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A B S T R A C T   

Recent findings have suggested that solute carrier (SLC) transporters play an important role in 
tumor development and progression, and alterations in the expression of individual SLC genes are 
critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the 
global influence of the co-expression pattern of SLC transporters on the clinical stratification and 
characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we 
identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC 
transporters by consensus clustering analysis. These subtypes, which were characterized by 
distinct TME and biological characteristics, were successfully employed for prognostic and 
chemotherapy response prediction in colon cancer patients, as well as demonstrated associations 
with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to 
quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and 
drug response predictor in several independent colon cancer cohorts. Patients with a high SLC 
score possessed distinct characteristics of copy number variation, genomic mutations, DNA 
methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell 
infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and 
immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response 
Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising 
chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co- 
expression patterns of SLC transporters aided the disease classification, and the SLC score 
proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in 
patients with colon cancer.   
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1. Introduction 

Solute carrier (SLC) transporters are the second largest superfamily of membrane proteins, comprising of 456 members that are 
grouped into 52 subfamilies according to their genetic sequence resemblance [1,2]. Physiologically, as gatekeepers of the cellular 
context, SLC family proteins mainly function to mediate the transport of substances along a concentration gradient, establishing their 
pivotal role in maintaining cellular homeostasis [2]. In tumor cells, SLC transporters are involved in modulation of diverse malignant 
behaviors, such as tumor invasion, metastasis, and drug resistance, which can be dependent on or independent of their primary 
function in influx/efflux [3–5]. Their dramatic expression alteration induced by the dysregulation of oncogenes and tumor suppressors 
is considered the premise of their tumor promoting or suppressing function [4]. Along with their effect on tumor cells, SLC transporters 
are considered a bridge between tumor cells and the tumor microenvironment (TME) [6]. Individual SLC transporters expressed on 
diverse immune cell types have been discovered to be able to control the differentiation, function, and destiny of these cells through 
modulation of a wide range of metabolic pathways [7]. Thus, SLC transporters may be considered as novel targets for modulating the 
immune response in the TME. However, although different SLC transporters have been reported to accomplish many complex bio-
logical functions by comprising a coordinated network [4], most studies have focused their attention on only one or two SLC trans-
porters because of technical limitations. Therefore, it is imperative to explore molecular subtypes of tumours based on the expression 
profiles of SLC transporters from a broader perspective. 

Colon cancer is the second leading cause of cancer-related mortality worldwide [8]. Although previous efforts have attempted to 
identify several predictive molecular biomarkers [9], the clinical stratification of patients with non-metastatic colon cancer who 
undergo radical resection is still solely based on the pathological TNM stage, in which T represents the size of the tumor, N represents 
the involved lymph nodes, and M represents distant metastasis. Recent studies have suggested that ctDNA is advantageous for pre-
dicting the prognosis and guiding the performance of adjuvant chemotherapy [10–12]. However, because of the high detection cost of 
ctDNA, its introduction into daily practice is difficult. Therefore, further investigation is required to identify classifiers that are more 
efficacious and accessible for clinical use. 

To address these gaps in the research, we comprehensively evaluated the expression patterns of SLC family genes and identified a 
novel SLC gene expression-based molecular subtyping system. Moreover, a scoring scheme comprising 113 genes was established to 
quantify SLC gene co-expression patterns. 

2. Materials and methods 

2.1. Bulk transcriptomic data collection and processing 

Previously described methods were used to obtain publicly accessible bulk transcriptomic data and pertinent clinical details of non- 
metastatic colon cancer patients were retrieved from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, 
GSE17538, GSE33113, GSE37892, GSE38832, and GSE39582) and The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/, 
TCGA-COAD) databases [13,14]. The affy and simpleaffy packages were used to renormalize microarray data generated from the 
GPL570 platform, and the sva R package was used to merge different transcriptomic datasets. Regarding the processing of RNA 
sequencing data, the voom algorithm was used to convert count data into values similar to those from microarrays. Additionally, we 
obtained voom-transformed RNA sequencing data from the databases of Sun Yat-sen University Cancer Center (SYSUCC), comprising 
30 patients who were diagnosed with non-metastatic colon cancer, as detailed in prior research [13,14]. 

2.2. Single-cell RNA sequencing (scRNA-seq) data collection and processing 

The public scRNA-seq dataset GSE188711 was downloaded [15] and processed using the Seurat R package. We first removed 
unqualified cells/genes that fit the following criteria: gene count per cell <300, genes expressed in fewer than three cells, percentage of 
mitochondrial genes per cell >20, and percentage of ribosomal genes per cell >3. After normalizing the data by using the Log-
Normalize method, we subsequently utilized the FindVariableFeatures function incorporated in the Seurat package to obtain the top 
3000 most highly variable genes among the cells, which were used in the subsequent principal component analysis (PCA) to reduce 
data dimensions. Then, the PCA method was utilized to reduce the data dimension by setting the number of principal components as 10 
and the FindNeighbors and FindClusters functions were employed to obtain the nearest neighbors and major cell clusters, respectively. 
Cell clusters were visualized using the uniform manifold approximation and projection (UMAP) algorithm. All cluster assignments 
underwent manual verification to ensure the precise partitioning of cells. The InferCNV and CopyKAT packages were used to identify 
malignant epithelial cells. The malignant and non-malignant epithelial cells were defined by intersecting the prediction results ob-
tained by the inferCNV algorithm and the CopyKat algorithm. In particular, the prediction of malignant epithelial cells by inferCNV 
algorithm was achieved by simultaneously calculating “CNV score” and “CNV correlation” according to the method proposed by Lei 
Zhang et al. [16]. 

2.3. Identification of SLC gene subtypes by consensus clustering 

We employed unsupervised clustering analysis (K-means) to characterize the expression pattern of SLC family genes based on their 
transcriptional profiling. To determine the most appropriate cluster number and estimate the clustering stability among all categories, 
the R package ConsensusClusterPlus was employed with the following settings: maxK = 10, reps = 1000, pItem = 0.95, and pFeature 

R. Zhou et al.                                                                                                                                                                                                           

https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/


Heliyon 10 (2024) e22775

3

= 1. 

2.4. Generation of the SLC score 

The SLC score was established in two steps. First, the limma package was utilized for analyzing the differentially expressed genes 
(DEGs) between SLC-S2 and non-SLC-S2 subtypes in the GSE39582 cohort. The criterion used to determine DEGs was defined as the 
absolute "Log2FC" value greater than 1 and the adjusted P-value less than 0.01. We then used the Boruta algorithm incorporated in the 
Boruta package to reduce the dimensions of the DEGs that exhibited upregulation (gene cluster A) or downregulation (gene cluster B) 
in the SLC-S2 subtype. The Boruta algorithm was configured with the following parameters: doTrace = 2, maxRuns = 100, and ntree =
500, as previously described [14]. The final formula of the SLC score was: SLC score = (the average expression of the final determined 
gene cluster A) – (the average expression of the final determined gene cluster B). 

