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Abstract: Broomcorn millet (Panicum miliaceum L.) affected by smut (caused by the pathogen Sporiso-
rium destruens) has reduced production yields and quality. Determining the tolerance of broomcorn
millet varieties is essential for smut control. This study focuses on the differences in the pheno-
types, physiological characteristics, and transcriptomes of resistant and susceptible broomcorn millet
varieties under Sporisorium destruens stress. In diseased broomcorn millet, the plant height and
stem diameter were reduced, while the number of nodes increased. After infection, the activities
of superoxide dismutase and peroxidase decreased, and malondialdehyde and relative chlorophyll
content (SPAD) decreased. Transcriptome analysis showed 514 and 5452 differentially expressed
genes (DEGs) in the resistant and susceptible varieties, respectively. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis of DEGs showed that pathways related to plant
disease resistance, such as phenylpropanoid biosynthesis, plant–pathogen interaction, and plant
hormone signal transduction, were significantly enriched. In addition, the transcriptome changes of
cluster leaves and normal leaves in diseased broomcorn millet were analysed. Gene ontology and
KEGG enrichment analyses indicated that photosynthesis played an important role in both varieties.
These findings lay a foundation for future research on the molecular mechanism of the interaction
between broomcorn millet and Sporisorium destruens.
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1. Introduction

Smut is a common plant disease [1,2], and is one of the major diseases of broomcorn
millet (Panicum miliaceum L.), able to seriously affect production. This disease not only
reduces yield, it also leads to the contamination of grains and straws [3]. The incidence is
generally 5–10%, although in severe cases it may reach 40% [4]. Smut is a systemic invasive
disease in which the pathogen infects the host at the seedling stage, but obvious symptoms
appear at the heading stage and beyond [5]. The pathogens of smut include Basidiomycota
species and Sporisorium destruens. After Sporisorium destruens infects broomcorn millet, it
ruins the grain harvest, and pathogens attach to the soil or seed to overwinter and become
a source of infection. A high-temperature, high-humidity environment is conducive to
the invasion of broomcorn millet by Sporisorium destruens [6]. At the early heading stage,
diseased broomcorn millet does not show significant differences compared to uninfected
plants, and smut prevention and treatment in production is more difficult.

To prevent pathogen invasion, plants have evolved specific immune strategies, includ-
ing pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) [7], which
identifies pathogen invasion, followed by a host defence response [8,9]. Cytoplasmic Ca2+

concentration has been recognised as an essential signal for PTI [10]: during PTI, host cells
perceive PAMP through pattern-recognition receptors; this induces an increase in the con-
centration of cytosolic Ca2+ and leads to activation of calcium-based defence responses [10].
Stomatal behaviour not only influences the balance between CO2 uptake and water loss,
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it also increases the risk of lethality upon stress; the hypersensitive response (HR) is a
common feature of plant immune responses, and a type of programmed cell death [11,12].
Ca2+ is known to affect the HR, as well as cell wall and stomatal changes [11,13,14].

Broomcorn millet, an allotetraploid from China with a long cultivation history [15],
is cultivated in Europe, the Middle East, and other regions [16], has high nutritional
value, and can be used for food, feed, and medicine [17]. Broomcorn millet is tolerant to
drought stress and barren soil, and can serve as a pioneer crop, suitable for sustainable
agricultural practices [18]. Although the production of broomcorn millet has many ad-
vantages, it is grown on a small scale in only a few regions [19], and head smut threatens
this industry by substantially reducing yields. Research on broomcorn millet smut has
focused mainly on physiological and biochemical responses, agronomic traits, and the
effect on yield [20–22], as well as fungicide screening and resistance identification [23,24].
Furthermore, there are few reports on the breeding of broomcorn millet smut resistance
and the plant–pathogen interaction mechanisms that negatively impact on broomcorn
millet production and smut research.

The high-throughput capabilities of RNA sequencing (RNA-Seq) technology can be
used to evaluate gene transcription levels [25,26] and study the interaction mechanism
between plants and pathogens at the molecular level [27]. In this study, we investigated
and compared the expression of differentially expressed genes (DEGs) in susceptible and
resistant broomcorn millet varieties under Sporisorium destruens stress. The changes in plant–
pathogen interaction, oxidation-reduction process, and plant hormone signal transduction
pathways were analysed. These results provide a valuable reference information for the
study of interaction between broomcorn millet and Sporisorium destruens.

