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Documented occurrences of fossil taxa are the empirical foundation for

understanding large-scale biodiversity changes and evolutionary dynamics

in deep time. The fossil record contains vast amounts of understudied

taxa. Yet the compilation of huge volumes of data remains a labour-intensive

impediment to a more complete understanding of Earth’s biodiversity

history. Even so, many occurrence records of species and genera in these

taxa can be uncovered in the palaeontological literature. Here, we extract

observations of fossils and their inferred ages from unstructured text in

books and scientific articles using machine-learning approaches. We use

Bryozoa, a group of marine invertebrates with a rich fossil record, as a

case study. Building on recent advances in computational linguistics, we

develop a pipeline to recognize taxonomic names and geologic time inter-

vals in published literature and use supervised learning to machine-read

whether the species in question occurred in a given age interval. Intermedi-

ate machine error rates appear comparable to human error rates in a simple

trial, and resulting genus richness curves capture the main features of pub-

lished fossil diversity studies of bryozoans. We believe our automated

pipeline, that greatly reduced the time required to compile our dataset,

can help others compile similar data for other taxa.
1. Introduction
How have scientists determined the history of biodiversity on our planet? The

radiations of unicellular organisms, plants and animals, rates of diversification

and extinction, correlation of past biodiversity levels with environmental for-

cing factors, mass extinctions and recoveries—all of these and more are

ultimately reliant on, or at least calibrated by, published occurrences of fossil

taxa and their geologic ages. For more than 200 years, palaeontologists have

used their own work and mined the work of others to document taxonomic rich-

ness in successive geologic time intervals [1]. This effort has historically involved

searching out and manually compiling published occurrences of lower-level taxa

(e.g. species, genera, families) within a given higher-level group (e.g. order, class,

phylum) and then inferring the changing patterns of richness [2,3].

Despite considerable progress in statistical methods that aim to compensate

for occurrence gaps and known biases of the fossil record [4–8], we are still

some ways away from a comprehensive understanding of the history of

global biodiversity. One of the foremost impediments remaining is the costly,

labour-intensive business of extracting fossil occurrence data from a continually

expanding, scattered literature, even for palaeontological experts analysing one

or another moderately taxon-rich group. Depending upon the extent and avail-

ability of previous fossil diversity studies on that group, this manual process

could take months or even years to complete. Moreover, the methods and

sources that underpin such compilations may or may not have been recorded

and made available [9,10], potentially compromising scientific repeatability.
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Hence, community efforts have built large public data compi-

lations of taxonomic nomenclature or taxon occurrences, for

instance, the Global Biodiversity Information Facility [11],

World Register of Marine Species [12] and the Paleobiology

Database (https://paleobiodb.org/). While one million

records entered over 20 years and 300 credited publications

attest to the impact of the Paleobiology Database, key data

gaps persist and require sustained data gathering and input.

A promising approach to bridging data gaps is to partially

automate the process of populating such data compilations,

using information extraction techniques. Information extraction

using natural language processing has become a mainstay in

the biomedical field [13]. For instance, drug–drug interactions

and mental illness symptoms are presented in new publications

every month and such data extracted [14,15] from disparate

journals can be used to further our understanding of human

diseases and treatments. Text-mining approaches have also

begun to impact knowledge discovery in biodiversity studies

of living organisms [16,17]. With respect to palaeontological

biodiversity studies, Peters et al. [18] pioneered automated

information retrieval of fossil observations and their geologic

time intervals. Here, we improve the pipeline proposed by

Peters et al. [18]. We apply natural language processing tools

[19,20] that aid in information retrieval by supervised learning

[21–23]. Advantages of such a text-mining machine-learning

approach include (i) enhanced efficiency in terms of time

expended to find and retrieve data from the primary literature

and the costs thereof, (ii) the ease of error estimation, and (iii)

repeatability and transparency in terms of the source and

nature of the data.

We show how our pipeline can be applied to organismal

groups, especially those in which data are wanting in public

databases, yet abundantly available in scattered publications.