2.5. TME deconvolution and biological process analysis 

Tumor microenvironment deconvolution was achieved using the single-sample gene set enrichment analysis (ssGSEA) algorithm 
incorporated in the GSVA R package. A total of twenty-three gene sets including stromal cells, myeloid cells, and lymphocytes were 
collected from relevant literature [17,18]. The infiltration level of various cell types was determined by utilizing gene transcriptional 
profiles to calculate the enrichment score of the gene set in a sample output obtained from the ssGSEA analysis. Biological process 
analysis was performed by employing GSVA on a compilation of fifty hallmark biological pathways collected from the Molecular 
Signature Database (http://www.gsea-msigdb.org). 

2.6. Multi-omics analysis 

The multi-omics analysis conducted in this study contained copy number variation (CNV) analysis, somatic genetic mutation 
analysis, DNA methylation analysis, and proteomics analysis. For CNV analysis, the TCGAbiolinks package was employed to acquire 
the masked copy number segment data of patients. We performed GISTIC 2.0 analysis of the acquired CNV fragments by using 
GenePattern with the default settings. The TCGAbiolinks package was utilized to download the genetic mutation file, followed by the 
identification of significant cancer mutated genes (SMGs) using the MutSigCV algorithm (q < 0.05) [19]. Subsequently, we focused on 
the top 100 SMGs based on their total mutation frequency and conducted a chi-square test to examine the distribution of effective 
mutations among these SMGs across different groups. For DNA methylation analysis, we obtained level three DNA methylation 
(Methylation450k) data from the UCSC Xena database and performed data preprocessing employing the ChAMP package. DNA 
methylation values were assigned to each gene by calculating the median beta value of the probes located in the promoter region. 
Subsequently, by employing the Kruskal-Wallis test, the top 1000 genes exhibiting the highest variance in methylation value (β values) 
were chosen as potential candidates for investigating different methylation genes between distinct groups. In addition, we also 
examined the transcriptomic expression variability of the aforementioned candidate genes across different groups and explored the 
correlation between the transcriptomic expression level and methylation level of each gene. The Benjamini-Hochberg correction was 
utilized for the multiple testing of adjusted -value. Finally, we designated significantly varied methylation genes (SVMGs) according to 
the following standards: both the methylation value and the corresponding transcriptional expression value of SVMGs exhibited 
significant variation between different groups (adjusted p-value <0.05), and a significant negative correlation could be observed 
between the methylation value and the corresponding transcriptional expression value of each SVMG (adjusted p-value <0.05). 

2.7. Therapeutic response prediction 

Drug sensitivity was predicted by utilizing the Cancer Therapeutics Response Portal (CTRP) database [20] using the pRRophetic 
package. The quantification of drug sensitivity was accomplished by assessing the area under the dose-response curve (AUC), whereby 
lower AUC values were indicative of heightened sensitivity. In addition, we employed tumor immune dysfunction and exclusion (TIDE, 
http://tide.dfci.harvard.edu) [21] and SubMap algorithms to predict the immune checkpoint blockade (ICB) response of patients. The 
SubMap algorithm was implemented using the online module of the GenePattern website (https://cloud.genepattern.org/), and the 
transcriptomic data of the IMvigor210 cohort, which contains data regarding metastatic urothelial cancer patients receiving 
anti-PD-L1 therapy, was utilized for similarity comparison of transcriptional profiles. 

2.8. Statistical analysis 

The Student’s t-test was employed to assess disparities in normally distributed continuous variables between the two groups. When 
comparing differences between continuous variables that are not normally distributed, the Mann–Whitney U test was utilized instead. 
Chi-square and Fisher’s exact tests were used to estimate the statistical significance of the differences between categorical variables. 
The correlations between continuous variables that were normally distributed and those that were not normally distributed were 
examined using Pearson and Spearman correlation tests, respectively. Survival curves were determined using the Kaplan–Meier al-
gorithm and compared using the log-rank test. Hazard ratios for clinical variables were calculated through the execution of univariate 
and multivariate Cox regression analyses. All statistical analyses were conducted utilizing R software version 4.0.2 or SPSS version 
25.0 (IBM Corp., Armonk, N.Y., USA). Two-sided statistical tests were conducted to test for significance, and the level of significance 
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was set at P value less than 0.05. 

3. Results 

3.1. Overview of SLC family genes in colon cancer 

The workflow of this study is shown in Fig. S1. The first step was to filter the gene members of the SLC family included for molecular 
subtyping. Thus, we started by integrating the expression matrix of 356 SLC family genes collected from meta-GEO and TCGA-COAD 
cohorts, among which 114 SLC family genes with an average expression of less than 4.0 were eliminated. Moreover, to elucidate the 
distribution of SLCs in tumor cells and immune cells in the TME, we obtained the single-cell sequencing data of GSE188711, which 
resolved the difference between left- and right-sided colon cancer via single-cell sequencing. Based on UMAP clustering analysis, all 
cells were categorized into eight major cell types, including fibroblasts, monocytes and macrophages, T cells, B cells, plasma cells, 
endothelial cells, undefined immune cells, and epithelial cells (Fig. 1A). The gene markers for each cell type are shown in Fig. 1B. We 
then obtained the expression matrix of the above 242 SLC molecules of each cell type and eliminated 55 SLC molecules whose mean 
expression abundance was less than 0.05 in all cell types. Finally, a total of 187 SLC transporters remained and Table S1 summarizes 
the cell functions and main subcellular locations of these SLC family members. We further explored the correlation between the 

Fig. 1. The overview of the SLC family genes in colon cancer (A) UMAP plot of cells from colon cancer patients revealing eight clusters. Each cluster 
was shown in different colors. (B) Dot plots showing the average expression of known markers in indicated cell clusters. The dot size represents the 
percent of cells expressing the genes in each cluster. The expression intensity of markers is shown. (C) Boxplot showing the CNV score and CNV 
correlation in different cell clusters. Boxes represent 25–75 % of values, lines in boxes represent median values, whiskers represent 1.5 interquartile 
ranges, and black dots represent outliers. (D) Upset plot displaying the intersection of the upregulated (left) or downregulated (right) SLC genes in 
the tumor cells in comparison to other cell clusters. (E) Violin plots showing the expression of SLC family genes in tumor cells and immune cell 
clusters. (F) Forest plot displaying the unadjusted hazard ratios and 95 % confidence intervals of the five tumor cell-enriched SLC genes for relapse- 
free survial and overall survival in the meta-GEO cohort. (G) Boxplot showing the expression of five tumor cell-enriched SLC genes in fluorouracil 
responsive and non-responsive groups in the meta-GEO cohort and in the TCGA-COAD cohort. Boxes represent 25–75 % of values, lines in boxes 
represent median values, whiskers represent 1.5 interquartile ranges, and black dots represent outliers. SLC, solute carrier; CI, confidence interval; 
ADJC, adjuvant chemotherapy; RFS, recurrence-free survival; OS, overall survival; R, response; NR, nonresponse; and CNV, copy number variations. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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expression levels of these 187 SLC transporters in colon cancer tissues. Consistent with previous studies, SLC transporters also 
exhibited specific co-expression patterns (Fig. S2), suggesting that these molecules may also have a synergistic biological role in the 
progression of colon cancer. 

