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Mitochondrial regulation of energy production, calcium homeostasis, and cell death are
critical for cardiac function. Accordingly, the structural and functional abnormalities of
these organelles (mitochondrial dysfunction) contribute to developing cardiovascular
diseases and heart failure. Therefore the preservation of mitochondrial integrity is
essential for cardiac cell survival. Mitochondrial function is regulated by several proteins,
including GRK2 and β-arrestins which act in a GPCR independent manner to orchestrate
intracellular signaling associated with key mitochondrial processes. It is now ascertained
that GRK2 is able to recover mitochondrial function in response to insults. β-arrestins
affect several intracellular signaling pathways within the cell which in turn are involved in
the regulation of mitochondrial function, but a direct regulation of mitochondria needs
further investigations. In this review, we discuss the recent acquisitions on the role
of GRK2 and β-arrestins in the regulation of mitochondrial function.
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MITOCHONDRIAL FUNCTIONS IN DAMAGED HEART

Known as “powerhouse” of the cell, mitochondria play essential roles in all human tissues, especially
in those that are highly dependent on energy supply such as kidney, skeletal muscles, and
myocardium. This latter, in particular, is the most metabolically active organ in the body. Its
intense energy demand, needed to generate the contractile force, is supplied through the oxidative
metabolism in mitochondria (Schaper et al., 1985; Barth et al., 1992; Hoppel et al., 2009). Therefore,
it is not surprising that alterations of mitochondrial functions lead to the development of cardiac
pathologies or susceptibility to injury. Indeed, mitochondrial dysfunction has been identified as
the cause or a contributing factor in several heart diseases, thus several cardiac disorders, such
heart failure, are currently defined “bioenergetic disease” (Murphy et al., 2016). However, beyond
the regulation of energetic metabolism, mitochondria are now recognized to orchestrate multiple
essential functions within the cell (Dorn, 2015). They sense smooth endoplasmic reticulum (ER)
calcium release to modulate their metabolism and increase contractility (Chen et al., 2012; Dorn
and Maack, 2013; Dorn, 2015). They are the main source of reactive oxygen species (ROS) to exert
both physiological functions and pathological damage (Eisner et al., 2013). Moreover, mitochondria
are the “gatekeepers” of programmed cell death (apoptosis and necrosis) (Wei et al., 2001; Whelan
et al., 2012; Dorn, 2015). Also, these organelles are involved in the regulation of cardiomyocyte
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differentiation and embryonic cardiac development (Kasahara
et al., 2013; Cho et al., 2014; Dorn, 2015). Thus, mitochondria
exert both “energetic” and “non-energetic” functions (Figure 1)
whose perturbations contribute to cardiac dysfunction
(Rosenberg, 2004).

Energetic Metabolism
Several pieces of evidence support the idea that heart failure
is a “bioenergetic diseases” associated with a loss of energetic
supply (Neubauer et al., 1997; Ingwall and Weiss, 2004).
Indeed, by means of nuclear magnetic resonance (NMR), it has
been shown that a significant reduction of cardiac ATP and
phosphocreatine (PCr) content occurs in patients with heart
failure (Starling et al., 1998; Beer et al., 2002). Experimental
models of heart failure show that impaired energetic metabolism
leads to heart damage (Ciccarelli et al., 2011). In physiological
conditions, the myocardium is characterized by an intensive
ATP intake and turnover (Balaban et al., 1986) that is regulated
by phosphocreatine levels, produced by mitochondrial creatine
kinase (Ingwall et al., 1985; Soboll et al., 1999). In basal
conditions, two forms of this enzyme (active and inactive) are
in dynamic equilibrium and when this equilibrium is altered,
results in impaired control of respiratory chain activity and
reduction of mitochondrial ATP production (Ashrafian, 2002).
Moreover, a significant reduction of individual electron transport
complexes I and IV has been described in humans and animal
model of heart failure (Lemieux et al., 2011; Rosca et al.,
2011),associated with a reduction of functional super-complexes
(Rosca et al., 2008). Defects in the mitochondrial respiratory
chain have been observed both in early stage and end-stage of
chronic heart failure (Lemieux et al., 2011). All these evidence
confirm the involvement of impaired energetic metabolism in the
development and progression of cardiac disease.