One such group is Bryozoa, a phylum of colonial animals in

freshwater and more commonly in benthic marine environ-

ments. They are habitat constructors that enhance the

biodiversity of other organisms [24], are instrumental in ocea-

nic organic filtering and are major biogeochemical carbonate

engines in the global carbon cycle [25]. Their rich fossil

record and complex morphologies have also been critically

important in testing macroevolutionary theory [26]. Despite

several reviews of their fossil biodiversity history [27–29],

publicly available data are lacking in a form that is amenable

to relevant statistical analyses [5,8,30–32]. Our aim here is to

build an occurrence database of observations of fossil cheilos-

tomes (order Cheilostomatida [33]). The cheilostomes are the

most species-rich group of bryozoans for which there are cur-

rently about 4800 known extant members [29]. We explicitly

quantify both human and machine error in retrieving taxon

names and their time intervals of occurrence. We then com-

pare the inferred history of cheilostome bryozoans using our

machine-read data to their established palaeobiodiversity pat-

tern [29] and find that major features of their diversity changes

are recovered across their 150-million-year history. Finally,

we discuss the pros and cons of semi-automated text-mining

techniques and suggest avenues for future improvements.
2. Material and methods
(a) Data sources
Public compendia such as Web of Science, Zoological Record and

Google Scholar are primary sources for scientific publications
from major publishers, especially those with a modern Web-

presence. However, many key taxonomic publications appear

in more obscure platforms such as museum publications,

conference volumes, theses and governments reports, where

accessibility through online sources is often limited. For this

reason, we obtained bibliographic collections from experienced

scientists working on bryozoans for much of their careers,

including one of us (SL). PDFs (Portable Document Format) of

publications that were likely to contain relevant species occur-

rence data from the Jurassic through the Holocene (including

those in [27,28]) were then combined. This corpus consisted

of over 10 000 bibliographic references, only some of which

were likely to contain fossil species occurrence data. We filtered

those with accompanying PDFs, yielding more than 2000

documents in the English language; more than 800 of these con-

tained fossil occurrences that were useful for our text-mining

pipeline (see below).

Recognizing words as bryozoan taxa or geologic time inter-

vals entails reference lists of names. For bryozoan taxon names,

we used the World Register of Marine Species [12] and the

online taxonomic compendium of an experienced bryozoologist

[34]. For geologic time-interval names, we used Macrostrat [35]

and GeoWhen [36]. Publications documenting fossil occurrences

include taxonomic monographs, systematic treatments and

faunal lists. These publications contain formal taxonomic

descriptions of fossils, discussions of the described or previously

described taxa, taxon lists, summary tables or illustrations of

taxa. For our text-mining procedure, we focused on mentions

of taxonomic names in full sentences. In other words, we ignored

lists, tables and figures, as they are more specialized data formats

for which methods in information extraction are not yet as well-

developed. We discuss the consequences of not compiling these

latter data for taxonomic richness in later sections.

(b) Overview of information retrieval
The end-product that we seek is a dataset of observations of chei-

lostome fossil taxa and their geologic ages and corresponding

bibliographic references. To do so, we used Poppler (https://

poppler.freedesktop.org/) to extract plain text from the PDFs

and then subject this text to information retrieval, as summarized

in figure 1. There are three main steps in our information retrie-

val procedure. First, we used automated approaches to isolate

sentences in which taxa and age names co-occur and produced

data consisting of ‘candidate’ taxon-age pairs and the sentences

in which they occur. Second, we manually labelled a subset of

these candidates for constructing a set of ‘gold labels’ which are

used in training a machine-learning classifier. Third, we applied

the machine-learning classifier to the entire set of the candidates

and generated our fossil occurrence data. We briefly detail each

of these steps in the next sections.

(c) Sentence parsing and named entities
We used Stanford CoreNLP [37] to automate the annotation of

linguistic information, such that we can recognize ‘tokens’ (i.e.

words and punctuation), starts and ends of sentences, and

named entities, specifically bryozoan fossil taxa and geologic

time intervals. Taxon names are Latinized and can be identified

in part by word morphology, but also via in-sentence context

and grammar. In other words, we could have set up named-

entity recognition using a machine-learning classifier [38].

However, it is next to impossible to distinguish among names

from different taxonomic groups based on grammatical context

and word morphology alone. Hence, we chose to use a rule-

based approach, not least because a nearly exhaustive list of

post-Palaeozoic bryozoan Linnaean binomials (including all

cheilostome bryozoans, our target group) is already available.