To explore the distribution of the above 187 SLC transporters in different cell types, we respectively defined cells with malignant 
and non-malignant phenotypes in the epithelial cell clusters (Fig. 1A) based on the inferCNV (Fig. 1C) and CopyKat algorithms 
(Fig. S3A). By comparing the expression differences of SLC family genes between malignant epithelial cells and other cell clusters, we 
identified several upregulated SLC genes in malignant cells (adj p value < 0.01). Among them, a total of five SLC genes, including 
SLC2A1, SLC6A8, SLC22A18, SLC35A3, and SLC44A4, were significantly upregulated in malignant epithelial cells and their expression 
was almost absent in all other non-malignant cell-types (Fig. 1D and E). Thus, we defined these genes as tumor cell-enriched SLC 
transporters. However, in terms of SLC genes that were enriched in non-tumor cells, only SLC2A3 was highly expressed in all non- 
tumor cell populations except plasma cells, and it was expressed only slightly in tumor cells (Fig. S3). We then used bulk tran-
scriptome data obtained from samples of the meta-GEO and TCGA-COAD cohorts to explore the potential correlation of expression 
levels of the above five tumor cell-enriched SLC transporters with patient prognosis and chemotherapy sensitivity. Results demon-
strated that the elevated expression of the above five SLC genes predicted a higher risk of recurrence, while SLC2A1 and SLC22A18 
showed statistical significance (Fig. 1F). However, as for overall survival, only the expression level of SLC2A1 was significantly 
correlated with survival time in both the adjuvant chemotherapy performed and unperformed subgroups (Fig. 1F). Finally, regarding 
chemotherapeutic sensitivity analysis (Fig. 1G), we discovered that, compared with the fluorouracil non-responsive group, the 
expression of the above tumor cell-specific SLC transporters, except for SLC2A1, tended to be downregulated in samples of the 
fluorouracil non-responsive group, among which SLC22A18 and SLC44A4 showed significant differences in the meta-GEO and TCGA- 
COAD cohorts. Information about these five tumor cell-enriched SLC transporters and their involvement in colon cancer based on a 
literature review is provided in Table S2. 

3.2. Identification of molecular subtypes mediated by the co-expression pattern of 

3.2.1. SLC family genes 
As SLC transporters were co-expressed in colon cancer tissue, and the expression of individual transporters was correlated with 

patient clinical outcomes, we speculated whether patients could be classified by the expression of these 187 SLC transporters. Thus, 
unsupervised clustering analysis based on the transcriptional profiling of 187 SLC transporters in the meta-GEO cohort was performed 
(Tables S3–4). As shown in Fig. 2A, five clusters achieved the best clustering efficacy, which were denoted as SLC-S1 to SLC-S5 in 

Fig. 2. Consensus clustering based on the expression of SLC family genes in colon cancer. (A) Consensus matrix (upper) and line chart (down) 
revealed that five clusters achieve the best clustering efficacy. (B) Heatmap showes the SLC gene subtypes in patients with colon cancer identified by 
the unsupervised clustering analysis of 187 SLCs in the integrated meta-GEO cohort. Cohort details are used as annotations. (C–D) Kaplan–Meier 
curves of relapse-free survival (C) and overall survival (D) according to SLC gene subtypes in the meta-GEO cohort. (E–F) Kaplan–Meier curves of 
overall survival according to SLC gene subtypes in the patient subgroup without (E) or with adjuvant chemotherapy (F) in the GSE39582 cohort. (G) 
Forest plots of benefits of adjuvant chemotherapy in different SLC gene subtypes in the GSE39582 cohorts. (H) Heatmap showing the fluorouracil 
response rates among five SLC gene subtypes. (I) Bar charts summarize the proportions of patients with fluorouracil-response signatures and those 
with nonresponse signatures within and across different SLC gene subtypes. SLC, solute carrier; RFS, relapse-free survival; OS, overall survival; CI, 
confidence interval; ADJC, adjuvant chemotherapy; R, response; and NR, nonresponse. 
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sequence (Fig. 2A and B). The co-expression pattern of SLC family genes was also categorized into four clusters defined as SLC-C1, SLC- 
C2, SLC-C3, and SLC-C4 (Table S1). As shown in the heatmap (Fig. 2B) and boxplot (Fig. S4A), SLC-S1 and SLC-S2 were characterized 
by enrichment of the SLC family members in SLC-C3 and SLC-C4 clusters, respectively, suggesting that the substrate transmembrane 
transport process mediated by SLC-C3 and SLC-C4 was highly activated in the corresponding patients. Moreover, the average 
expression of the SLC genes contained in SLC-C1 was significantly elevated in the SLC-S3 and SLC-S5 subtypes, while the SLC members 
in the SLC-C2 cluster were mainly distributed in the SLC-S3 and SLC-S4 subtypes. Subsequent survival analysis demonstrated that 
(Fig. 2C) the RFS (recurrence-free survival) between five SLC subtypes was significantly different. Specifically, patients with SLC-S2 
had the shortest RFS, whereas patients with SLC-S4 and SLC-S5 each had a better RFS than those with other SLC subtypes. As for overall 
survival (OS) (Fig. 2D–F), although we did not observe any statistical difference in OS between SLC subtypes (P = 0.082) in the entire 
cohort, the correlation between SLC subtypes and OS was significant when subgroup analysis was stratified by adjuvant chemotherapy 