Mitochondrial ROS Production
Mitochondrial respiration through the electron transport chain
(ETC) activity drives ATP synthesis and ROS production.
In a healthy heart, the generation of superoxide radical is
effectively neutralized by superoxide dismutase (Boveris et al.,
1976). MnSOD silencing, the main mitochondrial antioxidant
enzyme, is known to produce dilated cardiomyopathy leading
to early postnatal death (Fukai and Ushio-Fukai, 2011). When
mitochondrial respiration is compromised, decreased ATP
production and increased oxidative stress occur (Lesnefsky
et al., 2001). Elevated levels of ROS are able to induce
oxidative modifications of specific mitochondrial proteins
(Complex I and II, and Aconitase) that further stimulate
ROS production in a vicious circle (Chen and Zweier,
2014). Moreover, a compromised antioxidant capacity also
contributes to mitochondrial-mediated oxidative stress. The
high levels of mitochondrial ROS induce alterations of main
signaling pathways through oxidative modifications of important
proteins such as cardiac ryanodine receptor (RyR2); indeed, the
oxidation of this receptor alters its conformation and function
contributing to the development of arrhythmias or heart failure
(Oda et al., 2015).

Mitochondrial Dependent Apoptosis
It is ascertained that mitochondria, the primary sensor of
metabolic stress, activate the programmed cell death. The
mitochondria-dependent activation of apoptotic processes occurs
in response to irreversible damage induced by intense or
perpetuate metabolic stress (i.e., during acute or chronic
ischemia) (Chistiakov et al., 2018). Such a condition increases
mitochondrial permeability leading to cytochrome c release
from mitochondria to the cytosol thus activating apoptosis
(Karbowski et al., 2002). Besides this classical pathway, there
are also other mechanisms by which mitochondria activates cell
death in the failing heart (Dorn and Kirshenbaum, 2008; Dorn,
2010). During cardiac ischemia, a mitochondrial serine protease,
known as high-temperature requirement A2 (HtrA2), is also
released from mitochondria and promotes caspase activation and
apoptosis (Dorn and Kirshenbaum, 2008; Piquereau et al., 2013).
Several pieces of evidence suggest that abnormal cardiomyocyte
apoptosis also occurs in both animal models and humans with
arterial hypertension. Under this pathological stress, a functional
cross-talk between death receptors pathways and mitochondrial-
dependent apoptosis has been described, that is mediated by
the Bcl2 family (Gonzalez et al., 2003). In addition, alterations
of the mitochondrial apoptotic pathway have been described
in both hypertrophic and dilative cardiomyopathy (Harvey and
Leinwand, 2011). Overall the loss of cardiomyocytes due to
apoptosis dysregulation is detrimental to cardiac function, and
all recent studies support the key role of mitochondria in
such phenomenon.

Mitochondrial Dynamics and Turnover
Mitochondrial fusion, fission, and trafficking, collectively
called “mitochondrial dynamics”, are the regulators of
Mitochondrial Quality Control, an essential process that
preserves mitochondrial function and ensures cell survival (Ni
et al., 2015; Shirihai et al., 2015; Sorriento et al., 2017). This
process includes several mechanisms (Shirihai et al., 2015):

(a) fission/fusion, that allows segregation of damaged
mitochondria;

(b) mitophagy, that removes the irreversibly damaged
mitochondria;

(c) mitochondrial biogenesis, that ensures the generation of
new intact mitochondria and new mtDNA molecules.

Perturbations of one or more of these mechanisms culminate
in altered mitochondrial architecture and function. In failing
heart, structural changes in mitochondria have been frequently
observed, including giant mitochondria due to excessive
mitochondrial fusion (Tandler et al., 2002). The balanced
equilibrium between fusion and fission is switched toward fission
during ischemia. Indeed, the up-regulation of dynamin-related
protein 1 (Drp1), a key activator of mitochondrial fission, induces
prominent mitochondrial fragmentation that in turn leads to
loss of mitochondrial potential and apoptosis (Karbowski et al.,
2002; Ong et al., 2010). Moreover, alterations in mitochondrial
fragmentation or hyperplasia resulting from compromised
fission/fusion balance have also been described in human and
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FIGURE 1 | Energetic and non-energetic functions of mitochondria.

