixed cluster
number for JSBMM-TDH to segment different CT image
sequences in the following segmentation experiments in
Section 4.

As a matter of convenience in comparison, Table 2 also
gives the segmentation thresholds of GMM for liver CT

sequence S1 shown in Table 1. By analyzing and comparing
the range of segmentation thresholds between JSBMM-TWH
and GMMwith the same n, it is found that most of the upper
and lower limit values are close to each other, which means
the segmentation results of JSBMM-TWH are similar to that
of GMM. /erefore, the segmentation results of JSBMM-
TDH are both better than the results of JSBMM-TWH and
GMM.

Table 3 gives the segmentation calculation time with
different cluster numbers as shown in Figures 9–11. /e
segmentation time is less affected by the different cluster
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Figure 10: Segmentation thresholds of JSBMM-TDH with different cluster numbers for the middle slice. (a) n� 6. (b) n� 8. (c) n� 11. (d)
n� 13. (e) n� 6. (f ) n� 7. (g) n� 8. (h) n� 9. (i) n� 10. (j) n� 11. (k) n� 12. (l) n� 13. (m) n� 14. (n) n� 15.
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Figure 11: Segmentation thresholds of JSBMM-TDH with different cluster numbers for the lower slice. (a) n� 6. (b) n� 8. (c) n� 11.
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numbers, and it almost tends to decrease for the middle slice
of Figure 10 with a large liver area. In this study, only the
parameters Φ, δ, and c are used to calculate the threshold
value of analytic solution, so the segmentation speed is quite
fast, and the effect of segmentation time with different
cluster numbers can be ignored.

4. Segmentation Experimental Results

/e JSBMM-TDH was applied to segment four randomly
obtained abdominal CT image sequences from different
image databases [47,48], and the segmentation thresholds
and results of JSBMM-TDH are compared with that of
GMM, as shown in Figures 12∼14, which are the upper,
middle, and lower slices of the four different CT image
sequences, respectively. In these figures, the first row shows
the original image from four different CT image sequences,
the second row gives the threshold segmentation results of
GMM, and the third row is the binary images obtained
according to the segmentation results of GMM. /e fourth
row shows the binary images obtained depending on the
segmentation results of JSBMM-TDH. /e fifth row is the
segmentation results of GMM, and the sixth row gives the
results of JSBMM-TDH. /e seventh row and the last row
provide the left and right segmentation thresholds of
JSBMM-TDH, respectively.

Table 4 gives the comparison of segmentation thresholds
and quantitative evaluation for Figures 12–14, respectively.
Here, it needs to be stated that the segmentation results of
GMM are fitted with different cluster numbers, which is the

best one chosen from the segmentation results with n� 6∼15
for each slice for the sequences S2, S3, S4, and S5, respec-
tively, while all segmentation results of JSBMM-TDH are
fitted with the same cluster number n� 13. However, most
segmentation results of JSBMM-TDH are better than those of
GMM, and the other few results are similar to each other. On
the whole, it is illustrated that not only the segmentation
results of JSBMM-TDH are better than those of GMM, but
also the cluster numbers can be fixed at n� 13 without
worrying about overfitting. /is is good for the imple-
mentation of automatic segmentation of liver CT images.

/e Jaccard index and Dice coefficient are common
indexes for quantitative evaluation of image segmentation.
/e Jaccard index is a statistic used for comparing the
similarity of sample sets. /e Dice coefficient is another
similarity measure index. /e Jaccard index and Dice co-
efficient are calculated to quantitatively evaluate the seg-
mentation results of GMM and JSBMM-TDH, respectively.
/e values of the Jaccard index and Dice coefficient are given
in Table 4, and the values in the column of difference mean
the difference value between JSBMM-TDH and GMM, that
is, the Jaccard index (or Dice coefficient) of JSBMM-TDH
minus that of GMM. /e last row gives the average value.
/e maximum value of difference column in the Jaccard
index is 0.1987, and the average value of this column is
0.0691./emaximum value of difference column in the Dice
coefficient is 0.1863, and the average value of this column is
0.048. By comprehensive quantitative comparison, it is
found that the segmentation results of JSBMM-TDH are
better than that of GMM.

Table 2: Segmentation thresholds of S1 with different segmentation methods.

n
/e upper slice /e middle slice /e lower slice

JSBMM
GMM (Figure 8)

JSBMM
GMM (Figure 8)

JSBMM GMM
(Figure 8)TDH (Figure 9) TWH TDH (Figure 10) TWH TDH (Figure 11) TWH

6 143∼194 157∼194 153∼201 166∼200 167∼195 168∼196 149∼189 160∼194 158∼204
7 147∼194 156∼198 157∼201 162∼199 171∼190 168∼195 148∼195 161∼193 162∼194
8 159∼194 164∼193 153∼202 162∼198 168∼195 165∼197 151∼195 165∼192 157∼196
9 160∼194 176∼192 175∼193 162∼196 168∼196 169∼197 153∼196 170∼190 175∼188
10 160∼194 176∼192 154∼201 161∼195 173∼190 172∼190 156∼196 171∼187 158∼196
11 161∼194 175∼192 173∼195 162∼194 170∼187 169∼193 156∼190 168∼189 168∼191
12 163∼193 175∼193 174∼194 162∼194 171∼188 168∼194 157∼189 170∼189 169∼191
13 164∼194 176∼193 177∼193 161∼193 171∼189 172∼184 157∼188 171∼189 168∼189
14 164∼194 177∼192 173∼194 161∼193 171∼185 169∼190 158∼188 169∼186 166∼191
15 164∼194 172∼185 173∼194 162∼193 171∼186 168∼193 158∼188 170∼188 168∼191
It is obvious that the segmentation thresholds almost tend to be stable when n is bigger than 12, which is shown as the bold values shown in TDH columns.