2. Results
2.1. Phenotype Analysis of Resistant/Susceptible Broomcorn Millet after Sporisorium
destruens Infection

At the early heading stage (about 40 days after planting) of two broomcorn millet
varieties, there was no significant difference between uninoculated controls (CK; R0 and
S0) and Sporisorium destruens-inoculated samples (R1 and S1). After the heading stage, the
ears at the top of the diseased plant were transformed into small cluster leaves, while other
treatments appeared normal (Figure 1A). The plant height and stem diameter of diseased
broomcorn millet of both varieties were significantly decreased (Figure 1B,C), and the
node number increased (Figure 1D). The differences between varieties were not significant
(p > 0.05), except for the stem thickness of uninoculated plants (R0 vs. S0; p < 0.05), and the
node number of inoculated plants (R1 vs. S1; p < 0.05).

2.2. Redox Status and Relative Chlorophyll Content of Broomcorn Millet Leaves under
Sporisorium destruens Stress

To reveal the physiological responses in the leaves of the two broomcorn millet
varieties under Sporisorium destruens stress, we determined the activities of superoxide
dismutase (SOD) and peroxidase (POD), as well as malondialdehyde (MDA) and relative
chlorophyll content (SPAD) index (Figure 2). The differences in SOD activity, MDA content,
and SPAD index showed similar trends, i.e., they were lower in the inoculated leaves
than in the uninoculated leaves. In the smut-resistant variety, Bameng Xiaohei mi (BM),
POD activity was lower in uninoculated leaves than in inoculated leaves, whereas in the
smut-susceptible variety, Nianfeng No. 5 (NF), the POD activity in uninoculated leaves
was higher than in inoculated leaves.



Int. J. Mol. Sci. 2021, 22, 9542 3 of 16
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 17 
 

 

 

Figure 1. Phenotypic differences between four broomcorn millet samples: R0 and S0 were uninoc-

ulated controls; R1 and S1 were inoculated with Sporisorium destruens. (A) Phenotype at heading 

stage; (B) Plant height (cm); (C) Stem diameter (mm); (D) Node number. The values are presented 

as means (n = 5) with standard deviations. Values with different letters within the same figure were 

significantly different (p < 0.05). Data represents mean ± SD and different letters (a, b, and c) indi-

cate significant differences (p < 0.05) in each samples. 

2.2. Redox Status and Relative Chlorophyll Content of Broomcorn Millet Leaves under Sporiso-

rium destruens Stress 

To reveal the physiological responses in the leaves of the two broomcorn millet va-

rieties under Sporisorium destruens stress, we determined the activities of superoxide 

dismutase (SOD) and peroxidase (POD), as well as malondialdehyde (MDA) and relative 

chlorophyll content (SPAD) index (Figure 2). The differences in SOD activity, MDA con-

tent, and SPAD index showed similar trends, i.e., they were lower in the inoculated 

leaves than in the uninoculated leaves. In the smut-resistant variety, Bameng Xiaohei mi 

(BM), POD activity was lower in uninoculated leaves than in inoculated leaves, whereas 

in the smut-susceptible variety, Nianfeng No. 5 (NF), the POD activity in uninoculated 

leaves was higher than in inoculated leaves. 

Figure 1. Phenotypic differences between four broomcorn millet samples: R0 and S0 were uninoc-
ulated controls; R1 and S1 were inoculated with Sporisorium destruens. (A) Phenotype at heading
stage; (B) Plant height (cm); (C) Stem diameter (mm); (D) Node number. The values are presented as
means (n = 5) with standard deviations. Values with different letters within the same figure were
significantly different (p < 0.05). Data represents mean ± SD and different letters (a, b, and c) indicate
significant differences (p < 0.05) in each samples.
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Figure 2. Physiological differences between four broomcorn millet samples. These physiological
indices include superoxide dismutase (SOD) activity, peroxidase (POD) activity, malondialdehyde
(MDA) content and SPAD index. The values are presented as means (n = 3) with standard deviations.
Values with different letters within the same figure were significantly different (p < 0.05). Data
represents mean ± SD and different letters (a, b, and c) indicate significant differences (p < 0.05) in
each samples, while ab, bc indicate not significant differences (p > 0.05).
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2.3. Data Quality and DEGs in Two Broomcorn Millet Varieties under Sporisorium
destruens Stress