animal model of heart failure (Sabbah et al., 1992; Goh et al.,
2016). The irreversibly damaged mitochondria are cleared in the
cardiac cells by effective mitophagy, a tightly regulated process.
In a healthy heart, PINK1 localizes on mitochondrial surface
promoting parkin-dependent ubiquitination of MFN2 with
the recruitment of several autophagy adaptors and formation
of autophagosome around damaged mitochondria (Karbowski
et al., 2002). Alterations in this pathway have been described
in several cardiac diseases such as ischemic heart disease,
cardiac hypertrophy, heart failure and dilated cardiomyopathy
(Chistiakov et al., 2018). The mechanisms that lead to alterations
in mitochondria clearance are not completely understood. Likely,
an excessive autophagy occurs during acute cardiac injury leading
also to the loss of functional organelles. On the contrary,
mitophagy flux is reduced during the late stages of cardiac
diseases thus promoting accumulation of damaged mitochondria,
severe oxidative stress and cardiomyocytes apoptosis (Campos
et al., 2016). Indeed, a reduction in autophagic activity is
associated with poor prognosis of patients with heart disease
(Campos et al., 2016). Beside the management of pre-existent
mitochondria, also the de-novo synthesis of these organelles

seems to be compromised in failing hearts. Replication of mtDNA
is significantly impaired in heart failure resulting in depletion
of mt-DNA-encoded proteins and in altered mitochondrial
biogenesis (Karamanlidis et al., 2014). All these pieces of evidence
suggest that mitochondrial turnover is a common compromised
process in cardiac dysfunctions, pointing to another aspect of
mitochondrial biology with a key role in cardiomyocyte function
and survival.

GRKS AND β-ARRESTINS: THE
NON-GPCR SIGNALING

G Protein-CoupledReceptor (GPCR) Kinase (GRKs) and
β-arrestins are key regulators of GPCR signaling (Ferguson,
2001; Kohout and Lefkowitz, 2003; Santulli and Iaccarino,
2016; Sorriento et al., 2016). Indeed, GRKs are recruited
to the plasma membrane when the receptor is activated by
agonist binding. Here, GRKs phosphorylate GPCRs favoring
the recruitment of β-arrestin which in turn promotes rapid
receptors desensitization or their clathrin-mediated endocytosis
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and internalization (Ferguson et al., 1996; Goodman et al., 1996;
Ferguson, 2001; Pierce et al., 2002; Lefkowitz and Shenoy, 2005).
Several evidence endorse the proof of concept that GRKs and
β-arrestins also regulate intracellular signaling independently
from GPCR by affecting non-GPCR receptors or by direct
interaction with target molecules (Kang et al., 2005; Ma and
Pei, 2007; Penela et al., 2010; Evron et al., 2012). Among
GRKs, GRK2 is emerging as a key node in signal transduction
pathways, displaying a very complex “interactome” (Penela
et al., 2010). β-arrestins also function as scaffold proteins that
interact with several cytoplasmic molecules (DeFea et al., 2000;
McDonald et al., 2000) or interact in the cytosol with regulators
of transcription factors, such as IκBαand MDM2,to regulate
transcription indirectly (Wang et al., 2003; Luan et al., 2005).
Thus, these molecules are able to regulate several key processes
within the cell in a GPCR-independent manner, affecting cell
biology both in physiological and pathological conditions.

The functional cross-talk between mitochondria and other
cellular compartments has been shown to regulate mitochondrial
function (Hajnoczky et al., 2000; Galganska et al., 2010;
Viola and Hool, 2010; Li et al., 2018). This interplay has
a key physiological role, placing the mitochondria under
the regulation of extracellular stimuli and thus ensuring the
adaptation of mitochondrial activity to environmental needs.
This functional cross-talk is regulated through the activity of
several proteins, among whichGRK2 and β-arrestins are potential
candidates. Indeed, these molecules are able to move among
different compartments and interact with different partners
thus interfering with the mitochondrial signaling transduction
pathway. GRK2 and β-arrestins regulate mitochondrial function
in cardiac cells through mechanisms which are independent
of GPCR signaling. This issue was only recently investigated
but several data have already been generated with important
translational implications.