Table 3: Segmentation calculation time for the JSBMM with TDH for the upper, middle, and lower slices when n� 6∼15, respectively (time
unit is second).

n 6 7 8 9 10 11 12 13 14 15
Upper (Figure 9) 2.62 11.7 5.71 3.05 3.30 5.60 3.01 4.89 5.15 1.99
Middle (Figure 10) 5.09 6.26 5.51 4.58 4.97 4.46 4.03 3.64 3.94 3.64
Lower (Figure 11) 2.41 7.57 4.38 2.59 3.09 2.95 2.56 4.10 5.41 3.47
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Figure 12: Binary images, segmentation thresholds, and results of JSBMM-TDH and GMM for the upper slice.
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Figure 13: Binary images, segmentation thresholds, and results of JSBMM-TDH and GMM for the middle slice.
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Figure 14: Binary images, segmentation thresholds, and results of JSBMM-TDH and GMM for the lower slice.
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/e website addresses of the data sets S1, S2, S3, S4, and
S5 are provided in Appendix B.

5. Conclusions

/e JSBMM-TDH with flexibly skewed characteristics pro-
posed in this study is suitable for fitting the skewness dis-
tribution of the gray-level histogram of liver CT images. /e
parameter optimization algorithm employing EM and the
implementation process of the segmentation algorithm has
been given in detail. /e effects of cluster number on seg-
mentation threshold were discussed and compared for
GMM, JSBMM-TWH, and JSBMM-TDH, respectively. It is
shown that the JSBMM-TDH threshold will tend to be stable
at cluster number 13, while the threshold of GMM and the
threshold of JSBMM-TWH are similar and sensitive to
different cluster numbers. /e proposed JSBMM-TDH with
cluster number 13 is applied to segment four random CT
image sequences, and the segmentation results are compared

with those of GMM. Analyzing the segmentation results and
quantitative evaluations, it is further illustrated that JSBMM-
TDH does not have the overfitting phenomenon with the
increase in cluster number, which verifies that JSBMM-TDH
has preferable segmentation results and better robustness
than GMM. JSBMM-TDH makes it possible to realize the
automatic segmentation of live CT image due to the ro-
bustness with the fixed cluster number. /e JSBMM-TDH
can be used not only for liver CT image segmentation, but
also for other CT image segmentation as well.

Appendix

A

M-step updates equations (6)∼(8) for solving the JSBMM
parameters presented in Section 2.2.2, which are derived by
maximizing the complete data log-likelihood Q with respect
to each model parameter as follows:

Table 4: Comparison of segmentation thresholds and quantitative evaluation for Figures 12–14.

Liver slice position Sequence

Segmentation thresholds Quantitative evaluation

GMM JSBMM-
TDH(n� 13)

Jaccard index Dice’s coefficient

GMM JSBMM-
TDH Difference GMM JSBMM-

TDH Difference

Upper slice
(Figure 12)

S2 126∼150
(n� 12) 126∼146 0.9063 0.8854 − 0.0209 0.9509 0.9392 − 0.0117

S3 152∼169
(n� 12) 146∼171 0.8793 0.9483 0.069 0.9358 0.9735 0.0377

S4 127∼143
(n� 12) 122∼152 0.5955 0.7608 0.1653 0.7465 0.8641 0.1176

S5 196∼226
(n� 12) 181∼212 0.5818 0.7805 0.1987 0.7356 0.8767 0.1411

Middle slice
(Figure 13)

S2 123∼154
(n� 12) 117∼144 0.9173 0.9298 0.0125 0.9569 0.9636 0.0067

S3 152∼173
(n� 13) 149∼177 0.9549 0.948 − 0.0069 0.9769 0.9733 − 0.0036

S4 130∼145
(n� 12) 108∼151 0.6523 0.9527 0.3004 0.7895 0.9758 0.1863

S5 188∼221
(n� 11) 172∼213 0.9744 0.9744 0.0 0.9501 0.9501 0.0

Lower slice
(Figure 14)

S2 125∼151
(n� 12) 125∼140 0.8852 0.8794 − 0.0058 0.9391 0.9358 − 0.0033

S3 158∼170
(n� 14) 149∼175 0.8234 0.904 0.0806 0.9031 0.9496 0.0465

S4 100∼126
(n� 13) 113∼153 0.8715 0.8777 0.0062 0.9314 0.9349 0.0035

S5 192∼223
(n� 11) 169∼212 0.9422 0.9719 0.0297 0.8907 0.9454 0.0547

Average value 0.832 0.9011 0.0691 0.8922 0.9402 0.048
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Φk is solved by applying the method of Lagrange
multipliers as follows:
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B

/e data sets S1, S2, S3, S4, and S5 are from the following
website address, respectively:

(1) Data sets S2 and S4 are from the following website:
https://wiki.cancerimagingarchive.net/download/
attachments/6885436/doiJNLP-TCGA-LIHC-01-30-
2017.tcia?version�1&modificationDate�153478697
4574&api�v2.

(2) Data sets S1, S3, and S5 are from the following
website:
https://zenodo.org/record/3431873/files/
CHAOS_Train_Sets.zip?download�1.

Data Availability

/e DICOM data used to support the findings of this study
have been deposited in the CHAOS repository (https://doi.
org/10.5281/zenodo.3362844) and FAIRsharing repository
(https://doi.org/10.25504/FAIRsharing.jrfd8y).
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