We obtained 15 complementary DNA (cDNA) libraries with high sequencing quality
using RNA sequencing (RNA-Seq) (Supplementary Material file 1). Principal component
analysis (PCA) clusters samples based on the gene expression of samples, reflecting the
repeatability of the samples. The R0-1 sample was identified as an outlier and removed in
the following analysis (Figure 3A, Supplementary Material file 2). Venn analysis indicated
that there were 30,545 co-expressed genes among the samples; R0, R1, S0, and S1 had 370,
300, 336, and 1686 expressed genes, respectively (Figure 3B). In BM, 514 genes were defined
as DEGs in R1 compared with R0, including 28 up-regulated and 486 down-regulated
DEGs. In NF, 5452 genes were identified as DEGs, with 3989 up-regulated and 1463
down-regulated. A total of 231 genes were identified as DEGs in the four samples of the
two varieties. Compared with CK, the inoculated treatments had higher levels of DEGs.
Overall, more DEGs were characterised in NF than in BM (5452 vs. 514, respectively;
10.6-fold difference). In NF, most of the DEGs (3989 out of 5452; 73.17%) were up-regulated,
and 1463 DEGs were down-regulated; however, only 28 DEGs (accounting for 5.4%) were
characterised as being up-regulated in BM, and the rest (486 out of 514; 94.6%) were down-
regulated (Figure 3C). This suggests that NF was inclined to activate gene expression to
cope with Sporisorium destruens stress.
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2.4. Gene Ontology (GO) Enrichment Analysis of DEGs

A hypergeometric distribution was used to divide the DEGs into GO terms. BM and
NF had 350 and 2517 enriched GO terms, respectively. Specifically, in BM, GO enrichment
analysis included 82 molecular functions (MFs), 100 biological processes (BPs), and 1 cell
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component (CC), whereas the GO enrichment analysis of NF consisted of 151 MFs, 331 BPs,
and 42 CCs (Supplementary Material file 3). Among the first twenty enriched GO terms in
the two broomcorn millet varieties (Figure 4A), BM had only 12 terms that were significantly
enriched (p < 0.05). Additionally, five terms were the same in the two varieties: oxidation-
reduction process (GO: 0055114), oxidoreductase activity (GO: 0016491), catalytic activity
(GO: 0003824), iron ion binding (GO: 0005506), and dioxygenase activity (GO: 0051213).
In the term type classification, the oxidation-reduction process belongs to BP, and the
remaining four items belong to MF, which showed that the MF of broomcorn millet was
greatly affected after Sporisorium destruens inoculation. The catalytic activity was the term
with the largest number of DEGs in both broomcorn millet varieties: compared with R0,
212 DEGs were enriched in R1; and 1412 DEGs were also enriched in S1 compared with S0.
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2.5. KEGG Enrichment Analysis

The DEGs were mapped to the reference pathways in KEGG to investigate the inter-
action between Sporisorium destruens and broomcorn millet. KEGG enrichment analysis
showed that 197 DEGs in R0 vs. R1, and 1286 DEGs in S0 vs. S1, were mapped onto
64 and 114 KEGG pathways, respectively, and there were 12 and 27 KEGG pathways
that were significantly enriched, respectively (p < 0.05) (Supplementary Material file 4).
Figure 4B plots the top 20 enrichment pathways of two broomcorn millet varieties, indi-
cating that four significant enrichment pathways appeared in both varieties at the same
time, namely phenylpropanoid biosynthesis, plant–pathogen interaction, plant hormone
signal transduction, and alpha-linolenic acid metabolism pathways. In addition, pathways
related to photosynthesis, photosynthesis-antenna proteins, and porphyrin and chlorophyll
metabolism were significantly enriched in S0 vs. S1 (p < 0.05).