GRK2: A Dynamic and Multifunction
Protein
GRKs are critical regulators of cardiac function both in
physiological and pathological conditions. Among them, GRK2
and GRK5 are the most abundant G protein-coupled receptor
kinases in the heart. In particular, GRK2 is essential for cardiac
health. Indeed, the ablation of GRK2 gene in myocytes affects
cardiac phenotypes in adulthood leading to a prevalent eccentric
remodeling after chronic exposure to β adrenergic stimulation
(Matkovich et al., 2006; Sorriento et al., 2015). Moreover, the
total deletion of the kinase is lethal by preventing the correct
development of the cardiovascular system in prenatal life (Raake
et al., 2012). This developmental importance of GRK2 also
concerns the endothelium. Indeed, the deletion of GRK2 in
endothelial cells resulted in alteration of vascular phenotype
and integrity, due to an increase of inflammation and oxidative
stress (Ciccarelli et al., 2013; Rivas et al., 2013). Conversely,
the deletion of GRK5 does not affect heart function but even
ameliorates cardiac responses to insults (Hullmann et al., 2014).
These data suggest that even though these kinases are both
involved in the regulation of cardiac biology, GRK2 is the

one fundamental for cardiac cell survival both in physiological
and pathological conditions. It is clear that this effect could
not be limited to the regulation of GPCR activity on plasma
membrane where kinase effects seem, on the contrary, to trigger
and sustain the development of heart failure (Lymperopoulos
et al., 2012). That’s the reason why in the last decade research
focused on the identification of other kinase activities within
the cell which were independent of GPCR. A previous report
from Mayor group clearly summarizes the novel identified
GRK2 substrates and their functional roles in several conditions
(cardiovascular diseases, inflammation, cancer) (Ribas et al.,
2007; Penela et al., 2010). GRK2 has been shown to associate with
PI3K, GIT, caveolin, MEK, AKT, α-actinin, clathrin, calmodulin,
c-SRC, PKA, PKC, IkBα, and RKIP, regulating different signal
transduction pathways within the cell (Ribas et al., 2007;
Sorriento et al., 2015). Moreover, GRK2 can also interact with
non–GPCR receptors, such as Ins-R, PDGF-R, and EGF-R
(Hupfeld and Olefsky, 2007; Cipolletta et al., 2009).

Based on these findings, the idea that GRK2 is a dynamic
molecule, that moves within the cell depending on cell
requirements, started to take ground (Sorriento et al., 2014;
Sorriento et al., 2016) suggesting that the regulation of GRK2
trafficking within the cell could be a potential strategy to
regulate the adaptative effects of the kinase on cell functions
(Sorriento et al., 2014).

β-Arrestins and the Signalosomes
Besides their cardioprotective role through means of GPCR
desensitization, common acquisitions suggest that β-arrestins
also function as GPCR signal transducers (Luttrell and Lefkowitz,
2002). They directly initiate signaling through the formation of
multiprotein signaling complexes, known as a “signalosomes,”
in which they act as scaffolds, adaptors, and signal transduction
proteins (Lefkowitz et al., 2006). They can form complexes
with several signaling proteins, including Src family tyrosine
kinases and components of the ERK1/2 and JNK3 MAP kinase
cascades (DeWire et al., 2007; Kang et al., 2014). Moreover,
β-arrestins can also regulate gene transcription in the nucleus.
Indeed, they are able to interact with IkBα and sequester
the complex IkBα-NFkB in the cytosol, thus inhibiting NFkB
transcription activity (Witherow et al., 2004). More than 300
proteins have been identified that interact with β-arrestins with
multiple implications in most key processes within the cell
(Xiao et al., 2007). These proteins are mainly localized in the
cytosol but they are also distributed in other compartments
including mitochondria.

