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Abstract
Background: Early identification of the malignant propensity of pulmonary
ground-glass nodules (GGNs) can relieve the pressure from tracking lesions and
personalized treatment adaptation. The purpose of this study was to develop a
deep learning-based method using sequential computed tomography (CT) imaging
for diagnosing pulmonary GGNs.
Methods: This diagnostic study retrospectively enrolled 762 patients with GGNs
from West China Hospital of Sichuan University between July 2009 and March
2019. All patients underwent surgical resection and at least two consecutive time-
point CT scans. We developed a deep learning-based method to identify GGNs
using sequential CT imaging on a training set consisting of 1524 CT sections from
508 patients and then evaluated 256 patients in the testing set. Afterwards, an
observer study was conducted to compare the diagnostic performance between
the deep learning model and two trained radiologists in the testing set. We further
performed stratified analysis to further relieve the impact of histological types,
nodule size, time interval between two CTs, and the component of GGNs.
Receiver operating characteristic (ROC) analysis was used to assess the perfor-
mance of all models.
Results: The deep learning model that used integrated DL-features from initial and
follow-up CT images yielded the best diagnostic performance, with an area under
the curve of 0.841. The observer study showed that the accuracies for the deep
learning model, junior radiologist, and senior radiologist were 77.17%, 66.89%,
and 77.03%, respectively. Stratified analyses showed that the deep learning model
and radiologists exhibited higher performance in the subgroup of nodule sizes
larger than 10 mm. With a longer time interval between two CTs, the deep learn-
ing model yielded higher diagnostic accuracy, but no general rules were yielded for
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radiologists. Different densities of components did not affect the performance of
the deep learning model. In contrast, the radiologists were affected by the nodule
component.
Conclusions: Deep learning can achieve diagnostic performance on par with or better
than radiologists in identifying pulmonary GGNs.
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deep learning, ground-glass nodules, multiple timepoints, sequential

INTRODUCTION

Ground-glass nodules (GGNs) are a nonspecific finding on
chest CT that may occur in a variety of pulmonary diseases,
such as malignancy, atypical adenomatous hyperplasia,
inflammatory reaction, granuloma, and fibrosis, and are
pathologically characterized by thickening of the alveolar
wall and alveoli almost filled with exudate and a few lym-
phocytes, neutrophils, macrophages or tumor cells.1,2 The
advent of low-dose spiral computer tomography (LDCT)
has led to advancements in early screening for lung cancer,
especially early-stage (stage IA) lung cancers presenting as
GGNs.3–7 The detection rate of lung nodules in patients at
high risk for lung cancer is approximately 27.9%,8 and the
majority of cases diagnosed as early-stage lung cancer are
subcentimeter GGNs.9 Henschke et al. analyzed 233 patients
with lung nodules detected on LDCT and found that the
malignancy rates for GGNs and solid nodules were 34.1%
and 7%, respectively, indicating that the malignancy rate in
GGNs is significantly higher than that in solid nodules.10

Although Kobayashil et al. proposed that GGNs should be
followed for at least 3 years, they may become malignant
during long-term follow-up, allowing the best time for
intervention slip.11 Moreover, repeated examinations will
cause huge economic and psychological burdens for
patients.12 However, limited by existing imaging and other
techniques, it is still very difficult to distinguish benign
from malignant GGNs. Therefore, early accurate diagnosis
and intervention of malignant GGNs will benefit clinical
practice.

Deep learning (DL), as an advanced artificial intelligence
algorithm, can mine shallow image intensity and shape fea-
tures as well as high-dimensional abstract information due
to its layered structure.13 Recently, with the widespread
use of convolutional neural networks,14 DL has shown
expert-level analytic performance in the CT imaging
analysis of lung diseases, such as cancer screening,15,16 lesion
segmentation,17 and prediction of EGFR gene mutations.18

DL does not need a precise lesion contour, which is quite
suitable for analyzing GGNs, of which the lesion boundary
is blurred. In this study, we aimed to apply DL technology
to sequential CT images to mine predictive information and
identify the benign and malignant properties of GGNs and
compare the DL method with trained radiologists. We pre-
sent the following article in accordance with the STARD
reporting checklist.