Fig. 3. Tumor microenvironment and biological function characteristics of distinct SLC gene subtypes. (A–B) Heatmap (A) and boxplot (B) show the 
biological pathway activation status based on “hallmark gene sets” in the five SLC gene subtypes in the meta-GEO cohort. Cohort details and SLC 
gene subtypes are used as sample annotations of the heatmaps. Boxes represent 25–75 % of values, lines in boxes represent median values, whiskers 
represent 1.5 interquartile ranges, and black dots represent outliers. (C–D) Heatmap (C) and box plot (D) illustrate the results of tumor microen-
vironment landscape in the five SLC gene subtypes in the meta-GEO cohort. Cohort details and SLC gene subtypes are used as sample annotations of 
the heatmaps. Boxes represent 25–75 % of values, lines in boxes represent median values, whiskers represent 1.5 interquartile ranges, and black dots 
represent outliers. (E–J) Violin plots of the abundance of the enteroendocrine cell (E), goblet cell subtype 1 (F), goblet cell subtype 2 (G), OLFM4 
high stem cell (H), mesenchymal cell (I), and exhausted T cells (J) among five SLC gene subtypes in the meta-GEO. (K) Sankey diagram of SLC gene 
subtypes in groups with different molecular subtypes in the GSE39582 cohorts.*p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant; Ref, 
reference; SLC, solute carrier; HMC, histone modification cluster; CMS, consensus molecular subtypes; TMEC, tumor microenvironment cluster. 
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(ADJC) performance status. Particularly, in the subgroup without ADJC, SLC-S3 exhibited the worst prognosis (Fig. 2E), whereas SLC- 
S2 displayed the highest mortality risk in patients who received ADJC (Fig. 2F). These findings indicate that the SLC subtypes might be 
link to the benefit of ADJC in patients with colon cancer. To confirm this hypothesis, we further analyzed the survival benefits of ADJC 
among patients with distinct SLC subtypes. The forest plot (Fig. 2G) demonstrated that ADJC performance was associated with 
elevated mortality risk of SLC-S2 patients but provided survival benefits to non-SLC-S2 patients. Moreover, the matrix heatmap 
(Fig. 2H) and stacked histogram (Fig. 2I) illustrated that the fluorouracil response rate of patients with SLC-S2 was the lowest among 
all subtypes, whereas patients with SLC-S5 presented the highest fluorouracil response rate. Coincidentally, we noticed that the 
transcriptional expression of SLC22A18, a transporter belonging to the SLC22 family, was significantly reduced in the SLC-S2 
compared to its expression in other SLC gene subtypes among the five tumor cell-enriched SLC transporters mentioned above 
(Fig. S5). Previous studies have also reported that the downregulated expression of SLC22A18 could cause acquisition of oxaliplatin 
resistance among colon cancer cells [22] and temozolomide resistance in GBM U87 cells [23]. Given that SLC22 family members serve 
as drug uptake carriers with important roles in a wide range of pharmacological cancer therapies, including platinum-based drugs, 
taxanes, antimetabolites, and topoisomerase inhibitors [24], we speculated that a decrease in intracellular drug accumulation caused 
by low SLC22A18 expression may be one of the mechanisms underlying chemoresistance in the SLC-S2 subtype. Collectively, these 
data illustrate that molecular classification based on the transcriptional profiling of SLC family genes could guide the clinical diagnosis 
and therapeutic strategies for patients with non-metastatic colon cancer. 

To further confirm whether the association between different SLC subtypes and patient prognosis, as well as chemotherapy benefit, 
depended on the co-expression patterns of SLC gene clusters, we investigated the clinical relevance of the mean expression levels of SLC 
transporters in the four SLC gene clusters. The result illustrated that higher levels of SLC-C4 cluster expression were correlated with 
elevated relapse risk in all patients (Fig. S4B), increased mortality risk in the ADJC performed subgroup (Fig. S4C), and fluorouracil- 
nonresponse status (Fig. S4D). Conversely, the expression level of SLC-C2 exhibited significant positive correlation with the survival 
time of RFS in the total patients and of OS in the subgroups receiving ADJC (Figs. S4B–C). Moreover, the expression level of SLC-C1 was 
shown to be downregulated in the fluorouracil nonresponse group (Fig. S4D). Collectively, we believe that the co-expression patterns 
of SLC genes, specifically the overexpression of SLC-C4 combined with low abundance of SLC-C1 and SLC-C2, led to poor prognosis and 
fluorouracil resistance in patients with SLC-S2. 

3.3. Biological and TME features among distinct SLC subtypes 

To uncover the variation in biological pathway activation among the five SLC gene subtypes, we performed GSVA against the 
“Hallmark” gene set. As depicted in Fig. 3A and B, the activation levels of several items related to cell cycle regulation, including E2F 
signaling, G2M checkpoint, MTORC1 signaling, MYC signaling, DNA repair, and unfolded protein response, were significantly 
inhibited in SLC-S1, SLC-S2, and SLC-S3 subtypes, but they were highly augmented in SLC-S4 and SLC-S5 subtypes. Meanwhile, 
multiple pathways, including angiogenesis, EMT, IL-2-STAT5 signaling, IFNγ response, KRAS signaling, and TGF-β signaling, showed 
the highest GSVA scores in SLC-S2, suggesting that SLC-S2 may be characterized by the upregulation of stromal and immune in-
flammatory pathways. For the SLC-S3 subtype, aside from the cell cycle-related pathways mentioned above, the activation levels of 
KRAS signaling, protein secretion, and TGF-β signaling pathways were also significantly downregulated in SLC-S3 cells compared to 
levels in the other subtypes. Interestingly, some metabolic pathways, such as oxidative phosphorylation, fatty acid metabolism, and 
glycolysis, were enriched to a certain degree in patients with SLC-S1, SLC-S4, and SLC-S5, indicating that inhibiting metabolism might 
be a viable therapeutic option for these patients. 

Regarding the TME landscape of each SLC gene subtype (Fig. 3C and D), we found that, compared with other subtypes, the cell 
types contained in the TME of SLC-S2 tissue were the most abundant. The infiltration levels of various TME cells, including Tem, Tgd, 
Th1, macrophages, endothelial cells, fibroblasts, mast cells, and neutrophils, were significantly higher in SLC-S2 than in the other 
subtypes. We further confirmed that our previously developed SIIS score, a scoring tool for measuring stromal components [13], was 
the highest in the SLC-S2 subtype (Fig. S6A). Therefore, we hypothesized that the TME feature of the SLC-S2 subtype may be identified 
as “immune-excluded”, which is featured by the infiltration of stromal cells resulting the sequestration of cytotoxic cells within the 
stroma encompassing tumor cell nests instead of infiltrating the tumor parenchyma [25]. SLC-S4 represented the “cold tumor” 
phenotype, with few cell types infiltrated. However, SLC-S1, SLC-S3, and SLC-S5 samples displayed moderate infiltration of several cell 
types, among which the SLC-S5 subtype was mainly infiltrated with cytotoxic cells. In addition to the cell type mentioned above, we 
also conducted deconvolution of the infiltration level of enteroendocrine cells (Fig. 3E), goblet cell subtype 1 (Fig. 3F), goblet cell 
subtype 2 (Fig. 3G), OLFM4+ stem cells (Fig. 3H), mesenchymal cells (Fig. 3I), and T exhausted cells (Fig. 3J) from the transcriptomic 
profiles of the meta-GEO cohort based on the cell markers proposed in previous research [26]. The results indicated that all cells except 
goblet cell subtype 1 were enriched in the SLC-S2 subtype with the highest abundance, while the enrichment of goblet cell subtype 1 
exhibited the highest level in SLC-S1 compared to the other subtypes. Subsequently, we explored the association between the SLC gene 
subtype and other reported molecular subtypes of colon cancer. As indicated in Fig. 3K, the SLC-S1 samples were mainly enriched in 
CMS3 [27], which displaying epithelial differentiation and strong upregulation of multiple metabolism signatures; while patients with 
SLC-S2 were mainly concentrated in HMC4 [14], C4 [28], CMS4 [27], TMEC2 [29] and Sub3 [30] subtypes, which represented stromal 
phenotypes. The majority of SLC-S3 samples were enriched in HMC3 [14], both of which share significant inhibition of the G2M 
checkpoint pathway. Furthermore, there was an overlap between SLC-S4, HMC1 [14], and CMS2 [27] subtypes, characterized by the 
activation of the MYC and WNT pathways. Finally, SLC-S5 patients were mostly concentrated in C2 [28] and CMS1 [27], both of which 
displayed immune infiltration and activation characteristics. 
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3.4. Construction and evaluation of SLC score in GEO cohorts 