GRK2 DEPENDENT REGULATION OF
MITOCHONDRIAL FUNCTION

Energetic Metabolism and Mitochondrial
Dynamics
Among the novel functions of GRK2, in the last decade, the
potential role of the kinase in the regulation of the metabolic state
of the cell emerged (Cipolletta et al., 2009; Sorriento et al., 2014).
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The evidence comes from the demonstration that GRK2
accumulation leads to the shut-off of insulin signaling and
inhibits glucose extraction (Usui et al., 2004; Cipolletta et al.,
2009; Ciccarelli et al., 2011). In the cardiovascular setting, given
the key role of mitochondria to supply the energy need of the
heart and the importance of GRK2 for cardiac biology, research
also focused on the identification of a potential role of GRK2 in
the regulation of energy metabolism leading to the discovery of
GRK2as key mediator of production and expenditure of energy
within the cell (Fusco et al., 2012; Chen et al., 2013). The first
evidence of GRK2 localization at mitochondria comes from the
study of Obrenovich’s group in a rat model of Alzheimer disease
(Obrenovich et al., 2006). In the early pathogenesis of Alzheimer
Disease and in ischemia-reperfusion brain injury models, GRK2
accumulates in damaged mitochondria, suggesting a role for
the kinase in this organelle. However, Fusco and colleagues
were the first who effectively identified the kinase role in
mitochondria (Fusco et al., 2012). Indeed, they showed that the
overexpression of this kinase increased mitochondrial mass, ATP
production and mitochondrial biogenesis (Fusco et al., 2012).
Ischemia causes acute accumulation of GRK2 in mitochondria
both in vitro and in vivo, and reperfusion reverted such effect. The
overexpression of the kinase protects ATP production even after
hypoxia/reperfusion damage (Fusco et al., 2012). This suggests
a potential role of the kinase in energy production, which is
particularly relevant for tissues that need a great amount of
energy to work well, such as the heart. Successively, other reports
confirmed that GRK2 localizes into mitochondria. Indeed, Chen
showed that both in hearts in vivo and in cultured myocytes,
GRK2 localizes into mitochondria after an ischemia-reperfusion
insult. The authors also propose a potential mechanism by
which the kinase is able to traffic to mitochondria (Chen et al.,
2013). In particular, they demonstrate that phosphorylation
at residue Ser670 within the carboxyl-terminus of GRK2 by
extracellular signal-regulated kinase (ERK) allows GRK2 to bind
the heat shock protein 90 (HSP90), which chaperones the
kinase to mitochondria (Chen et al., 2013). Accordingly, the
same Authors also show that a mutant form of GRK2, that
cannot bind HSP90, does not localize to mitochondria (Sato
et al., 2018). Mitochondrial localization of the kinase is not
limited to cardiac cells. Indeed, we demonstrated that GRK2
localizes into mitochondria of macrophagic cells in a time-
dependent manner and an early translocation supports the cell
to better respond to LPS dependent mitochondrial dysfunction
(Sorriento et al., 2013). In these cells, the overexpression
of the carboxy-terminal domain of GRK2 (βARK-ct), known
to displace GRK2 from plasma membranes, induces earlier
localization of GRK2 to mitochondria in response to LPS
leading to increased mt-DNA transcription and reduced ROS
production and cytokine expression (Sorriento et al., 2013).
These data confirm that the mitochondrial localization of
GRK2 ameliorates mitochondrial function, as shown in other
models (Fusco et al., 2012). Accordingly, Franco recently showed
that the overexpression of GRK2 protects mitochondria from
the damage induced by ionizing radiation. Indeed, GRK2
favors the rescue of mitochondrial mass, morphology, and
respiration (Franco et al., 2018). On the opposite, the kinase

deletion accelerates degenerative processes induced by the
exposure to ionizing radiation. This evidence clearly supports
the idea that GRK2 is beneficial for mitochondrial function
and is effective to protect mitochondria from insults. The
mechanism involves a novel “interactome” of GRK2 which
includes HSP90, as also previously demonstrated (Chen et al.,
2013), and molecules involved in the regulation of mitochondrial
dynamics, mitofusins (MFN-1 and MFN-2) (Franco et al., 2018).
GRK2 dynamically binds MFN-1/2 by means of HSP90 and
phosphorylates these molecules affecting mitochondrial fusion
(Franco et al., 2018). MFN-1 and 2 are key regulators of
mitochondrial fusion and fission processes that are critical for
cardiac health (Santel, 2006). Recently, it has been demonstrated
that these molecules can adopt either a fusion-constrained or
a fusion-permissive molecular conformation that allows them
to regulate mitochondrial dynamics (Franco et al., 2016). The
imbalance between fission and fusion causes mitochondrial
dysfunction. The finding that GRK2 is able to phosphorylate and
activate these molecules suggest its involvement in mitochondrial
dynamics and biology. This is the first finding regarding a
phosphorylation-dependent regulation of the activity of the
mitofusins. Likely, GRK2 by phosphorylating mitofusins can
orchestrate mitochondrial dynamics. However, further data are
needed to support this hypothesis.