We used this list and our compiled list of geologic age interval
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Figure 1. (a) The general workflow for automatic information extraction of fossil occurrence data. (b) The machine-learning classifier. A bidirectional long short-term
memory (LSTM) recurrent neural network, with the first example candidate as input. The numbers given are illustratory. Dashed arrows indicate dependency gram-
mar links. See electronic supplementary material for details on the classifier. The figure style is inspired by Miwa & Bansal [23]. (Online version in colour.)
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names to generate a set of TokensRegex expressions [39] that

were matched with occurrences within sentences (i.e. named-

entity recognition, see electronic supplementary information for

details). For one or more consecutive tokens that indicate one

entity (e.g. ‘Bugula’, ‘Setosellina roulei’, ‘lower Miocene’), we use

the term ‘span’. A candidate refers to a pair of spans, one of

which is a full Linnaean binomial or genus name, and the

other a geologic age. We used the Snorkel framework [40] to

locate candidates, treating each candidate as independent infor-

mation. The automated workflow thus far resulted in a

product consisting of candidate pairs and the sentences in

which they co-occur.
(d) Gold labels: manually labelled candidates
The set of candidates from the previous section consists of co-

occurrences of a name and age, but these can be either positive

or negative candidates. An example of a positive candidate

(from [41], p. 54), where it is explicitly stated or strongly implied

that the species occurred in the given geologic time interval, is:
Remarks—A few, small, infertile colonies of Setosellina cf. roulei

have been found encrusting the undersides of very thin platy
corals from the [late Burdigalian] and the Serravallian.
Bold font indicates the relevant spans, and square brackets indi-

cate spans that are not currently under consideration. An

example of a negative candidate (from [42], p. 419) is:
. . . fix the identity of Cribrilina punctata, the type species of the
genus [Cribrilina], itself the type genus of the cosmopolitan Cre-

taceous to [Recent] family Cribrilinidae.
The candidates could be manually labelled as positive or nega-

tive for downstream use as part of a fossil occurrence dataset.

By automating this task with a machine-learning classifier, we

can more easily annotate large volumes of data, tackle new

sources of data (e.g. newly published articles or old ones made

available) or apply the classifier to other groups of taxa. The

machine-learning classifier learns from examples (a supervised

learning approach, see the next section). Two human annotators

manually labelled 10 416 candidates, 1000 of which were labelled

by both persons. These annotators were not taxonomists or

bryozoologists, but had basic degrees in biology, understood

the Linnaean classification system and had geological

knowledge sufficient to recognize stratigraphic age units. For

candidates where the annotators disagreed, we assigned a posi-

tive or negative label at random (see electronic supplementary

material). These resulting human-annotated data are our labelled

candidates, each with a corresponding gold label.
This labelling of candidates in the context of retrieved sen-

tences takes much less time than an approach that starts with

reading through numerous papers or monographs to find the

relevant data wherever it might occur in the text and

subsequently entering each separate taxon name and age.

(e) Machine-learning classifier
In order for a machine-learning classifier to retrieve the semantic

relationship between two spans in a sentence, we characterized

features of the sentence’s elements. We described the links

among words [19] using pre-trained machine-learning models

for English dependency grammar in CoreNLP [43]. We used the

dependency grammar tree to compute the shortest dependency

path (SDP) between the two spans [22,44], as illustrated in elec-

tronic supplementary material, figure S4. The resulting SDPs

from the labelled candidates and their gold labels were then

used to train a supervised machine-learning classifier (figure 1b),

specifically a Long Short-Term Memory recurrent neural network

or LSTM [45] implemented similarly to Xu et al. [22].

To summarize, our neural network consists of three layers: a

word embedding layer, a bidirectional LSTM layer and a third

hidden layer (figure 1b). The output of the third and final layer

is a vector of length two, which represents the probability mass

for our relation classification task. We used Keras [46] to

implement this neural network (see electronic supplementary

information for details).

We split the labelled candidates into training, validation and

test sets (80, 10, 10% of the labelled candidates, respectively).