Because of the poor prognosis and low fluorouracil response rate in patients with SLC-S2, we believe that establishing a practical 
scoring model with the ability to accurately recognize such patients in clinical practice and assisting TNM staging to guide adjuvant 
chemotherapy strategies in colon cancer is necessary. For this purpose, we employed GSE39582 as the training cohort to identify the 
most informative genes for effectively distinguishing patients with SLC-S2. Based on the screening procedures and workflow depicted 
in Fig. S1, we started by recognizing DEGs in these five subtypes and identified 1003 DEGs in the SLC-S2 subtype (801 upregulated and 
202 downregulated; Fig. 4A and Table S5). A gene ontology analysis of these DEGs demonstrated that the upregulated DEGs exhibited 
significant enrichment in biological processes associated with stromal activation, while the downregulated DEGs displayed enrichment 
in items pertaining to cell division and metabolic processes (Fig. 4A). Subsequently, based on the Boruta algorithm, we identified 113 
genes to construct an SLC gene subtype-associated signature referred to “SLC score” (Fig. 4B and C). The expression levels of 81 genes 
were significantly increased in the SLC-S2 subtype, and their upregulated expression was significantly correlated with unfavorable 
prognosis. Conversely, the remaining 32 genes were markedly downregulated in patients with SLC-S2, and their downregulation 
displayed significant correlation with increased risk of relapse. Subsequent PCA revealed that genes comprising the SLC score were 
capable of effectively distinguishing patients with SLC-S2 from those with non-SLC-S2 subtypes (Fig. 4D). The boxplots (Fig. 4E and F, 
left) illustrate that the median value of SLC score was the highest in SLC-S2 subtype in both GSE39582 samples and other meta-GEO 
samples (validation cohort 1). The receiver operating characteristic (ROC, Fig. 4E and F, right) further illustrated that the SLC score 
was a reliable indicator for identifying SLC-S2 patients with a diagnostic accuracy of 0.98 in both the GSE39582 and non-GSE39582 
cohorts. By conducting correlation tests (Fig. 4G and Fig. S6B), we discovered that the SLC score was significantly positively correlated 
with not only the activation degree of stromal relevant pathways but also the infiltration level of stromal cells, which was in accor-
dance with the findings generated from the SLC-S2 subtype analysis. The enrichment of high- and low- SLC score group, which were 
defined by the “survminer” package, in previously documented molecular subtypes is shown in Fig. 4H. 

Furthermore, we investigated the impact of SLC score on prediction of clinical outcomes for patients with colon cancer. The results 
indicated that the subgroup with low SLC score had notably higher RFS (hazard ratio [HR] = 1.64, 95 % confidence interval [CI] =
1.28–2.12, Fig. 4I) and OS (HR = 1.47, 95%CI = 1.11–1.95, Fig. 4J). Further analysis of the SLC score as a continuous variable revealed 
that the SLC score served as an independent prognostic indicator for RFS (HR = 1.19, 95%CI = 1.08–1.32, Table S6). Moreover, as 
demonstrated in both univariate (HR = 1.45, 95%CI = 1.17–1.73, Fig. 4K, upper) and multivariate (HR = 1.44, 95%CI = 1.18–1.76, 
Table S6) analyses, the SLC score also showed a noteworthy correlation with OS in patients who underwent ADJC. 

Regarding to the predictive value of the SLC score in assessing chemotherapeutic benefits, we recalibrated the cutoff value of SLC 
score according to ROC curve to examine the efficiency of the SLC score in identifying the SLC-S2 subtype. Consistent with our ex-
pectations, patients who could potentially benefit from ADJC were restricted to the low SLC score group (HR = 0.55, 95%CI =
0.38–0.90, Fig. 4K, lower). The violin plot further illustrated that the fluorouracil response group had significantly higher SLC scores 
than the non-responders (Fig. 4L). In conclusion, these findings demonstrated that the SLC score holds potential as a dependable 
biomarker for prognosticating prognosis and determining the chemotherapeutic benefits in patients diagnosed with colon cancer, thus 
exhibiting promising clinical transformation values. 

3.5. Evaluation of SLC score in TCGA-COAD and SYSUCC cohorts 

The performance of the SLC score was further estimated in the TCGA-COAD (validation cohort 2) and SYSUCC (validation cohort 3) 
cohorts. As shown in Fig. 5A, by utilizing the Submap algorithm, we confirmed that high SLC score patients shared significant sim-
ilarity in transcriptome features with patients of the SLC-S2 subtype, while patients with low SLC scores shared distinct resemblance in 
transcriptome features with patients of the non-SLC-S2 subtype, indicating that the SLC score model could be applied to effectively 
identify patients with SLC-S2 in independent cohorts. Regarding the relationships between SLC score and the biological pathway 

Fig. 4. Construction and exploration of the SLC score in the meta-GEO cohort. (A) The up (yellow)- and downregulated (blue) genes in all five SLC 
gene subtypes (middle). A gene ontology analysis depicted the enriched pathways of the genes downregulated (left) and upregulated (right) in 
patients in the SLC-S2 subtype. Circle size represents the number of genes enriched in this pathway. Circle color depth indicates p value. (B) 
Heatmap shows the expression of 133 genes consisting of SLC score in five SLC gene subtypes after dimension reduction using the Boruta algorithm. 
SLC gene subtypes are used as sample annotations of the heatmaps. (C) Circus plots showing the expression level and survival impact of 113 selected 
genes used for calculating SLC score (red, risk factor for relapse-free survival; green, protect factor for relapse-free survival). (D) Principal 
component analysis of 113 selected genes to distinguish SLC-S2 from other SLC gene subtypes. (E–F) Violin plot (left) of SLC score value in five SLC 
gene subtypes and receiver operating curve of SLC score (right) in the GSE39582 (E) and non GSE39582 samples (F) of the meta-GEO cohort. (G) The 
correlations of the SLC score with tumor microenvironment (lower) and biological pathway activation status (upper) in the meta-GEO cohort. (H) 
Sankey diagram of SLC score groups in groups with different molecular subtypes in the GSE39582 cohort. (I–J) Kaplan-Meier curves of relapse-free 
survival (I) and overall survival (J) in the meta-GEO cohort according to the SLC score. (K) Forest plot (upper) of associations between the SLC score 
and overall survival in subgroups stratified by adjuvant chemotherapy conduction in the GSE39582 cohort. Forest plot (down) of benefits of 
adjuvant chemotherapy in different SLC score groups in the GSE39582 cohort. (L) Violin plot of SLC score values among patients with different 
fluorouracil responses in the meta-GEO cohort. SLC, solute carrier; ADJC, adjuvant chemotherapy; RFS, relapse-free survival; OS, overall survival; CI, 
confidence interval; HMC, histone modification cluster; CMS, consensus molecular subtypes; TMEC, tumor microenvironment cluster; R, response; NR, 
nonresponse; and ADJC, adjuvant chemotherapy. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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activation as well as TME cell infiltration, a significant positive correlation was observed between the SLC score and various factors 
including the activation level of stromal and inflammatory pathways, SIIS value, abundance of stromal cells, enteroendocrine cells, 
goblet cell subtype 2, OLFM4+ stem cells, and mesenchymal cells in both SYSUCC (Fig. 5B–C and Fig. S6C) and TCGA-COAD (Fig. 5E–F 
and Fig. S6D) cohorts. Additionally, the enrichment of high SLC score groups in the CMS4 subtype was evident in both cohorts (Fig. 5D 
and G). These findings were aligned with the results obtained from meta-GEO cohort. 