Apoptosis
Even though all in vitro findings strongly support a protective
effect of GRK2 in damaged mitochondria, other reports, on the
contrary, suggest a pro-death role of the kinase in this organelle.
Indeed, in cardiac myocytes, the inhibition of GRK2 increased
ATP production whereas the overexpression of the kinase
increased oxidative stress and negatively regulated FA oxidation
(Sato et al., 2015). Moreover, mitochondrial GRK2 is reported
to promote cell death in ischemic myocytes and its inhibition
by means of βARKct is reported to be cardioprotective.(Chen
et al., 2013; Woodall et al., 2014). Conversely, the same authors
previously published that this pro-apoptotic effect of GRK2
was only due to its effects on plasma membrane through the
regulation of AKT signaling, also showing that the treatment
with βARK-ct inhibited such phenomenon (Brinks et al.,
2010). Thus, it is not clear yet whether the effects of βARK-
ct could depend on GRK2 reduction in mitochondria or in
the plasma membrane. Further studies are needed to better
clarify this issue.

Also, the same Authors recently show that a mutant form of
GRK2, that cannot bind HSP90, inhibits kinase localization in
mitochondria and confers protection in response to ischemia-
reperfusion (Sato et al., 2018).

In this context, the disruption of GRK2 binding with HSP90
has been shown to decrease the expression of endogenous GRK2
in a dose- and time-dependent manner (Luo and Benovic, 2003)
and this could justify the cardioprotective role of βARKct and
of GRK2 mutant. Given this evidence, it was expected that both
βARKct and the expression of the mutant form of GRK2 would
cause the total reduction of the kinase within the cell. Actually,
total levels of GRK2 were not modified in both Chen’s and Sato’s
studies which are therefore in contrast with literature. Given these
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discrepancies, the exact role of mitochondrial GRK2 in apoptotic
processes still remains to be clarified.

GRK2 in Mitochondria: Detrimental or
Cardioprotective?
Actually, contrasting evidence exists on the role of GRK2 in
mitochondria. To reconcile these opposing findings, several
considerations are to be taken into account.

(a) Membrane displacement of GRK2 from the plasma
membrane by means of βARKct overexpression does
not mean lack of kinase activity. βARKct reduces GRK2
levels on the plasma membrane but also induces its
localization in other cellular compartments, such as
mitochondria (Sorriento et al., 2013). Giving this notion,
the cardioprotective effect of βARKct in ischemic myocytes
is in agreement with kinase accumulation in mitochondria.

(b) The overexpression is a complex maneuver that drastically
upsets cell biology. Indeed, GRK2 overexpression increased
kinase levels in all cellular compartments, including
plasma membranes, whereGRK2induces apoptotic events
by affecting GPCR signaling. Indeed, GRK2 induces
oxidative stress and apoptosis in cardiac myocytes in the

same manner of beta-adrenergic receptor stimulation, and
kinase inhibition prevents such events (Theccanat et al.,
2016). Thus, GRK2 dependent induction of apoptosis
depends on its levels of expression on membranes being
limited to its effects on GPCR signaling independently
from mitochondria.

(c) Moreover, it should be considered that in response to
insults the cell activates protective mechanisms to avoid
irreversible damage. Mitochondrial fission, for instance,
is activated to better respond to stress conditions by
eliminating damaged mitochondria and restoring the
normal cell activity. The apoptosis is a programmed cell
death that is induced when cell damage is irreversible.
Therefore, GRK2 dependent cell death could not be strictly
dependent on a deleterious action of the kinase but
would rather be the result of an advanced and irreversible
mitochondrial damage that GRK2 is not able to stop.

(d) Timing is also a critical point to take into account.
Indeed, the protective role of GRK2 has been shown in
response to acute insults but the chronic responses in
animal models could be different and negatively affect
mitochondrial biology due to continuous activation of
intracellular signaling.

