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Abstract: The chemical content, mechanical capability, and dimensional stability of bamboo fibers
(BFs) are all directly related to the hygroscopic behavior, which is crucial for industrial applications. To
support the utilization of BFs, the structural and chemical composition of BFs with different opening
times after mechanical rolling were investigated in this study, and the Guggenheim–Anderson–de
Boer (GAB) model was selected to predict their moisture-adsorption properties. The results showed
that the length and diameter of the fibers gradually decreased with the increase in the number of
openings, and the fibers gradually separated from bundles into single fibers. It was also observed
that the treated BFs exhibited different equilibrium moisture contents (EMCs). BFs with a smaller
number of openings had a higher hemicellulose content and more exposed parenchyma cells on the
fibers, which increased the number of water adsorption sites. As the number of openings increased,
the parenchyma cells on the fibers decreased, and the lignin content increased, which reduced the
number of fiber moisture-adsorption sites and decreased the EMC of the fibers.

Keywords: bamboo fiber; mechanical rolling; structural composition; chemical compositions; pyrolysis
performance; moisture-adsorption properties

1. Introduction

Bamboo is composed of a two-phase structure, namely, vascular bundles and parenchyma
cells [1]. Bamboo mechanics are mostly governed by bamboo fibers (BFs), which are
abundant in vascular bundles. Using physical, chemical, or biological processes to treat
the bamboo to remove lignin, pectin, polysaccharides, and other components, the BF
is separated from the matrix to yield natural BF. These methods can retain the original
microstructure of the bamboo and have the advantages of high specific strength and specific
modulus. As such, it can be used in textile materials and fiber-reinforced composites [2–5].

Presently, the main processing methods of BFs can be broadly classified into physical–
mechanical methods and combined physical–biochemical methods. The former obtains
coarse BFs by separation, while the latter uses the method of separating fibers from the
gum to yield refined BFs [6,7]. Although the fibers obtained by the combined physical–
biochemical method have better fineness and softness, this method has a complex treatment
process and a high cost. In contrast, natural BFs prepared by physical–mechanical methods
are environmentally friendly, efficient, and can be produced industrially, which has become
a hot research topic in recent years [8]. The mechanical combing method is the most
commonly used method at present, which combs the rolled or milled bamboo material into
bundled fibers of uniform size. With the increase in fiber combing time, the monofilament
fiber size gradually becomes smaller, and the size variability gradually decreases [9,10]. The
BF extracted near the outer layer of bamboo is stiff, large, and yellow, while the BF extracted
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near the inner layer of bamboo is soft, small, and white [11]. This method can effectively
control the fiber size variability, but the low production efficiency destroys the fracture
strength of the fibers, which is a difficult problem to solve during the production process.
By contrast, the advantage of mechanical rolling and fiber opening is the high production
efficiency. In this method, the bamboo is first divided into portions, then laminated several
times to weaken the bonding properties between the fibers, which promotes the separation
of the fibers from the matrix. Then, the intertwined fiber masses are torn apart and
broken loose by a fiber-opening machine [12,13]. Although theoretical studies are still rare,
mechanical rolling and fiber-opening technology has a broad application prospect as one of
the key technologies for continuous BF preparation [14].

BF, as natural plant material, is highly hygroscopic, and most of its strength and
modulus are influenced by the moisture content [15,16]. The main obstacle to the further
development of BF in composites is that its hydrophilic nature adversely affects adhesion
to the hydrophobic matrix [17]. To reveal the mechanism of moisture absorption, several
mathematical models have been developed to describe the hygroscopic isotherms [18,19].
Based on the hygroscopic behavior of bamboo, the Guggenheim–Anderson–de Boer (GAB)
model, which is suitable for materials with large variations in the relative humidity range,
was selected to analyze the results obtained in this work [20]. Currently, the investigations
into the water vapor sorption behavior of BFs are very limited. Therefore, it is necessary to
investigate the relationship between BF and moisture-adsorption properties to support and
improve the processing and manufacturing of bamboo products.