2.6. DEGs Analysis of Different Leaf Types of Diseased Broomcorn Millet

To further explore the interaction mechanism between diseased broomcorn millet and
Sporisorium destruens, the transcriptomes of normal leaves on diseased plants (S1) and top
cluster leaves (S2) were analysed (Figure 5A). Compared with S1, there were 4213 DEGs in
S2, including 1456 up-regulated DEGs and 2757 down-regulated DEGs (Figure 5B). The
number of down-regulated DEGs in S2 was 1.9-fold higher than that of up-regulated DEGs,
which was contrary to the trend of S0 vs. S1. Different mechanisms in S0 vs. S1 and S1 vs.
S2 were inferred from the differences in the changes between susceptible varieties.
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diseased plant. (B) Distribution of DEGs in S2 compared to S1. (C) GO enrichment analysis of DEGs in S1 vs. S2. (D) KEGG
enrichment analysis of DEGs in S1 vs. S2.

2.7. GO and KEGG Enrichment Analyses of S1 vs. S2

GO enrichment analysis showed that 3061 DEGs were distributed in 516 pathways
in S1 vs. S2, of which 261 were significantly enriched (Supplementary Material file 3). Of
these 261 pathways, 48, 161, and 52 were CC BP and MF terms, respectively. In the first
20 pathways enriched by GO, there were 7 BPs, 11 CCs, and 2 MFs (Figure 5C). Notably,
among the 20 terms, those relating to photosynthesis accounted for a large proportion,
such as photosynthesis (GO: 0015979), light harvesting in photosystem I (GO: 0009768)
in BP, photosystem (GO: 0009521) in CC, and chlorophyll binding (GO: 0016168) in MF.
Combined with the comprehensive analysis of the GO enrichment results in S0 vs. S1,
we confirmed that photosynthesis played an important role in the interaction between
Sporisorium destruens and broomcorn millet.

Compared with S1, there were 1478 DEGs involved in the KEGG pathways in S2,
and the results showed that these DEGs were distributed in 120 pathways, of which
33 pathways were significantly enriched (Supplementary Material file 4). It was apparent
that benzoic acid biosynthesis, photosynthesis, and photosynthesis-antenna pathways were
the three most significantly enriched pathways (Figure 5D). Phenylpropane biosynthesis,
photosynthesis, and plant–pathogen interaction pathways had the largest amount of
enriched DEGs. KEGG enrichment analysis indicated that S0 vs. S1 showed different
response mechanisms between Sporisorium destruens and broomcorn millet, although both
involved photosynthesis.
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2.8. DEGs Involved in Plant Hormone Signal Transduction Pathway

In plant hormone signal transduction, the jasmonate ZIM (JAz)-domain-containing
protein family is a key component of the jasmonic acid (JA) signalling pathway [28]. In
the JAz family, 19 genes in five samples of two broomcorn millets were defined as DEGs
(Figure 6). DEGs in the two varieties showed different trends: in BM, compared with R0,
seven DEGs were down-regulated in R1; in S0 vs. S1, 18 DEGs were defined as being
up-regulated; the 9 DEGs annotated in the JAz family of S1 vs. S2 included one down-
regulation and eight up-regulations. After Sporisorium destruens infection, the expression
of JAz may be related to the resistance of broomcorn millet; in BM varieties, all the DEGs
annotated in the JAz family were down-regulated, whereas in NF, most DEGs were up-
regulated. There were three DEGs annotated in the GH3 auxin-responsive gene family:
one DEG was defined as up-regulated in S0 vs. S1, and two DEGs were down-regulated in
S1 vs. S2. Furthermore, the expression of 12 genes in the auxin-responsive protein (IAA)
family had changed: there were four up-regulated DEGs and one down-regulated DEG
in S0 vs. S1, and two up-regulated DEGs and five down-regulated DEGs in S1 vs. S2
(Supplementary Material file 5). In the resistant variety of broomcorn millet, no DEGs were
annotated in the IAA and GH3 families.
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2.9. Analysis of Enriched DEGs in the Plant–Pathogen Interaction Pathway