METHODS

Patients

The workflow of this study is shown in Figure 1. From July
2009 to March 2019, 762 consecutive patients with GGNs on
chest CT who underwent surgical resection at West China
Hospital of Sichuan University were enrolled in this research.
All patients met the following inclusion criteria: (i) chest CT
manifested as GGNs in the lungs, (ii) underwent surgical re-
section at our hospital and was confirmed by pathology,
(iii) no previous history of treatment with radiotherapy or
chemotherapy, and (iv) performed at least two consecutive
time-point CT scans. We excluded patients if: (i) they had
atelectasis, pneumonia, hilar enlargement or pleural effusion
and other imaging findings, (ii) they had other severe diseases
(severe cardiovascular, cerebrovascular or lung diseases),
(iii) incomplete clinical data or inability to contact patients,
and (iv) inability to obtain paraffin specimens, insufficient
paraffin specimens, or inconsistent tissue type after reslicing
HE sections. We randomly divided the dataset into training
and testing sets at a ratio of 2:1. The recruitment pathway is
shown in Fig. S1 in the Supplement.

Baseline information, including age, sex, smoking,
extrapulmonary cancer history, family cancer history, nod-
ule size, type, location, time interval between two CTs, and
pathology, is shown in Table 1. Note that nodule size was
measured by averaging the long- and short-axes on trans-
verse sections of initial CT using lung window settings fol-
lowing the Fleischner Society guidelines (senior radiologist
ZC with 10+ years of experience).19

Image acquisition and preprocessing

All patients underwent unenhanced chest CT scans, and all
image data were reconstructed with a thickness of 1.0 to
1.5 mm (more scanning parameters are provided in eMethods
1 in the Supplement). To extract nodule information for analy-
sis, one radiologist (Z.C.) used rectangular bounding boxes to
contour the whole nodule on the largest cross-section. Based on
this marked ROI, we expanded two images forwards and back-
wards. Then, we connected every three adjacent images to form
the three-channel model to fit the following DL model. All
ROIs were scaled to 64 � 64 � 3 voxel size, and the voxel
intensities were normalized to [0, 1]. In this study, when a
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patient had multiple GGNs, only the one with the largest vol-
ume was enrolled.

Deep learning feature extraction

We developed a DL network to extract the intrinsic charac-
teristics of GGNs from CT images at two time points. The
network shared the same architecture with the first two
dense blocks in DenseNet121.20 The dense block represents
the special structure in DenseNet that contributed to better
performance than other networks. Each dense block was a
stack of multiple convolutional, batch normalization layers
with a rectified linear activation function, and the layers
were directly connected to other layers in a feed-forward
fashion (details of layers in eMethods 2 in the Supplement).
This structure means that the network could combine the
information between different convolutional layers, further
benefiting optimization of the learning process. To
strengthen the training process, we used the ImageNet
dataset,21 which included 14 million natural images to
pretrain the model and 1524 CT sections to fine-tune the
model from the training set. When the loss the model on
the training set was converged, we applied the weight on the
testing set. To enlarge the training data and avoid

overfitting, we used data augmentation techniques on the fly
during the training process, including random shift, transla-
tion, rotation, flipping, and zooming. We extracted the out-
put of the last convolutional layer in the network and
defined it as a DL-feature, which was 256-dimensional.
Since every nodule included three 64 � 64 � 3 input
images, we averaged features to acquire the DL-feature for
the nodule. The network was implemented and trained in
Python 3.6 and Keras 2.2 (TensorFlow 1.7 backend).

We used the same network to extract the DL-feature
from the initial and follow-up CT images. We defined the
DL-feature extracted from the initial CT images as DL-
featureinitial and the DL-feature extracted from the follow-up
CT images as DL-featurefollow-up.