In terms of clinical relevance, in the TCGA-COAD cohorts, the mortality rate of patients with elevated SLC scores exhibited a 
significant increase compared to those with lower SLC scores (HR = 2.04, 95 % CI = 1.27–3.32, Fig. 5H). Moreover, the SLC score 
exhibited a significant correlation with OS in both univariate (HR = 2.06, 95 % CI = 1.33–3.18, Fig. 5I, upper) and multivariate (HR =
2.13, 95 % CI = 1.36–3.33, Table S7) Cox regression as a continuous variable in the subgroup that received ADJC. Further analysis of 

Fig. 5. Validation of the SLC score in the TCGA-COAD and SYSUCC cohort. (A) Heatmaps displaying the comparison of the transcriptome similarity 
between the SLC-S2 subtype in meta-GEO cohort and high SLC score group in TCGA-COAD (upper) and SYSUCC (down) cohorts. (B) The correlations 
of the SLC score with tumor microenvironment (lower) and biological pathway activation status (upper) in the SYSUCC cohort. (C) The correlation 
chord chart shows the mutual correlation between mesenchymal cell abundance, OLFM4 high cell abundance, secretory cell enrichment level, and 
SLC score in the SYSUCC cohort. (D) Sankey diagram of SLC score in different CMS subtypes in the SYSUCC cohort. (E) The correlations of the SLC 
score with tumor microenvironment (lower) and biological pathway activation status (upper) in the TCGA-COAD cohort. (F) The correlation chord 
chart shows the mutual correlation between mesenchymal cell abundance, OLFM4 high cell abundance, secretory cell enrichment level, and SLC 
score in the TCGA-COAD cohort. (G) Sankey diagram of SLC score in groups with different molecular subtypes in the TCGA-COAD cohort. (H) 
Kaplan–Meier curves of overall survival according to SLC score in the TCGA-COAD cohort. (I) Forest plot (upper) of associations between the SLC 
score and overall survival in subgroups stratified by adjuvant chemotherapy conduction of TCGA-COAD cohort. Forest plot (down) of benefits of 
adjuvant chemotherapy in different SLC score groups in the TCGA-COAD cohort. (J–K) Violin plot of SLC score values among patients with different 
fluorouracil responses in the TCGA-COAD (J) and SYSUCC (K) cohort. *p < 0.05, **p < 0.01, ***p < 0.001. SLC, solute carrier; ADJC, adjuvant 
chemotherapy; RFS, relapse-free survival; OS, overall survival; CI, confidence interval; HMC, histone modification cluster; CMS, consensus molecular sub-
types; TMEC, tumor microenvironment cluster; R, response; NR, nonresponse; and ADJC, adjuvant chemotherapy. 
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chemoresponses illustrated that patients with high SLC score were also unable to benefit from ADJC (HR = 1.40, 95 % CI = 0.62–3.16, 
Fig. 5I, bottom), and the fluorouracil non-response group was characterized by markedly higher SLC scores than those of the fluo-
rouracil response group in the TCGA-COAD (Fig. 5J) and SYSUCC (Fig. 5K) cohorts. These findings indicate strong reproducibility of 
the SLC score to predict prognosis and chemotherapy efficacy in patients with colon cancer. 

3.6. The multi-omics analysis of samples in different SLC score groups 

In order to enhance the understanding of the biological characteristics between different SLC score groups, a multi-omics analysis 
was carried out within the TCGA-COAD cohort. First, as for the distribution of CNV events, we found that the chromosomal aberrations 
between the high- and low SLC score group were similar (Fig. 6A and B). By using Chi-square test, we identified 11 altered (ampli-
fications or deletions) copy number events, the frequency of which was significantly higher in the low SLC score group compared to 
that of the high score group (adj p-value<0.05, Fig. 6C), and these copy number events were located on chromosome 20 (5 events), 
chromosome 18 (5 events) and chromosome 17 (1 event) respectively. In terms of somatic mutations (Fig. 6D), we identified that the 
mutation rates of 10 SMGs, including BRAF, RNF43 and several other genes, were significantly different between high and low SLC 
score groups of patients, and the mutation rates of these SMGs were significantly enriched in the high subgroup. Although the mutation 

Fig. 6. SLC score-related multi-omics characteristics Composite copy number profiles for high SLC score and low SLC score tumours with gains in 
purple and losses in dark green. (B) Distribution of gistic score in high SLC score and low SLC score tumours with gains in purple and losses in dark 
green. (C) Oncoprints Oncoplot displays most frequently altered (amplifications or deletions) copy number events ordered according to the fre-
quency. Cohort details and SLC score groups are used as sample annotations of the heatmaps. (D) Oncoprints depicted the somatic mutations of 
significant mutated genes in the context of high SLC score and low SLC score tumours. Cohort details and SLC score groups are used as sample 
annotations of the heatmaps. (E) Heatmap for genes with mutual exclusivity or co-occurrence. Stars refer to correlations that are statistically 
significant. (F) Heatmaps of significantly varied methylation genes in high SLC score and low SLC score tumours at methylation level (left) and 
transcriptome level (right). (G) Heatmap exhibited the landscape of differentially expressed proteins in five SLC subtypes. *p < 0.05, **p < 0.01, 
***p < 0.001; CNV, copy number variations; Del, delation; Amp, amplification; OR, odds ratio. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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rates of APC and KRAS exhibited significant increase in the low SLC score subgroup, the significance was lost after Bonferroni 
correction. The co-occurrence status of these genes was shown in Fig. 6E. Aside from genomic mutations, we compared the disparities 
in gene promoter methylation levels between high and low SLC score groups. As shown in Fig. 6F and 16 SVMGs have been recognized. 
Among these genes, nine SVMGs demonstrated low transcriptional expression accompanied by high methylation levels, whereas the 
remaining genes exhibited high transcriptional expression along with low methylation levels in the high score group. The overall 
methylation levels of the NHLRC1, NOTUM, and ACSL6 genes were all low. Finally, by analyzing the proteomic data from the TCGA- 
COAD cohorts (Fig. 6G), we found that samples with high SLC scores had significant overexpression of proteins implicated in EMT and 
TGF-β signaling, which further verified the transcriptomic GSVA results at the protein level. 