Knowledge of the plant–pathogen interaction pathway is key to understanding the
interactions between plants and pathogens. In the plant–pathogen interaction pathway of
broomcorn millet and Sporisorium destruens, there were 13 DEGs in BM, 56 DEGs in S0 vs.
S1, and 64 DEGs in S1 vs. S2, respectively (Supplementary Material file 6). Interestingly,
most of the DEGs in BM were down-regulated (11 out of 13), whereas in NF the up-
regulated DEGs accounted for a larger proportion. Among the 56 DEGs enriched in S0 vs.
S1, the number of up-regulated DEGs was 40. Furthermore, 43 DEGs were up-regulated
in S1 vs. S2. These DEGs were mainly distributed in the calmodulin (CaM), calmodulin-
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like (CML), and 3-ketoacyl-CoA synthase (KCS) families. In addition, the expression of
DEGs was affected in the calcium-dependent protein kinase (CDPK), respiratory burst
oxidase homologue, and PTI families of NF, but this was not observed in BM (Figure 7A).
DEGs enriched in plant–pathogen interaction pathways may affect cell wall reinforcement,
stomatal closure, HR, defence-related gene induction, phytoalexin accumulation, miRNA
production, suppression of plant HR, and defence responses. The leucine-rich repeat
(LRR) transmembrane receptor kinase, flagellin-sensitive 2 (FLS2), is essential for flagellin
perception [29]. There were three DEGs annotations in the FLS2 family, Longmi038613
and Longmi019029 were up-regulated in S0 vs. S1; Longmi038613 and Longmi019029 were
down-regulated in S1 vs. S2. In this study, these DEGs may act as receptors or kinases in
the HR, cell wall reinforcement, and stomatal closure.
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2.10. Expression Correlation Analysis of Enriched DEGs in Plant–Pathogen Interaction Pathway

Expression correlation analysis is based on the correlation of gene expression and is
used to identify key genes by analysing the connections between genes
(Supplementary Material file 7). A correlation analysis of 95 DEGs in the plant–pathogen
interaction pathway was carried out, and the DEGs with strong correlation was selected to
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draw the correlation network diagram (Figure 7B–D). Analysis of the top 10 genes with
strong correlation in each group showed that both Longmi000712 and Longmi036891 were
strongly correlated in R0 vs. R1, and in S0 vs. S1; these two genes may be related to the
smut resistance of broomcorn millet. In the two groups of susceptible broomcorn millet,
Longmi015394 and Longmi023157 showed a strong correlation, which may be related to the
pathogenic mechanism of broomcorn millet. In addition to the above-mentioned genes,
there were 8 DEGs with strong correlation in each treatment. These DEGs may be the
reasons for the different resistances and pathogenesis of broomcorn millet.

2.11. Real-Time PCR Verification of DEGs

Ten DEGs were selected from the transcriptome results for RT-PCR verification of
their reliability. The primer sequence is shown in Supplementary Material file 8. The
RT-PCR verification and RNA-Seq data were roughly the same (Figure 8), indicating that
the transcriptome results were reliable.
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3. Discussion

Smut is a common crop disease which damages ears and grains and reduces economic
output. Research on smut has mainly focused on crops such as rice, sugarcane, and
maize [1,30,31]. This study used RNA-Seq to analyse the transcriptional changes in smut-
resistant and smut-susceptible broomcorn millet varieties after inoculation with Sporisorium
destruens. Sequencing analysis identified 514 and 5452 DEGs in the resistant and susceptible
cultivars, respectively. This result was consistent with the study by Cheng et al. [32],
in which inoculation of Tainung 67 (resistant rice cultivar) and Zerawchanica karatals
(susceptible rice cultivar) with Fusarium fujikuroi resulted in the appearance of 118 and
169 DEGs, respectively. Hence, susceptible varieties tend to activate gene expression in
response to stress.

Plant immunity is a complicated process affected by extracellular or intracellular
receptors that recognise PAMPs or effectors in PTI and effector-triggered immunity sys-
tems [9,33]. The defence response mechanisms and role of receptors have hardly been
studied in broomcorn millet, but they have been reported in plants such as Arabidopsis,
tomato, and rice [29,34–36]. In the plant–pathogen interaction pathway, there were 13, 56,
and 64 DEGs in R0 vs. R1, S0 vs. S1, and S1 vs. S2, respectively. Compared with BM, NF
expressed more DEGs after inoculation, and these DEGs may play an important role in the
interaction between broomcorn millet and Sporisorium destruens.