In this study, BFs of different sizes were processed with the rolling and opening
method, and we examined the characterization of BFs after rolling and opening by envi-
ronmental scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and
dynamic vapor sorption (DVS). An understanding of the structural composition and
moisture-adsorption properties of BFs can be used to model and optimize the performance
of BFs in the subsequent production process.

2. Materials and Methods
2.1. Materials

Two-to-three-year bamboo species (Bambusa emeiensis L.C. Chia & H.L. Fung) were
harvested in Chengdu, Sichuan Province, China. They are widely distributed in Sichuan
Province in China and has the potential for mass acquisition. These bamboos had a diameter
at breast height of 60–80 mm and a wall thickness of 4–7 mm.

The bamboo material was first cut off and de-jointed into bamboo tubes, then cut into
bamboo slices about 10–20 cm long and 2 cm wide. The outer and inner skins of bamboo
were reserved. The bamboo slices were processed into soft and loose bamboo fiber bundles
by the rolling machine. Bamboo fiber bundles were separated into different forms of fibers
after different times of processing by the fiber-opening machine (Figure 1). The whole
process took about 18 h. BFs having undergone from one opening step to six opening
steps were successively produced according to the number of processing times, with BF-1
representing BFs with one opening process etc., to obtain BFs as follows: BF-1, BF-2, BF-3,
BF-4, BF-5, and BF-6 (Figure 2).

2.2. Material Chemical Composition

The moisture content, benzyl alcohol extracts, alkali insoluble hemicellulose, and acid
insoluble lignin of various materials were measured according to GB 5889-86 [21], and the
cellulose content was calculated. Raw bamboo not treated by mechanical rolling and fiber
opening was characterized as a control.

2.3. Microscopy Observation

The length and diameter of BFs with different opening times were measured using
a stereoscopic microscope (Camera Model-Li165; Lumenera, Ottawa, ON, Canada), and
thirty random samples from each category were selected. The microstructure of the samples
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was observed using an environmental scanning electron microscope (FEG-ESEM-XL30;
FEI Company, Hillsboro, OR, USA).

Materials 2022, 15, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Process for preparing mechanically rolled bamboo fibers. 

 
Figure 2. Macroscopic morphology of bamboo fibers with different opening times. 

2.2. Material Chemical Composition 
The moisture content, benzyl alcohol extracts, alkali insoluble hemicellulose, and 

acid insoluble lignin of various materials were measured according to GB 5889-86 [21], 
and the cellulose content was calculated. Raw bamboo not treated by mechanical rolling 
and fiber opening was characterized as a control. 

  

Figure 1. Process for preparing mechanically rolled bamboo fibers.

Materials 2022, 15, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Process for preparing mechanically rolled bamboo fibers. 

 
Figure 2. Macroscopic morphology of bamboo fibers with different opening times. 

2.2. Material Chemical Composition 
The moisture content, benzyl alcohol extracts, alkali insoluble hemicellulose, and 

acid insoluble lignin of various materials were measured according to GB 5889-86 [21], 
and the cellulose content was calculated. Raw bamboo not treated by mechanical rolling 
and fiber opening was characterized as a control. 

  

Figure 2. Macroscopic morphology of bamboo fibers with different opening times.

2.4. Pyrolysis Performance

A thermogravimetric analyzer (TA-500; TA Instruments, New Castle, DE, USA) was
used to analyze the pyrolytic properties of the treated and untreated specimens. The
specimens were air-dried before the test, and about 10 mg of the specimens was weighed
during the test. The specimens were placed in the sample tray, and the heating rate was set
to 20 ◦C/min. The temperature band was from 30 ◦C to 850 ◦C, and the data from 30 ◦C to
800 ◦C were taken for analysis. The medium atmosphere was high-purity nitrogen, and the
airflow rate was 40 mL/min.
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2.5. Moisture-Adsorption Properties

The moisture-adsorption isotherms of treated and untreated materials were measured
using a DVS Resolution dynamic moisture-adsorption instrument (Surface Measurement
Systems Ltd., London, UK) in an atmosphere of high-purity nitrogen; then, we analyzed
the data curves to determine their moisture-adsorption characteristics. The instrument
consisted of a microbalance with two platinum sample crucibles and a humidification
system in a temperature-controlled chamber. One of the crucibles was used as a reference,
and the other crucible contained the sample to be tested and analyzed. Experimental
temperature, 25 ± 0.02 ◦C. Instrument parameters: balance accuracy, 0.1 µg; target humidity
accuracy, ±0.1%. As the DVS technique has been reported to yield highly reproducible
data, in this study, only one measurement was reported for each specimen [20,22].