Development of individualized predictive
models

After gaining the DL-feature, we used ridge regression to
build the individualized predictive model to distinguish
benign from malignant GGNs. The ridge regression used L2
regularization to avoid overfitting and maintained as many
original features as possible with a penalty parameter C. To
gain the optimal C, we used 10-fold cross-validation in the

F I G U R E 1 The workflow of this study. This study included the following six parts: (a) baseline CT and follow-up CT acquisition and ROI (the green
box) delineation, (b) image preprocessing, (c) building a DL model that was pretrained in ImageNet and fine-tuned with our CT images, (d) constructing
DL-features by initial CT and follow-up CT, (e) building individualized GGN prediction models by the DL-feature, and (f) comparing the DL model with
radiologists

604 QIU ET AL.



T A B L E 1 Patient characteristics in the primary and validation cohorts

Characteristics

Training set (n = 508)

pa

Testing set (n = 254)

pa
pb

Benign 108 21.0) Malignant 400 (79.0) Benign 46 (22.7) Malignant 208 (77.3) 0.35

Age, years < 0.001 0.007 0.08

Mean � SD 49.6 � 12.4 54.4 � 11.2 50.7 � 11.4 55.8 � 10.9

Sex (No. %) 0.34 0.75 0.67

Male 34 (31.5) 105 (26.2) 12 (26.1) 62 (29.8)

Female 74 (68.5) 295 (73.8) 34 (73.9) 146 (70.2)

Smoking (No. %) 0.77 0.22 0.25

Yes 12 (11.1) 51 (12.8) 4 (8.7) 36 (17.3)

No 96 (88.9) 349 (87.2) 42 (91.3) 172 (82.7)

Extrapulmonary cancer history (No. %) 0.006 0.37 0.37

Yes 2 (1.9) 44 (11.0) 3 (6.5) 26 (12.5)

No 106 (98.1) 356 (89.0) 43 (93.5) 182 (87.5)

Family cancer history (No. %) 0.17 0.06 0.30

Yes 10 (9.3) 60 (15.0) 3 (6.5) 40 (19.2)

No 98 (90.7) 340 (85.0) 43 (93.5) 168 (80.8)

Nodule size (No. %) < 0.001 < 0.001 0.78

≤ 10 mm 73 (67.6) 180 (45.0) 36 (78.3) 94 (45.2)

> 10 mm 35 (32.4) 220 (55.0) 10 (21.7) 114 (54.8)

Type (No. %) 0.13 0.85 0.25

pGGN 59 (54.6) 183 (45.8) 23 (50.0) 110 (52.9)

mGGN 49 (45.4) 217 (54.2) 23 (50.0) 98 (47.1)

Location (No. %) 0.38 0.46 0.61

RUL 45 (41.7) 152 (38) 16 (8.7) 93 (44.7)

RML 11 (10.2) 24 (6) 5 (10.9) 13 (6.2)

RLL 18 (16.7) 63 (15.8) 5 (10.9) 25 (12.0)

LUL 24 (22.2) 115 (28.7) 16 (34.8) 53 (25.5)

LLL 10 (9.3) 46 (11.5) 4 (8.7) 24 (11.5)

Time interval (No. %) < 0.001 < 0.001 0.89

≤ 90 days 46 (42.6) 305 (76.2) 11 (23.9) 163 (78.4)

(90, 180) days 25 (23.1) 68 (17.0) 19 (41.3) 26 (12.5)

>180 days 37 (34.3) 27 (6.8) 16 (34.8) 19 (9.1)