Ca2+ acts as a second messenger in stress response signalling pathways [37], involv-
ing CaM, CaM-like (CML) proteins, and CDPKs [38]. Cyclic nucleotide-gated channels
(CNGCs) reportedly play an important role in plant immunity, plant hormones, and re-
sponse to stressors [36,39]. The CDPKs are crucial sensors of changes in Ca2+ concentration
and have multiple roles in the stress tolerance of plants [40,41], while CaM plays a crucial
role in plant defence signalling [42]. After inoculation with Sporisorium destruens, among
the annotated DEGs were one gene in the CNGC family, 12 in the CDPK family, and 23
in the CaM/CML family (Supplementary Material file 9). In a study on canker disease in
pitaya (Hylocereus polyrhizus) [43], infected tissue had two up-regulated unigenes and one
down-regulated unigene in the CDPK family, and one up-regulated unigene annotated in
the CaM/CML family. Herein, in the interaction between broomcorn millet and Sporisorium
destruens, 12 annotated DEGs belonged to the CDPK family. Furthermore, eight DEGs in
S0 vs. S1 were all up-regulated; 10 DEGs in S1 vs. S2, including eight up-regulated and two
down-regulated. There were 23 annotated DEGs from the CaM/CML family, including two
shared DEGs. Interestingly, the DEGs annotated in BM were all down-regulated, whereas
all were up-regulated in NF. In the plant–pathogen interaction pathway, changes in the
expression of these DEGs can affect cell wall reinforcement, stomatal closure, and HR,
thereby affecting plant resistance.

In plants, disease resistance depends on the presence of complementary gene pairs in
the host and pathogen. These are divided into resistance (R) genes and avirulence (Avr)
genes, which can effectively curb the invasion of pathogens [44,45]. R genes share some
conserved domains, according to the arrangements of their functional domains, which can
be grouped into five classes [46], based on the presence of an N-terminal domain and a
LRR domain. The LRR domain is responsible for specific pathogen recognition [47]. The
resistance genes of the LRR domain have been reported in rice, wheat, and soybean [48–50],
but not in broomcorn millet. Here, in the plant–pathogen interaction pathway, there were
three annotated DEGs from the FLS2 family in the LRR domain, including one shared
DEG: Longmi038613 was defined as up-regulated DEG in S0 vs. S1, whereas it was defined
as down-regulated DEG in S1 vs. S2 (Supplementary Material file 9). Different samples
had different expression levels of Longmi038613, which requires verification to facilitate
future research.

JA is an important phytohormone that regulates the defence responses of a plant [51,52].
In Arabidopsis, JA signalling has been negatively and positively associated with resistance
against Fusarium graminearum [53]. Among the plant hormone signalling pathways, 18
DEGs in NF were up-regulated in the JAz family, and seven DEGs in BM were identified
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as being down-regulated. These results were consistent with a study on the response
of broomcorn millet to the stress of Sporisorium destruens; the JA content increased after
broomcorn millet infection [21]. It was inferred that invasion by Sporisorium destruens
increased the JA content in the leaves of diseased broomcorn millet to resist Sporisorium
destruens invasion. However, Cheng’s research results showed that the genes associated
with the JA biosynthetic process were up-regulated in the resistant cultivar, Selenio, and
down-regulated in the susceptible Dorella cultivar [32], which was contrary to our result.
Research on the role of JA in the interaction between broomcorn millet and smut needs
further investigation.

When plant cells are subjected to adverse conditions, large amounts of reactive oxygen
species (ROS) are produced [54], and the burst of ROS inhibits the process of chlorophyll
electron transfer and photorespiration [55]. A high antioxidant capacity to scavenge the
toxic ROS has been linked to stress tolerance [56]. The ROS in turn cause damage to lipids,
and MDA content was taken as an indication of lipid peroxidation level [57]. Furthermore,
changes in antioxidant protection enzymes have been reported in broomcorn millet [21,58].
Therefore, we measured SOD and POD activities in the leaves of each sample. Compared
with CK, SOD activity decreased in both varieties after inoculation. In the transcriptome
results, there were no genes annotated in the SOD family of BM varieties, but in S0 vs.
S1, three DEGs were annotated in the SOD family, all of which were down-regulated
(Supplementary Material file 10). There was one down-regulated DEG annotation in S1 vs.
S2. This trend was consistent with the measured SOD activity in NF leaves. In sugarcane
leaves infected by orange rust, the SPAD index of reflecting chlorophyll content decreased
with increasing rust rating [59]. In the photosynthetic report of Ustilago maydis infection
of maize, the relative chlorophyll content of leaves was reduced after Ustilago maydis
infection [60]. The SPAD index of broomcorn millet leaves after inoculation with Sporisorium
destruens was lower than that of uninoculated controls; this may be the result of chlorophyll
degradation by Sporisorium destruens infection. Furthermore, KEGG enrichment analysis
indicated significantly enriched pathways related to photosynthesis, and chlorophyll
metabolism. The role of photosynthesis in the interaction between broomcorn millet and
Sporisorium destruens should be studied further.