2.5.1. Material Moisture-Adsorption Isotherm Test

Specific test process: Keep the temperature constant during the test; control each
sample with a mass of 30–50 mg; place it in the weighing bottle; bake it until it is completely
dry. Write the instrument test method (set the step mass change rate and relative humidity
gradient). In this study, set the step mass change rate < 0.001%/min and relative humidity
0–95%; the humidity gradient is 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 and 95%. Conduct
three repeated experiments.

Instrument loading test method: add the dried sample; read the mass of the sample;
run the test method; automatically collect data every 0.01 min during the test. Record
the running time, relative humidity and sample mass throughout the isotherm run. The
equilibration time is defined as the time required for the sample to reach EMC at a given
relative humidity, and this datum is available after the DVS analysis [23].

2.5.2. Model Analysis of Moisture-Adsorption Characteristics

The GAB equation can be expressed as shown in Equation (1) to determine the co-
efficient of determination (R2) and the sum of squares of residuals (RSS) of the fitting
model [24,25]. When the R2 value is higher and close to 1, and the RSS value is smaller and
close to 0, the model is judged to be a better fit.

We = (W0 C K aw)/[(1 − K aw) (1 − K aw + K C aw)] (1)

where We is the equilibrium moisture content (EMC), W0 is the monolayer moisture content,
aw is the water activity, and C and K are the model constants that are related to monolayer
and multilayer properties.

3. Results and Discussion
3.1. Structural Analysis

As shown in Figure 3, the length and diameter of BFs gradually decreased as the
opening times increased. Bamboo mainly contained vascular bundles and parenchyma
cells, whereas vascular bundles contained fibers, parenchyma cells, and ductal tissues [26].
As the opening times increased, the parenchyma cells on the fiber surface detached, and
the fibers gradually separated from the bundles into single fibers (Figure 4). In the vascular
bundles of BF-1, numerous single fibers were aggregated, and the fibers were not fully
separated after the opening process. The macroscopic morphology of some of the fibers
was close to cylindrical, with ductal tissues inside and a substantial number of parenchyma
cells on the surface layer. Because BF-2 and BF-3 were opened several times, the surface
layer of parenchyma cells was thinner. The size of the bundles shrank as the gathered
fibers gradually separated, and the macroscopic morphology of the fibers was similar to a
semi-separated cylindrical shape. BF-4 and BF-5 were no longer covered in parenchyma
cells, with only a small number of cells remaining. The fiber bundle was basically made of
the bamboo’s own fibers gathered together. There was no ductal tissue. The fiber bundle
surface was comprised of the parallel arrangement of fibers caused by the straight groove.
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The size of BF-6 was the smallest and close to the size of bamboo single fibers. There
were no parenchyma cells on the fiber surface, and each fiber bundle consisted of several
single BFs gathered together in parallel. The macroscopic shape was flat, but the surface
showed grooves.
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3.2. Chemical Compositions Analysis

With the increase in the number of opening processes, the parenchyma cells between
BFs were separated and detached by lamination, and more single BFs were retained and
tested for their chemical composition. The results are shown in Table 1.

Table 1. Chemical composition of bamboo fibers with different opening times.