Pathology

Inflammatory 73 37

Granuloma 3 0

Fibrosis 10 5

Interstitial hyperplasia 19 4

Hamartoma 1 0

Sclerosing 1 0

Tuberculosis 1 0

Invasive adenocarcinomac 325 180

Preinvasive adenocarcinomad 73 28

Squamous carcinoma 2 0

Note: Cancer (IASLC)43

Abbreviations: LLL, left lower lobe; LUL, left upper lobe; mGGN, mixed ground-glass nodule; pGGN, pure ground-glass nodule; RLL, right lower lobe; RML, right middle lobe;
RUL, right upper lobe.
ap is derived from the univariable association analyses of each clinicopathological variable. Between patients with benign and malignant GGN in the training and testing set,
respectively.
bp represents the difference of each clinicopathological variable between the training and testing set.
cInvasive adenocarcinoma includes minimally invasive adenocarcinoma and invasive pulmonary adenocarcinoma according to The International Association for the Study of Lung.
dPreinvasive adenocarcinoma includes atypical adenomatous hyperplasia and adenocarcinomas in situ according to IASLC.
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training set. We applied DL-featureinitial or DL-featurefollow-
up into the ridge regression model to gain predictive value
for the identification of GGNs. This predictive value was
defined as DL-score. If a nodule had a higher DL score, it
was more likely to be malignant.

To integrate the DL information mined from sequential
CT images, we defined the following equation to gain the
integrated DL-feature from different time points:

DL� featureinitialþfollow�up ¼ 1 – 1 –DL� featureinitialð Þ
� 1 –DL� featurefollow�up
� �

Then, we used DL-featureinitial+follow-up to build the ridge
regression model to distinguish benign from malignant GGNs.

Since some clinical characteristics have shown the ability
to estimate GGN risk,22–28 we evaluated nine clinical factors
(sex, age, smoking, extrapulmonary cancer history, family
cancer history, nodule size, type, location, and the time
interval between two CT scans) and chose the significant
predictors (p < 0.05) in the training set to construct the clin-
ical model.

Considering that additional patient conditions can be
described from clinical risk factors, we further incorporated
clinical predictors into the DL-features to build the com-
bined model for individualized prediction of GGNs.

Observer study

To compare the DL model with human performance, two
radiologists (senior radiologist, ZC with 10+ years of experi-
ence; and junior radiologist, KS 3+ years of experience)
were enrolled. They were blinded to the clinicopathological
results to diagnose all GGNs in the test set. They first classi-
fied the GGNs based on the initial CT and then added
follow-up CT scans for further diagnosis.

Statistical analysis

All statistical analyses were performed with R software
(version 3.6). Significant differences were assessed by the
chi-square test for categorical variables and the t-test for
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continuous variables. The difference in the area under the
receiver operating characteristic curves (AUCs) between
models was evaluated by the DeLong test. Youden index was
used as the cutoff. p < 0.05 indicated a statistically signifi-
cant difference.

RESULTS

Patient characteristics

Of the 762 patients enrolled in this study, the median age
(SD) was 53.85 (11.4) years, 213 (28.0%) were men, and
103 (13.5%) were smokers. Patients in the training and test-
ing sets were balanced for malignant prevalence (79%
vs. 77.3%, respectively; p = 0.35). No significant differences
were found in any of the clinicopathological characteristics
between the training and testing sets (Table 1).

Diagnostic performance of models

In Figure 2b and Table 2, we compared the ROC curves gen-
erated by all models and the two radiologists. In the testing
set, the clinical model yielded an AUC of 0.702 (95% CI:
0.619–0.784), the DL models using one time-point CT image
yielded an AUC ranging from 0.744 to 0.776, and the DL
model using two time-point CT images yielded significantly
higher performance (AUC [95% CI] 0.841 (0.777–0.904)
vs. 0.776 (0.704–0.848); p < 0.05). However, when combin-
ing the DL-featureinitial+follow-up with clinical factors (age,
extrapulmonary cancer history, and nodule size), the com-
bined model showed a slightly increased AUC of 0.867 in
the training set and a slightly decreased AUC of 0.827 in the
testing set.

The sensitivity of initial CT using the DL model, junior
radiologist, and senior radiologist was 60.58, 53.81, and
76.27%, respectively. The sensitivity of initial and follow-up
CT scans using the DL model, junior radiologist, and senior
radiologist was 72.60, 65.68, and 83.90%, respectively. The
specificity of DL models varied from 78.26% to 89.13%. In

contrast, the specificity of readers was 71.67% –85.00% for
the junior radiologist and 50.00%–61.67% for the senior
radiologist.