4. Materials and Methods
4.1. Plant Material, Sporisorium destruens Inoculation and Sample Collection

The broomcorn millet varieties used in this study, namely Nianfeng No. 5 (NF) and
BM, were provided by Northwest A&F University (Yangling, China). BM was considered
a smut-resistant variety; NF was considered a smut-susceptible variety. A two-year field
survey showed that the incidence of Sporisorium destruens infection in BM and NF was
4.59% and 47.5%, respectively. The spores of Sporisorium destruens were collected in the
experimental field at Northwest A&F University, dried in the shade at room temperature,
surface-disinfected with 75% ethanol, and placed on an ultra-clean workbench. Then,
the Sporisorium destruens spores were cut and collected with a sterilised blade, and the
samples were placed in a kraft paper bag in a refrigerator at 4 ◦C. It was removed from the
refrigerator one day before use and kept at room temperature.

The experiment was carried out in a greenhouse at Northwest A&F University in
2020. The soil and substrate (Pindstrup, Co., Ltd. Shanghai, China) were mixed in a 1:1
ratio. Seeds inoculated by saturation inoculation were mixed with Sporisorium destruens
spores in a 20:1 mass ratio, representing the inoculation treatment. Uninoculated seeds
served as the experimental control (CK). The seeds were planted in a black flowerpot
(10 plants/pot) with a diameter of 20 cm and a height of 10 cm, which were calculated
based on the field density. The temperature and duration of illumination of the day/night
cycles were set to 30 ◦C/18 ◦C and 14 h/10 h, respectively. Relative humidity was constant
at 60%, and watering was performed every 1–2 days. The illumination intensity was set to
600 µmol m−2 s−1. After showing symptoms at the heading stage, the lower leaves of the
ear were collected: R0 (BM-CK), R1 (BM-inoculated), S0 (NF-CK), and S1 (NF-inoculated).
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In addition, the top cluster leaves of NF-diseased plants were collected and named S2.
Collected leaf samples were stored in ultra-low-temperature refrigerators for Illumina deep
sequencing, antioxidant enzyme activity assays, and RT-PCR validation.

4.2. Phenotype Analysis of Broomcorn Millet

After broomcorn millet heading, the ears of the diseased plant turn into small cluster
leaves. At this stage, the phenotype of each treatment was evaluated. Five replicates were
used to determine the differences in mean plant height (cm), stem diameter (mm), and
node numbers of control plants and infected plants. Plant height and stem thickness were
measured manually using a ruler and a digital calliper, respectively.

4.3. Measurement of SOD Activity, POD Activity, MDA Content, and SPAD Index

SOD and POD activities, as well as the MDA content, in the leaves under the ears
of R0, R1, S0, S1, and S2, were determined using commercial detection kits (Solaibao
Technology Co., Ltd., Beijing, China), according to the manufacturer’s instructions. The
SPAD index was determined using a non-invasive, handheld meter (SPAD-502, Konica
Minolta, Tokyo, Japan).

4.4. Transcriptome Sequencing of Broomcorn Millet Leaves

Total RNA was extracted from the tissue using Plant RNA Purification Reagent for
plant tissue, according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA),
and genomic DNA was removed using DNase I (Takara Bio, Kusatsu, Japan). Then RNA
quality was determined using a 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara,
CA, USA) and quantified using the ND-2000 (NanoDrop Technologies, Inc., Wilmington,
DE, USA).