Index Moisture
Content (%)

Benzene–Ethanol
Extractives (%) Hemicellulose (%) Lignin (%) Cellulose (%) Ash (%)

BF-1 7.21 3.95 18.80 16.01 57.57 0.52
BF-2 9.76 3.73 17.13 16.62 58.83 0.99
BF-3 7.59 3.51 17.47 16.41 58.89 1.05
BF-4 8.16 2.97 16.81 17.32 59.43 0.98
BF-5 7.40 2.78 15.95 16.65 61.74 0.51
BF-6 6.73 2.51 15.83 17.30 61.81 1.01

Bamboo 8.95 8.99 14.81 13.99 57.47 1.51

The content of the benzene–ethanol extractive significantly decreased, and the content
of other components increased after the rolling and opening treatment, while the contents
of the benzene–ethanol extractive and hemicellulose decreased, and the content of cellulose
increased with the increase in the number of opening processes of BFs. This was because
there were large differences in the chemical composition of bamboo’s vascular bundles and
parenchyma cells, and the change in parenchyma-cell content was related to the change in
chemical composition. A previous study has shown that the contents of the extractive and
hemicellulose in the parenchyma cells of bamboo were significantly higher than those in
vascular bundles, while the content of cellulose in parenchyma cells was significantly lower
than that in vascular bundles, and the contents of the other components in parenchyma
cells and vascular bundles were similar [27]. In this study, BFs were separated by breaking
up the fibers as the number of openings increased. The parenchyma cells on the fibers
detached, and the proportion of vascular bundles increased, resulting in changes in the
chemical composition of BFs.

The major chemical compositions of bamboo ash are K2O (34.23%), SiO2 (24.32%),
SO3 (14.05%), and MgO (6.69%) [28]. Potassium is mainly present in the plant in ionic
form and is easily lost due to its high activity. Silica is mainly found in the epidermis,
vascular bundles, and vascular sheaths [29]. The destruction of the vascular bundles during
mechanical rolling leads to a decrease in silica content. As a result, the ash content of
roll-treated BFs is lower than that of untreated bamboo.

The pyrolysis performance of BFs was tested (Figure 5). The comparative analysis of
the TG and DTG curves showed that the pyrolysis of the different BFs all went through
three stages, namely, water evaporation, rapid pyrolysis, and slow pyrolysis. The starting
pyrolysis temperature band and the maximum rate of the pyrolysis temperature band of
different BFs were basically the same at 210 ◦C–220 ◦C and 340 ◦C–360 ◦C, respectively.
With the increase in the opening times, the amount of residual char from BF pyrolysis
showed a decreasing trend.

3.3. Moisture-Adsorption Characteristics Analysis
3.3.1. Variations in Water Content and Equilibrium Time

The dynamic moisture-adsorption method was used to obtain the moisture-adsorption
kinetic curves of the different fiber sizes at 25 ◦C (Figure 6). Water is the main factor affecting
the moisture-adsorption kinetics of materials. The EMC increased with the increase in the
water content, and the moisture content of the specimen increased rapidly, then slowly,
until equilibrium at each relative humidity. The smaller the size of the BFs, the longer it
took for the specimen to reach 0% moisture. The time required for the bamboo material to
reach the EMC was lower than that for the different-sized fibers when the relative moisture
content was <40%. This may be related to the structure of the material. The larger the
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specific surface area of the fiber, the more moisture-adsorption sites, the easier it is to adsorb
moisture, and the greater the magnitude of the mass change. However, when the relative
moisture content was >40%, it took longer for the bamboo material to reach the EMC.
This may be because water clusters are more likely to form in high humidity, especially
when the relative humidity is >60%. The structure of BF is looser after mechanical rolling
treatment, which is more favorable to the formation of water layers [16]. The untreated
bamboo structure, on the other hand, is much tighter; therefore, it takes a long time for
water to infiltrate under high-humidity conditions.
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As shown in Table 2, the EMCs of the adsorption and the adsorption time at each
relative humidity in the curve were analyzed. When they reached equilibrium, the moisture
content and the time of the different sizes of BFs were different. At 90% relative humidity,
the EMC of all fibers was higher than that of bamboo, which had the lowest EMC at 18.76%.
However, it took the longest time to reach equilibrium.
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Table 2. Moisture-adsorption equilibrium parameters of bamboo fibers with different opening times.