The training data were used to fit the parameters of the classi-

fier. The validation data were used for two purposes, to

decide when to stop training, and to hand-tune the hyperpara-

meters (e.g. the layer dimensions and learning rates, see

electronic supplementary information for details). We used the

test set to evaluate classifier performance. We employed metrics

that are standard in binary classification problems [47] to evalu-

ate model performance: accuracy (the ratio of correct predictions

to all predictions), precision (the ratio of true positive predic-

tions to all positive predictions), recall (the ratio of true

positive predictions to all positive labels), false positive rate

(FPR, the ratio of false positive predictions to all negative

labels) and F1 (the harmonic mean of precision and recall). In

classification problems such as ours, a decision boundary

divides the decision space into categories. Here, the outputs of

our classifier are in the interval [0,1], and we set our binary

decision boundary (b) to 0.5 unless otherwise stated. If we

assume that the test set is representative of the unlabelled can-

didates, the performance of the classifier on the test set will



1.0

re
ca

ll

0.8

0.6

0.4

0.2

0

0 1.000.750.50
false positive rate

0.25

b = 0.95

b = 0.50

Figure 2. Receiver operating characteristic curve. The rates for the relation
classifier are evaluated on the test set. Ninety-nine iterations are plotted
in grey, and the one in black is chosen at random. b ¼ 0.50 is the standard
decision boundary, and b ¼ 0.95 represents false positive rate of 5%. The
area under the black curve is 0.90. The dashed line represents the expected
rates given a random classifier.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190022

4
approximate how well it classifies the unlabelled data. As an

indicator of the estimation error of the above-mentioned

metrics, we fitted the neural network 100 times with the same

hyperparameters and report their mean+ s.d. evaluated on

the test set. To avoid confounding effects of similar sentences

in a given document, we ensured that all candidates found in

a single document were contained within only one of the sets

used for training, validation, and testing. We used the relation

classifier to automatically label remaining candidates. As there

were some duplicates among these remaining candidates, we

estimate that there were about 10 000 unique unlabelled ones.

( f ) Cheilostome palaeodiversity
In order to compare text-mined taxonomic richness through geo-

logic time with previous publications, we considered only

genera, even though we also text-mined full binomials. After

the relation extractions of genera or binomials and geologic

ages, we performed several steps of post-processing. We used

Macrostrat [35], supplemented in a few cases by online lookups,

to obtain the minimum and maximum ages of each named

time interval. As genus names are commonly abbreviated (e.g.

‘C. punctata’) after their first mention in a text section, we

performed a de-abbreviation step by doing a lookup of genus

names in the previous 15 sentences, that begin with the

capitalized letter in the abbreviation. The abbreviated genus

names were successfully de-abbreviated in about 80% of the

candidates without a full genus name (electronic supplementary

material, figure S2). Biodiversity compilations must account for

invalid names, synonymizations and related historical artefacts

of the literature, reflecting taxonomic revisions. Our cheilostome

genera were standardized and revised to valid ones as far as

possible using WoRMS [12] and data from two of its primary

contributors and editors—Bock [34] and Gordon (Dennis

P. Gordon, personal communication, 2018), who is maintaining

the most recent working document of the Treatise on Invertebrate

Paleontology, Part G: Bryozoa [48]. Species-level synonymies are

not treated here.
3. Results and discussion
(a) Gold label annotation repeatability
We estimated an accuracy of 84.1% between the decisions

made by the two human annotators for the mutually exam-

ined gold labels. This inter-annotator accuracy is a joint

measure of noisy data, language ambiguity, human error

and degree of conservatism by the annotators. Examples of

noisy data include tables parsed as paragraphs, incorrect

sentence boundaries, errors in optical character recogni-

tion and incomplete sentences such as those found in

figure captions. We interpret the annotator repeatability as

a workable baseline when judging the performance of the

machine-classifier. Similar inter-person accuracy estimates

have been reported in analogous human error assessments

made by Peters et al. [18]. We also note that human error

rates in data compilations are rarely explored quantitatively

and never modelled in palaeobiological analyses on large

datasets compiled from the literature (e.g. [49,50], but see

[51] for an exceptional investigation of such errors).

(b) Classifier performance
The relation classifier applied to our test set achieved a recall

of 88.0+ 1.5%, accuracy of 82.2+ 0.8%, precision of 82.8+
1.3% and an F1 of 85.3+0.6%. Figure 2 illustrates the
trade-off between recall and the occurrence of false positives.

The classifier accuracy at 82.2% is comparable to our inter-

annotator labelling accuracy at 84.1%. Since human and

machine accuracies are comparable, yet both far from perfect,

we suggest that machine-reading performance is more limited

by the ambiguousness of the data and annotator scoring abil-

ity than by the classification algorithms. In other words,

repeatable candidate labelling is probably a major bottleneck

for accurate machine-based relation classification. Whether

the types of machine-classification errors overlap substantially

with human-annotator errors remains an open question. While

we do not know if our inter-annotator accuracy is representa-

tive of the human accuracy involved in manually populating

similar knowledge databases (e.g. the Paleobiology Database),

we have no reason to believe that repeatability in manual

data-entry is substantially better or worse.