3.7. The correlation between the SLC gene subtype, SLC score, and the immunotherapy response 

Previous research has reported that patients with an “immune-excluded” phenotype exhibited low response rates towards PD-L1 
blockade [31]. Considering that the TME infiltration features of both SLC-S2 and high-SLC score patients were characterized by the 
enrichment of stromal cells, we sought to find out whether the SLC gene subtype and SLC score were correlated with the immuno-
therapeutic response probability. Here, the TIDE algorithm was employed to forecast the likelihood of immunotherapy response. We 
found that patients with SLC-S2 had a lower likelihood of responding to immunotherapy compared to other SLC gene subtypes, which 
were characterized by the highest nonresponsive rates in meta-GEO cohorts (Fig. 7A). Similarly, in the meta-GEO and TCGA-COAD 
cohorts, the SLC score exhibited a significant increase among the predicted immunotherapy non-responders (Fig. 7B) and was 
strongly positively associated with the TIDE score (Fig. 7C). However, although the SLC score demonstrated a positive correlation with 
the TIDE score in the SYSUCC cohort, no statistical differences were observed (P = 0.094, Fig. 7C). Aside from TIDE prediction, the 
Submap algorithm was utilized to compare the transcriptional profiling of the SLC gene subtypes with the published pretreatment 
transcriptomic data of 217 metastatic urothelial cancer patients who received anti-PD-L1 therapy. The results demonstrated that 
patients of the SLC-S2 (Fig. 7D, upper) and the high-SLC score groups (Fig. 7D, bottom) exhibited significant resemblance in tran-
scriptional features with the nonresponsive patients to anti-PD-L1 therapy, which further indicated that the SLC-S2 subtype and pa-
tients with high SLC scores may not be candidates that could benefit from anti-PD-1 treatment (adjusted P = 0.008). 

3.8. Potential compounds for chemosensitization in colon cancer patients with high SLC scores 

We attempted to explore potential compounds that may be applied as chemosensitizers for patients with high SLC scores. By 
employing CTRP data to explore whether the AUC of compounds correlates with the SLC score, we discovered 24 compounds with 
correlation coefficients less than − 0.5 (Fig. 8A) in the GSE39582, TCGA-COAD, and SYSUCC cohorts (Tables S8–S10). Further 
investigation of the activities and gene targets of these compounds revealed that the five compounds of them were the inhibitors of 
PI3K catalytic subunit family (Fig. 8B and C). Among them, XK765 and PI-103 exhibited targeting capabilities towards various cat-
alytic subunits of PI3K; the AZD6482 and TGX-221 demonstrated inhibitory effects on the activity of PIK3CB, while CAL-101, 

Fig. 7. The associations between SLC score and immunotherapy benefits. (A) Bar charts summarizing the proportions of patients with immuno-
therapy response and those with nonresponse predicted by TIDE algorithm within and across SLC gene subtypes in the GSE39582. (B) Violin plot of 
SLC score values in immunotherapy response and nonresponse groups predicted by TIDE algorithm in GSE39582, TCGA-COAD, and SYSUCC co-
horts. (C) Scatter plots showing the correlations between SLC score value and TIDE score in the GSE39582, TCGA-COAD, and SYSUCC cohorts. (D) 
Heatmap (upper) showing the comparison of the similarity between SLC gene subtypes and immunotherapy response of IMvigor210 dataset in 
GSE39582 cohort revealed by SubMap analysis. Heatmap (below) displaying the comparison of the similarity between SLC score group and 
immunotherapy response of IMvigor210 dataset in GEO, TCGA-COAD, and SYSUCC. SLC, solute carrier; TIDE, tumor immune dysfunction and 
exclusion; R, response; and NR, nonresponse. 
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AZD6482, TG-100-115, and IC-87114 exhibited inhibitory effects on the activity of PIK3CD. These results offer a novel outlook for 
developing efficacious chemosensitizing therapeutic approaches for colon cancer patients with high SLC scores. 

4. Discussion 

SLC transporters exert many crucial physiological functions, including nutrient absorption, ion import/export, toxin metabolism, 
and waste clearance, and they have been implicated in the initiation and progression of many diseases [1,2]. However, as a largely 
understudied superfamily, the role of many SLCs remains unclear, especially in the initiation and progression of human malignancy. 
Moreover, whether SLC transporters can be employed as biomarkers for cancer diagnosis and prediction of prognosis and therapeutic 
outcome remains to be explored. The intestinal tract is regarded as the most critical organ in the communication and interaction with 
exogenous substances like food and chemicals; therefore, SLC transporters also act as critical participants in maintaining intestinal 
cellular homeostasis, and the dysregulation of SLC transporters may be robustly associated with the progression of colon cancer [32]. 
In this study, by utilizing scRNA-seq data of colon cancer to compare the expression differences of SLC transporters between tumor cells 
and non-cancerous cells, we noticed that some SLC transporters tend to be expressed in a cell-type propensity manner, and five of them 
were defined as tumor cell-enriched SLC transporters because they were highly expressed in tumor cells and nearly absent in all types 
of non-tumor cells. Among these tumor cell-enriched SLC transporters, SLC2A1 was the most unique, as only high expression of 
SLC2A1 was significantly associated with worse RFS and worse OS in both the ADJC-performed and ADJC-unperformed subgroups. 
SLC2A1 belongs to the SLC2A family, which is primarily responsible for glucose transportation, and has been reported to act as master 
activators to reprogram cancer metabolism, thereby promoting tumor progression [33–35]. Based on our analysis results, we propose 
that SLC2A1 has potential as a molecular target for developing precise therapeutic strategies targeting tumor cell metabolism. 
Interestingly, we also found that another member of the SLC2 family, SLC2A3, was predominantly expressed in various immune cells 
except for plasma cells but lost its expression in tumor cells. Previous studies have demonstrated that glucose metabolism variation is 
not limited to different tumor cells but also occurs in various non-cancerous cellular components, including T cells, macrophages, 
cancer-associated fibroblasts, and endothelial cells [6,7]. Therefore, combined with the results of scRNA-seq data analysis, we think 
that it is more important to focus on the oncogenic effect of SLC2A3 in the formation of TME features by regulating the metabolism of 
glucose in non-cells rather than its direct effect on tumor cells. 