The RNA-Seq library was prepared following the TruSeqTM RNA sample preparation
kit from Illumina (San Diego, CA, USA) following the manufacturer’s instructions. Briefly,
messenger RNA was isolated according to the polyA selection method using oligo (dT)
beads and then fragmented using fragmentation buffer. Second, double-stranded cDNA
was synthesised using a SuperScript double-stranded cDNA synthesis kit (Invitrogen)
with random hexamer primers (Illumina). The double-stranded cDNA was purified and
ligated to adaptors for Illumina paired-end sequencing. Libraries were selected for cDNA
target fragments of 300 bp on 2% Low Range Ultra Agarose, followed by PCR amplification
using Phusion DNA polymerase (New England Biolabs, Ipswich, MA, USA) for 15 PCR
cycles. The resulting cDNA libraries were sequenced at Shanghai Majorbio Biopharm
Technology Co., Ltd. (Shanghai, China) using the Illumina HiSeq xten/NovaSeq 6000
sequencing system.

4.5. Transcriptome Analysis

To identify the DEGs in broomcorn millets, transcript expression levels were calcu-
lated according to the transcripts per million reads method. RNA-Seq by Expectation-
Maximization was used to quantify the gene abundance (http://deweylab.biostat.wisc.
edu/rsem/ (accessed on December 2020)). Differential expression analysis was performed
using DESeq2, and genes with |log2FC|≥1 and p ≤ 0.05 (DESeq2) were used as DEGs.
Functional enrichment analysis of GO and KEGG was performed to identify the significant
terms and pathways in terms of the Bonferroni-corrected p-value ≤ 0.05, compared with the
reference genome (http://bigd.big.ac.cn/gwh/Assembly/131/show (accessed on Novem-
ber 2020)). GO enrichment terms and KEGG enrichment pathways were analysed using
GOATOOLS (https://github.com/tanghaibao/goatools (accessed on December 2020)) and
KEGG Orthology-Based Annotation System (http://kobas.cbi.pku.edu.cn/download.php
(accessed on December 2020)).

http://deweylab.biostat.wisc.edu/rsem/
http://deweylab.biostat.wisc.edu/rsem/
http://bigd.big.ac.cn/gwh/Assembly/131/show
https://github.com/tanghaibao/goatools
http://kobas.cbi.pku.edu.cn/download.php
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4.6. Real-Time PCR

Selecting ten DEGs for real-time polymerase chain reaction (RT-PCR) to confirm the
authenticity of the transcriptome results. These genes were annotated in pathways of
photosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, WRKY
transcription factors, oxidation-reduction processes, plant–pathogen interactions, and
alpha-linolenic acid metabolism. The primers for DEGs were designed and synthesised
by Majorbio (Shanghai, China). Synthesis of cDNA was performed on HiScript Q RT
SuperMix for qPCR (+gDNA wiper). RT-PCR was performed using the ABI7500 Real-time
PCR System (Applied Biosystems, Waltham, MA, USA) with SYBR Premix Ex Taq II (Tli
RNaseH Plus) and ROX plus (Takara Bio, Kusatsu, Japan). Expression levels of each gene
were normalised relative to that of S0, and the fold-change in expression was calculated
using the 2−∆∆CT method.

4.7. Statistical Analysis

The physiological data obtained in the experiment were processed using the Statistical
Package for Social Science (SPSS; SPSS Inc., Chicago, IL, USA) version 17.0, with statistical
significance set at p < 0.05. The chart was reprocessed using Origin version 2019 (OriginLab,
Northampton, MA, USA).

5. Conclusions

In the two broomcorn millet varieties, NF stimulated more gene expression in response
to Sporisorium destruens stress. KEGG enrichment analysis showed that plant hormone sig-
nal transduction, plant–pathogen interaction, and photosynthesis are important pathways
in the interaction of broomcorn millet and Sporisorium destruens. After inoculation, 19 DEGs
in the plant hormone signal transduction pathway were enriched in the JAz family of the
JA signalling pathway. In the resistant variety (BM), the expression of JAz family DEGs
decreased compared with CK; however, in the susceptible variety (NF), the DEGs of the JAz
family after inoculation was up-regulated. In the plant–pathogen interaction pathway, the
expression of DEGs from the CaM/CML, CDPK, and CNGC families in the Ca2+ signalling
network can cause HR, cell wall reinforcement, and stomatal closure—adaptive responses
to pathogen invasion. Finally, RT-PCR verification of 10 DEGs selected from the RNA-Seq
transcriptome results showed that the data were reliable.
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