Stratified analysis

To relieve the impact of different nodule sizes, time inter-
vals between two CTs, and GGN components, we con-
ducted stratified analysis using two time-point CT images
in the testing set (Figure 3 and Table 3). The DL model
and radiologists both achieved higher diagnostic perfor-
mance in the nodule size larger than 10 mm subgroup than
in the subcentimeter subgroup (accuracy, 70% vs. 80% for
the DL model; 57.69% vs. 77.14% for the junior radiologist;
70.51% vs. 84.29% for the senior radiologist). In the time
interval subgroup, the results showed that, with a longer
time interval between the two CT scans, the DL model
achieved higher performance in distinguishing benign
GGNs from malignant GGNs, and the AUC value
increased from 0.813 (≤ 90 days) to 0.908 (> 180 days). In
contrast, the junior radiologist showed consensus in differ-
ent time interval subgroups, ranging in accuracy from
61.02% to 69.59%, while the senior radiologist showed vari-
ability in different time interval subgroups, ranging in
accuracy from 62.71% to 82.47%. In the GGN-type sub-
group, the DL model showed comparable performance
within the pure GGN (pGGN) and mixed GGN (mGGN)
subgroups, with AUCs ranging from 0.808 to 0.881. Mean-
while, the readers exhibited approximately 8% higher accu-
racy in the mGGN subgroup.

To further clarify the diagnostic ability of the DL model,
we also compared the DL score from two time-point CTs
within the pathologic subtype (Figure 2c and d). Since
malignant nodules with preinvasive adenocarcinoma and
invasive adenocarcinoma have different overall survival,
treatment plans, and management, we compared the DL-
score among benign, preinvasive, and invasive nodules.
There were significant differences among these three patho-
logical subtypes in both the training and testing sets
(all p < 0.05).
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To further interpret the DL model visually, we also
depicted four representative prediction results in Figure 4.
In this figure, it is difficult to distinguish benign GGN from
malignant GGN only by clinical information or visual obser-
vation on CT due to the resembling clinicopathological
characteristics. However, the DL model could yield discrimi-
native predictive value. Moreover, we used t-distributed sto-
chastic neighbor embedding (t-SNE) to reduce the
256-dimensional DL-feature into 2 dimensions (Fig. S2 in
the Supplement).29 We observed that benign GGNs were
clustered away from malignant GGNs.

DISCUSSION

GGN, a common finding on chest CT scans, comprises a
variety of disease categories, and the guidelines for manag-
ing GGN are distinct from those for managing solid nod-
ules.30,31 The malignancy rate of persistent GGNs is also
higher than that of solid nodules.32 Long-term follow-up CT
is recommended for low-risk GGNs.33,34 Therefore, an auto-
matic GGN malignancy prediction method from sequential
CT scans can provide auxiliary but important medical
insights. In this research, this clinical problem was addressed
by integrating the deep learning features from baseline and
follow-up CT images. This approach illustrated promising
diagnostic performance on par with or better than radiolo-
gists in the observer study.

GGN is a dynamic biological system that is quite differ-
ent from solid nodules.35,36 A high-risk indicator of GGN
malignancy is a new solid component developed during
follow-up.37 Therefore, the characteristics of GGNs may not
be completely captured on baseline CT images. Our study
also illustrated that the DL model using two time-point CT
images had significantly better performance than that using
one time-point CT image (AUC (95% CI), 0.841 (0.777–
0.904) vs. 0.776 (0.704–0.848); p < 0.05). This was consistent
with the performance of radiologists. The results indicated
that incorporating sequential CT images is key to capturing
dynamic GGN changes and further identifying GGNs.