Previous studies comparing healthy and cancerous cells illustrated that SLC proteins have more pronounced alterations in their co- 
expression networks than those of protein kinases [1]. Meanwhile, the cellular absorption and excretion of various biomolecules are 
modulated under the strict monitoring of a specified network of SLC transporters [1,2]. Therefore, in this context, two issues aroused 
our concern: the specific co-expression pattern of different SLC transporters in colon cancer and whether their co-expression pattern 
contributes to patients’ stratification or influences the clinical features of colon cancer. To answer these questions, we performed the 
unsupervised consensus clustering utilizing the transcriptomic data of 187 SLC family genes in the meta-GEO cohort. Our results 

Fig. 8. Screening of candidate compounds for chemosensitization (A) Heatmaps showing the correlation between SLC score and predicted AUC of 
compounds based on CTRP database analysis. (B) Heatmap showing the mechanisms of the action (left) and gene targets (right) and of compound. 
SLC, solute carrier; R, response; NR, nonresponse; and ADJC, adjuvant chemotherapy. 
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demonstrated that the SLC transporters comprised four distinct co-expression clusters, with each cluster containing dozens of SLC 
transporters affiliated to different subfamilies, which were responsible for transporting a diverse array of substrates. Based on the 
discrepant combination modes of these co-expression clusters, patients with colon cancer were further divided into five molecular 
subtypes that correlated with distinct clinical outcomes, biological pathways, and TME features. Among the five SLC gene subtypes, 
both the SLC-S1 and SLC-S2 subtypes were enriched by a single co-expression cluster, whereas the SLC-S3, SLC-S4, and SLC-S5 sub-
types were characterized by moderate to high expression of more than one cluster. The results presented above imply that the het-
erogeneous progression of colon cancer is triggered by SLC transporters in a highly coordinated manner, which indicates that it is 
insufficient for researchers to target a single SLC gene when exploring the molecular biological functions of SLC family genes in tumor 
initiation and progression. Therefore, investigating the interaction among multiple SLC transporters from a comprehensive perspective 
is necessary. Our research provides a foundation for further exploration of the interplay between the diverse SLC family molecules 
underlying tumor development in colon cancer; in other words, SLC transporters belonging to the same cluster are presumably syn-
ergistically involved in substrate translocation and subsequent metabolic processes. 

Among the five SLC gene subtypes, SLC-S2 stood out as the most crucial one. Patients within this subtype had the highest relapse 
risk and could not experience any advantages from fluorouracil-based ADJC due to their poor response to fluorouracil. In the 
meantime, individuals diagnosed with SLC-S2 exhibited a diminished probability of responding to immune checkpoint blockade 
therapy, as anticipated by the TIDE algorithm and SubMap analysis based on the transcriptional traits of the SLC-S2 patients. 
Furthermore, when compared to other subtypes, the SLC-S2 subtype exhibited extensive infiltration of stromal and myeloid cells, along 
with significant activation of numerous stromal-related pathways. Such stroma-dominated TME mode have been validated as crucial 
elements contributing to unfavorable chemotherapy and immunotherapy outcomes, as stated in prior studies [13,29–31]. Thus, in 
consideration of the special clinical features of patients with the SLC-S2 subtype, an SLC score model was developed and verified. This 
model was calculated by the transcriptional expression level of 113 protein-coding genes and able to accurately identify SLC-S2 pa-
tients or patients whose transcriptional characteristics are close to the SLC-S2 subtype in several independent cohorts. This finding also 
verified that the aberrant transcriptomic upregulation of oncogenes or, conversely, the repression of tumor suppressors is involved in 
the upstream and downstream regulation of aberrantly expressed SLC family genes [24]. Clinical analyses further highlighted that the 
SLC score independently predicts the prognosis of colon cancer and correlates with responses to chemotherapy and immunotherapy. 
Collectively, these findings demonstrated that the clinical transformation potential of the co-expression pattern of SLC transporters 
could be achieved by the SLC score, which exhibits outstanding reproducibility and clinical applicability to guide therapeutic stra-
tegies. It is worth noting that in somatic genomic mutation analysis, we discovered that the BRAF mutation, a marker for highly 
aggressive disease phenotype [36], was significantly enriched in high SLC score patients, suggesting that BRAF pathway activation 
may be one of the molecular mechanisms leading to adverse clinical outcomes in such a patient group. 

To date, as their accumulating functions have been annotated, researchers are increasingly interested in developing tumor ther-
apeutic drugs that target SLC transporters. Several in vitro and in vivo researches have corroborated the notion that some SLC in-
hibitors, including JPH203 [37], AZD3965 [38], and L-γ-glutamyl-p-nitroanilide [39], hamper tumor growth and metastasis as well as 
sensitize tumor cells to other chemotherapeutic agents by disrupting the metabolic homeostasis of tumor cells. Unfortunately, none of 
these drugs have been successfully validated in the clinical setting. Meanwhile, exploitation of SLC transporters as targets for 
development of anticancer drugs is difficult to achieve owing to many obstacles encountered in clarifying the structural character-
izations of SLC transporters [40]. Therefore, although our data analysis suggests that SLC2A1 may be an ideal target for anti-tumor 
therapy, we also explored the associations between the AUC value of existing small compounds involved in the CTRP database and 
the SLC score value to screen for potential compounds suitable for enhancing chemosensitivity in SLC-S2 patients. Intriguingly, we 
noticed several compounds targeting PI3K catalytic subunits, the AUC values of which exhibited significant negative correlation with 
SLC scores in the three cohorts. Current research has demonstrated a strong relationship between the PI3K/AKT pathway and the SLC 
family of molecules, where they usually function as downstream of SLC transporters in a variety of biological processes [41,42]. 
Moreover, the RNF43 mutation, which is enriched in the high-SLC score group, has been confirmed as an oncogenic colorectal cancer 
mutation that sensitizes tumor cells to PI3K/mTOR inhibition [43]. Therefore, although further preclinical investigations in vivo and 
in vitro are needed, we postulate that PI3K inhibitors are likely to become potential efficacious candidates for guiding therapeutic 
strategies of patients with high SLC scores. Moreover, these findings also shed light on solving the technical problem that SLC 
transporters face difficulties when used as specific anti-cancer targets. 

This research had several limitations. First, our analysis did not encompass all 456 SLC family genes. This is partly because the 
transcriptome profiles of meta-GEO and TCGA-COAD cohorts did not cover the complete SLC families. Moreover, our data cleaning 
strategy allowed SLC genes with low transcriptional expression abundance to be excluded. Although elimination of low-expressed 
genes is a common strategy used in bioinformatics analysis to make results more robust, it may inevitably exclude some SLC trans-
porters that possess crucial pathophysiological roles and clinical relevance (e.g., SLC families responsible for anticancer drug cell 
accumulation). Second, the potential link between the expression of tumor cell-enriched SLC transporters and the development/ 
progression of colorectal cancer revealed by our study requires further experimental verification. Next, the exploration and validation 
of the performance of the SLC score in prognosticating survival and therapeutic outcomes in colon cancer were only carried out in 
retrospective databases, which should be further verified. Finally, the cut-off values of the SLC score should be standardized in future 
prospective studies. 

5. Conclusions 

In conclusion, our study established a novel molecular subtype system for colon cancer, which not only systematically revealed the 
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complex interaction patterns among the SLC family molecules, but also reflected tumor heterogeneity related to the clinical behavior, 
TME, and biological behavior of colon cancer, providing new insights into colon cancer treatment. Developing a deeper understanding 
regarding the structure, function, expression, and regulation of SLC transporters may contribute to establishing definitive roles for SLC 
transporters and exploring novel targets and agents for cancer treatment. Moreover, we propose the SLC score as a reliable tool for 
identifying distinct SLC gene subtypes, thus providing more precise therapeutic guidance for the treatment of colon cancer. 
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