Incomplete fossil preservation, biased sampling and

selective reporting of data in publications can all contribute

to gaps in compiled databases. However, there are diverse

approaches that model sampling probabilities or account

for sampling incompleteness in the estimation of species rich-

ness [52,53] or diversification dynamics [4,5,7,31]. False

negatives from machine-read texts are analogous to the

above-mentioned gaps in compiled databases in terms of

our ability to alleviate their effect in inferring past richness

patterns and dynamics. False positives, however, falsely

inflate estimates of taxonomic richness and we do not cur-

rently have modelling approaches to deal with this bias. To

minimize the impact of false positives in our text-mined

data, we constrained the predictions to have a relatively

low FPR while maintaining a relatively high recall, as

shown in the next section.
(c) Genus richness counts
We used our text-mined predictions as well as the list of

extant genera from the World Register of Marine Species

[12] to produce a joint dataset from which range-through

cheilostome genus richness is determined for successive

time intervals over the past 160 Myr (figure 3). We set the

decision boundary (b) to obtain a balance between relatively



Jurassic Cretaceous Palaeogene Neo. Q.
250

no
. o

bs
er

ve
d 

ge
ne

ra

0

50

100

150

200

160 020406080
time (Ma)

100120140

QQ

Taylor & Waeschenbach [29]
text-mined data

Figure 3. Range-through genus richness for cheilostomes. The curve from
Taylor & Waeschenbach ([29], fig. 12) was obtained using a plot digitizer
[54]. Our richness counts are supplemented with extant observations from
WoRMS [12]. We used bins that are comparable with the bins used by
Taylor & Waeschenbach [29]. The false positive rate evaluated on the test
set is 27%. The geologic ranges for all genera are detailed in the electronic
supplementary material, table S2. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190022

5

low FPR (25.9%) and high recall (88.1%). The FPRs are esti-

mated for the test dataset. The net FPR is smaller than

what is reported in figure 3. This is because some portion

of candidates overlap with the training data, for which the

classifier is comparably overfitted (FPR ¼ 8.2+ 4.2%,

recall ¼ 97.8+1.0% for training data). However, the range-

through genus counts are similar for subsets of data with

FPR between 0.25 and 1 (electronic supplementary material,

figure S6), indicating that the false positives are mostly

adding to ‘internal occurrences’ rather than contributing to

geologic range extensions (see electronic supplementary

information, error inspections). In a previous, more compre-

hensive error-correction experiment using trilobites [51], the

authors found that even after extensive corrections to geolo-

gic ranges and taxonomic nomenclature, the impact on

genus richness counts through time was negligible.

The relative changes in our text-mined cheilostome genus

richness curve (figure 3) are similar to those in a recently pub-

lished review of bryozoan history [29], fig. 12), although our

range-through genus counts are currently underestimates of

that work. Genus richness increased in the Cenomanian

(100.5–93.9 Ma) and steepened through the late Cretaceous

(100–66 Ma), with a second diversification beginning in the

Eocene (56–33.9 Ma). These trends are evident in both

curves, as is the sharp decline in genus richness at the K-Pg

extinction event and the end of the Danian around 62 Ma

[55]. An advantage of our newly acquired occurrence-based

dataset is that we now have multiple observations for most

genera, including explicit literature sources. Such an occur-

rence-based dataset is amenable to taxonomic updates by

systematists and consequently, revisions to inferred histories

regardless of the approach applied. More beneficially, it

facilitates the use of modern approaches to estimate richness

patterns and diversification rates while accounting for

incomplete sampling and sampling heterogeneity. These

extensive analyses are outside the scope of the current

work. However, the pipeline presented here will aid in

paving the way for a more robust and nuanced inference

of bryozoan palaeodiversity.
(d) Common problems
While there are substantial advantages to text-mining genus/

species age-observation data, we recognize several avenues

for improvement in this study. Other problems and avenues

that we do not discuss may become relevant as developments

in machine-reading approaches unfold, as this field is in its

infancy concerning applications to biodiversity studies.

First, there are substantial amounts of historical and recent lit-

erature in languages other than English, notably French,

German, Spanish, Italian, Japanese and Russian. While the

text-mining task is conceptually similar regardless of the

language, natural language processing tools are more

advanced and accurate for high-resource languages such as

English and Chinese [13]. Specialized tools (e.g. named-entity

recognition, dependency grammar and relation classifiers) are

typically tailor-made for a specific language, meaning that

adding other languages effectively multiplies the effort

required for automatic information extraction.