Index
Relative Humidity (%)

10 20 30 40 50 60 70 80 90 95

Bamboo
Time (min) 66.79 101.66 149.96 213.3 286.48 375.56 478.34 599.16 762.78 951.84
EMC (%) 0.39 0.99 1.79 2.86 4.12 5.78 7.88 10.64 14.93 18.76

BF-1
Time (min) 68.42 120.01 181.49 246.53 310.32 375.01 445.87 532.61 675.77 855.77
EMC (%) 0.92 2.04 3.37 4.79 6.29 8.07 10.25 13.18 18.34 23.53

BF-2
Time (min) 68.49 111.1 162.85 220.91 279.19 337.72 398.11 472.41 592.5 772.5
EMC (%) 0.96 1.96 3.15 4.51 6.01 7.78 9.91 12.81 17.95 23.67

BF-3
Time (min) 88.63 125.64 165.29 210.14 260.1 314.58 375.71 451.76 583.04 763.05
EMC (%) 1.32 2.33 3.35 4.49 5.81 7.44 9.43 12.02 16.65 21.59

BF-4
Time (min) 83.41 119.53 159.76 206.95 259.05 315.32 378.87 457.94 591.84 771.84
EMC (%) 1.15 2.08 3.08 4.25 5.59 7.20 9.17 11.78 16.44 21.28

BF-5
Time (min) 93.55 129.63 165.67 202.44 241.93 289.54 349.6 424.13 547.18 727.19
EMC (%) 1.47 2.57 3.61 4.65 5.78 7.27 9.31 12.07 16.79 21.96

BF-6
Time (min) 94.4 127.31 162.28 202.58 250.28 307.1 371.39 448.76 573.86 748.75
EMC (%) 1.44 2.43 3.42 4.53 5.85 7.59 9.70 12.38 16.86 21.37

3.3.2. Changes in Hygroscopic-Desorption Process

Further analysis of the moisture absorption–desorption process of rolled and opened
BFs is shown in Figure 7.
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As shown in Figure 6a, the adsorption curves of bamboo and BFs of different sizes
showed a typical S-shaped curve with the characteristics of multi-molecular layer adsorp-
tion, and the EMCs of bamboo material and BFs at each stage gradually increased as the
relative humidity increased. The EMCs of BF-1 and BF-2 were slightly higher than those of
the other BFs. As shown in Figure 6b, hygroscopic hysteresis existed in different materials
during the hygroscopic-desorption process, which was mainly related to the rearrangement
of molecules in the cell wall of the material and the reduction in the adsorption rate [30].
Hygroscopic hysteresis was the most significant in bamboo, and the difference between the
adsorption and desorption EMCs of bamboo at 60% relative humidity was the largest.

This was because the fibers in bamboo were closely arranged, and when BFs were
processed by opening, the parenchyma cell cavitied in the closed-pore structure of BFs
were exposed, which increased the number of moisture-adsorption sites. Any variation
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in volume fractions of parenchyma cells can affect the overall hygroscopicity of BFs [31].
BFs with fewer opening times had a higher hemicellulose content and more exposed
parenchyma cells cavitied in the fibers. With the increase in the number of openings, the
parenchyma cells on the fiber decreased, and the lignin content increased, which reduced
the fiber moisture absorption sites and caused a slight decrease in the EMC of the fiber.