One strength of the DL method is that it can discover and
learn abstract high-level features that are invisible to the
human eye but can reflect the intrinsic characteristics of
GGNs.38 In contrast, radiologists diagnose GGN mainly based
on typical radiographic features, such as nodule shape, size,
border, component, and margin.39 These qualitative features
might be less specific to GGNs than the DL method. Interest-
ingly, we found that the junior radiologist achieved higher
specificity (71.67%) and lower sensitivity (65.58%), while the
performance for the senior radiologist reversed this, with a
specificity of 50.00% and sensitivity of 83.90%. In contrast,
our DL method achieved a balanced sensitivity (72.60%) and
specificity (89.13%). Furthermore, our DL method yielded
diagnostic accuracy comparable with that of the senior radiol-
ogist and almost 9% higher accuracy than that of the junior
radiologist (Table 2). Consequently, our DL method can
therefore provide a helpful adjunct to radiologists.T
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Another strength of the DL method is that it does not
need precise delineation of the lesion boundary. Due to the
lower contrast of GGNs against the surrounding pulmonary
parenchyma, it is difficult for clinicians to identify the
boundary of GGNs. Previous studies using radiomic
methods to diagnose GGN40 might have been susceptible to
inter-reader variability due to the precise contour of the
lesion boundary.41

In previous studies, many clinical risk factors were found
to be associated with malignancy in GGN, such as older age,
extrapulmonary cancer history, nodule size, follow-up inter-
vals, and the component of nodules.7,9,22,24,25,42 However,
integrating clinical factors (age, extrapulmonary cancer his-
tory, and nodule size) with DL-features did not show an
increase in performance. Additionally, we performed strati-
fied analysis of the DL model and readers within nodule
size, time intervals, and GGN type subgroups. As shown in
Figure 3 and Table 3, the DL model achieved higher perfor-
mance for nodule sizes larger than 10 mm. This was consis-
tent with radiologists, indicating that subcentimeter GGN
prediction is very difficult for both. Moreover, our results
indicated that a longer time interval between the two CTs in
the DL model led to higher performance in distinguishing
benign GGNs from malignant GGNs. This can be explained
by the fact that some malignant GGNs may progress and
some benign GGNs may diminish in two time-point CT
scans.38 However, there were no general rules among radiol-
ogists within time interval subgroups. The junior radiologist
maintained similar performance in different time interval
subgroups, ranging in accuracy from 61.02% to 69.59%, and

the senior radiologist showed the best performance in the
shortest time interval subgroup (≤90 days). The GGN com-
ponent did not impact the performance of the DL model,
with similar AUCs in the pGGN and mGGN subgroups in
the training and testing sets. In contrast, the two radiologists
both exhibited an approximately 8% accuracy drop in the
pGGN subgroup. This decrease may be because the malig-
nancy rate increases with increasing density of GGNs.43

Among the malignant nodules, preinvasive adenocarci-
noma and invasive adenocarcinoma have distinct overall
survival, treatment planning, and management,44 and many
studies have used deep learning methods to predict tumor
invasiveness from CT images.45–47 Therefore, we also com-
pared the DL-score among benign, pre-, and invasive nod-
ules to further interpret the diagnostic ability of the DL
model using sequential CTs (Figure 2c and d). There were
significant differences among these three pathological sub-
types in both the training and testing sets (all p < 0.05). This
indicated that, even though our DL model was not designed
to predict tumor invasiveness, it could still distinguish
preinvasive adenocarcinoma from invasive adenocarcinoma.

The first limitation of our research was selection bias
due to the retrospective single-center dataset, and an exter-
nal validation dataset is planned to generalize our DL model
in the future. Second, deep learning cannot yield interpret-
able features for clinicians, as its overall process is similar to
a “black box”. Therefore, we depicted four representative
samples to interpret how the DL model functions.

In conclusion, building a DL-based model by sequential
CT images is a cost-effective and noninvasive tracking

Initial CT

Follow-up CT

Time interval:

Age:

  Sex: 

Smoking:

    Personal tumor history:

Family tumor history:
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Histological type:
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F I G U R E 4 Representative prediction results from the testing set
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method to differentiate benign from malignant GGNs. Our
DL method could achieve diagnostic performance on par
with or better than radiologists to identify pulmonary GGNs.
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