Second, our text-mining pipeline is entirely reliant on

grammatically structured, isolated, single (complete or

incomplete) sentences that describe the taxa and their ages.

We do not take into account contextual information, e.g.

linguistic coreference [56] among sentences. Similarly, taxo-

nomic treatments are an example of extreme context

dependence, where genera or species typically are given in

headlines followed by concise descriptions in the following

paragraphs. Thus, many taxonomic descriptions are not

based on grammatical information but rather the spatial

layout of paragraphs and typefaces of words in the

article—both of which are ignored by our approach. More

specialized tools are required to process taxonomic

treatments more effectively.

Third, we neglect information in tables and figures apart

from their captions. Govindaraju et al. [57] demonstrated

how combining natural language and tables could improve

information extraction. However, this is conditional on a

machine-readable data structure for tables, and table

extraction from PDFs remains difficult to achieve with

accuracy at this time [58].

A fourth problem is one of optical character recognition

errors (e.g. incorrectly parsing a letter, or parsing words as

letters separated by whitespace). Text normalization has been

employed to handle similar problems in social media corpora

[59,60]; however, normalization may also remove or distort

information, and it remains to be tested on taxonomic litera-

ture. Correct parsing of words and paragraphs is inherently

limited by design choices in the PDF standard. Publishers

are becoming increasingly aware of this problem; for instance,

Elsevier provides researchers with machine-readable plain text

or XML (Extensible Markup Language) formats of their

articles through their text and data mining initiative.

Any of these above-mentioned problems may contribute

to our underestimations in comparison with Taylor &

Waeschenbach [29], even though any data compilation of

fossil occurrences will always be incomplete due to both the

nature of the fossil record and the process of fossil recovery.

(e) Outlier inspection
In addition to false negatives that may contribute to underes-

timations, we also have false positives, some of which are

temporal outliers. While most genera have reasonable esti-

mated time spans (73% under 25 Myr), there are some
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genera that exhibit suspiciously long time spans (electronic

supplementary material, figure S3). False positives that con-

tribute to internal occurrences of taxon stratigraphic ranges

are simultaneously less problematic but more difficult to

remove from machine-read data. We inspect and discuss

some of the stratigraphic outliers in the electronic supplemen-

tary material, figure S3. Some of the errors we found could

have been avoided by setting a slightly more conservative

FPR when sub-setting the data before analysis. Another

type of false positive arises from taxonomic ambiguities.

For instance, the genus Callopora is an accepted name for a

Cenozoic cheilostome named by Gray [61]. However, we

have mined data from Ernst & Nakrem [62] who referred to

a historical mention of Callopora Hall [63] in their discussion

of a Palaeozoic trepostome. Such an issue could in principle

have been avoided by using author names for genera or

species. However, author names are not always consistently

supplied in-sentence and are often given in a different font

or typeface, which is problematic for text parsing. In other

words, knowledge of taxonomic practice in general and the

taxonomy of the group in question is still crucial for an

informed usage of machine-compiled data. We have in fact

not dealt with species-level synonyms in this contribution

because of the immensity of the task. However, past studies

of fossil biodiversity have shown that taxonomic revisions

do not necessarily change the nature of global scale patterns

when datasets are sufficiently large [51,64].

( f ) Concluding remarks
During the course of this work, it was clear that publications

containing useful information on relatively understudied

organisms such as Bryozoa remain difficult to locate without

expert knowledge. In order to understand both past and pre-

sent biodiversity, we need continued training and support of

taxonomic experts [65,66]. Automating some information
retrieval tasks will save time and allow taxonomists to

focus on other tasks where their expertise is essential, such

as describing new species and revising old names.

We believe that the pipeline presented here can be easily

adapted for other groups of organisms, likely without

taxon-specific gold labels, to build and augment large knowl-

edge-bases of fossil occurrences. While human-vetted

databases may be superior taxonomically, they are expensive

to curate and maintain, and their data sources are sometimes

difficult to trace, unlike our text-mined data. Faced with a

growing literature and diminishing person-power and

funding, machine-reading approaches can complement

vetted databases by targeting knowledge gaps and hence

contribute to understanding large-scale biodiversity changes

and evolutionary dynamics. The machine-read fossil occur-

rence data presented here captured major palaeodiversity

patterns in cheilostome bryozoans, despite varied sources of

error that are generally inherent in large databases.
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