3.3.3. Change in EMC Increment

Figure 8 gives the changes in the EMC increment of bamboo material and BFs during
the moisture uptake–desorption process. As shown in Figure 8a, the change in the growth
rate of the EMCs of bamboo and BFs during the hygroscopic process was smaller when the
relative humidity was between 0% and 50%. This was because, at low relative humidity, the
change in the EMCs of the materials mainly occurred on the surface of the hydroxyl water
adsorption sites, where the water was arranged in a monolayer. The value of the EMC
increment of bamboo timber was lower than that of BF at low relative humidity, indicating
that the specific surface area of the bamboo material was smaller. The EMC growth rate
of the material increased significantly when the relative humidity was >60% and was the
greatest at a relative humidity of 90%. This was because the cell-wall matrix of the BFs
swelled more in high relative humidity settings, providing more water adsorption sites.
However, because the cell wall has a complicated structure and cannot swell indefinitely,
the water content increment decreased at a relative humidity of 95% [24].
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As shown in Figure 8b, during desorption, as the relative humidity decreased, the
water content of the bamboo material and BFs changed with the trend of the water content
changes at both ends. The incremental curve of the EMC showed a U-shaped change, and
the loss rate of the EMC decreased when the relative humidity decreased from 90% to
60%. This was mainly due to multilayer moisture adsorption on the surface of the material.
The moisture-adsorption force was relatively weak, and when the relative humidity was
reduced, more moisture escaped. The change in the EMC loss rate was small during the
decrease in the relative humidity from 60% to 20%, and the moisture gradually escaped from
the surface of the material. The EMC loss rate was larger in the final stage of desorption
when the relative humidity dropped from 20% to 0%. During the whole desorption process,
the rate of change of EMC of the bamboo material was the smallest.

3.3.4. Model Fitting and Evaluation of EMC

The EMC of BFs at different relative humidity was fitted by Origin 9.1 software. The
GAB-related parameters were obtained, and the evaluation indexes of the analytical fitting
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effect are shown in Table 3. The coefficient of determination R2 of the GAB model during
the absorption of the different materials was >0.99, and the coefficient of determination
R2 of the GAB model during desorption was >0.95. The fitting evaluation indexes of
the GAB model all achieved the desired effect [32]. The saturated moisture contents of
bamboo, BF-1, BF-2, BF-3, BF-4, BF-5, and BF-6 materials were 23.14%, 29.79%, 30.73%,
27.76%, 27.46%, 29.06%, and 27.01%, respectively; BF-1 and BF-2 had the strongest moisture
absorption ability.

Table 3. Parameters of the GAB model for bamboo fibers with different opening times.

Index W0 C K RSS

Absorption

Bamboo 6.371 0.967 0.785 0.035
BF-1 5.103 3.001 0.839 0.099
BF-2 4.662 3.122 0.856 0.128
BF-3 4.245 4.187 0.853 0.065
BF-4 4.264 3.645 0.852 0.059
BF-5 3.964 5.733 0.867 0.042
BF-6 4.579 3.989 0.838 0.049

Desorption

Bamboo 5.129 −2.3 × 1045 0.778 1.694
BF-1 5.406 −2.5 × 1044 0.822 1.777
BF-2 5.248 3.86 × 1044 0.828 1.720
BF-3 4.961 −2.1 × 1045 0.822 1.606
BF-4 4.928 2.38 × 1045 0.821 1.700
BF-5 4.967 −1.6 × 1044 0.825 1.493
BF-6 5.309 4.51 × 1044 0.804 1.748

4. Conclusions

In this work, the effects of morphology, chemical composition, and pyrolysis perfor-
mance were analyzed. The hygroscopic behavior of BFs of different sizes after mechanical
rolling and fiber opening was investigated via water-vapor sorption isotherms fitted by the
GAB model. The conclusions are as follows:

(1) The morphology and structure of BFs were largely affected by the opening times,
with a significant separation of parenchymal cells when more than four treatments
were performed. After six treatments, the surface of fibers was essentially free of
parenchymal cells.

(2) The size of the BFs affected the moisture-adsorption properties of the material. With
the increase in the fiber-opening times, the adsorption strength of water molecules on
the fiber material decreased. This led to the observed differences in the hygroscopic
behavior and hysteresis of the different samples.

(3) As the relative humidity increased, the cell wall matrix of BF expanded to provide
more moisture-adsorption sites, so the EMC gradually became larger. However, the
increment in moisture content decreased when the relative humidity exceeded 95%
due to the cell wall being unable to expand indefinitely and the limited number of
adsorption sites.

This research study provides insights into the hygroscopic mechanism of BFs, and
the information generated in this study can provide useful information in optimizing the
manufacturing process and modeling the hygroscopic responses of BFs of different sizes.
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