FIGURE 2 | GRK2 activities in mitochondria.
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Thus, altogether these findings support the proof of concept
that GRK2 is a dynamic and multifunction protein whose actions
in mitochondria likely aims to protect the cell from irreversible
damage due to external insults (Figure 2). This activity is
especially significant in those conditions, such as heart failure,
characterized by remarkable mitochondrial dysfunction. Thus,
the possibility to specifically deliver the kinase to mitochondria
(i.e., through means of plasma membrane displacement such as
βARK-ct) appears a promising strategy to recover mitochondrial
function in damaged cardiac cells.

β-ARRESTINS AND MITOCHONDRIAL
ACTIVITY

Among the numerous actions of β-arrestins within the cell,
growing evidence suggests their involvement in the regulation
of mitochondrial function in the heart. In particular, it has
been shown that such proteins interfere with key mitochondrial
processes such as cell death, ROS production, and respiration.
The involvement of β-arrestins in the regulation of apoptotic
processes is very controversial. Indeed, it has been suggested
that these proteins can both promote and inhibit cell death
probably due to different stimuli and cell type. In Mouse
Embryonic Fibroblasts (MEFs), in response to apoptotic stimuli,
β-arrestins are cleaved by multiple caspases at Asp380 generating

a small fragment of 380 amino acids (Kook et al., 2014). This
latter translocates to mitochondria and cooperates with tBID to
induce the release of cytochrome C and consequently cell death
(Youle and Strasser, 2008; Galluzzi et al., 2012). Conversely, in
response to IGF-1 stimulation,β-arrestins mediate the activation
of PI3K with subsequent activation of AKT (Gu et al., 2015).
The PI3-kinase/AKT signaling pathway blocks caspase activity
and consequently apoptosis (Kennedy et al., 1997). Also, in
response to oxidative stressβ-arrestins exert an anti-apoptotic
effect. Indeed, in HEK-293 cells stimulated with H2O2 β-arrestins
bind the C-terminal domain of the Apoptosis Signal-regulating
Kinase 1 (ASK1) inducing its ubiquitination and degradation
by the proteasome (Zhang et al., 2009). Giving these opposing
findings, further data are needed to better clarify the involvement
of β-arrestins in apoptotic processes.

It is known that mitochondria represent the major
intracellular source of ROS. β-arrestins are able to regulate
mitochondrial ROS production (Philip et al., 2015). In
cultured human cardiac fibroblasts isolated from failing
hearts, there is an upregulation of β-arrestins that is
associated with the activation of ERK and subsequent
upregulation of Nox4, an NADPH oxidase able to catalyze
the production of a superoxide free radical. This increase
in oxidative stress promotes collagen synthesis and leads to
myocardial fibrosis (Tsutsui et al., 2011). The overexpression
of β-arrestins by means of adenoviral-mediated gene transfer

FIGURE 3 | Non-GPCR activities of β-arrestins.
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increases mitochondrial superoxide production while the
knockdown decreased ROS production and Nox4 expression
in failing cardiac fibroblasts (Philip et al., 2015). Thus, targeted
inhibition of β-arrestins in cardiac fibroblasts could be an
effective strategy to decrease oxidative stress and fibrosis
in cardiac tissue. Both β-arrestin 1 and β-arrestin 2 are
both expressed in cardiac myocytes but it has been shown
that only β-arrestin 1 is involved in βAR induced ROS
production (J. Zhang et al., 2017). Indeed, the knockdown
of β-arrestin1 inhibited βAR dependent mitochondrial ROS
production while the knockdown of β-arrestin 2 exerted no
effects. The mitochondrial production of ROS in response
to βAR stimulation is activated by two different pathways at
different times. Indeed, this study shows that the cAMP/PKA
pathway is responsible for faster mitochondrial ROS production,
whereas β-arrestin1 signaling is responsible for the slower one
(Zhang et al., 2017).

Among β-arrestins interactome, many proteins participate to
mitochondrial respiration (Gu et al., 2015), including metabolic
enzymes involved in the glycolysis pathway (PK3, GAPDH,
and enolase) and oxidative phosphorylation (ATP synthases
and SDH2) (Xiao et al., 2007). The functional implications
of such interactions are still unknown but likely β-arrestins
interactions with these enzymes could be needed to promote
energy production.

Compared with GRK2, the involvement of β-arrestins in the
regulation of mitochondrial function needs more clarifications.
However, the available findings suggest thatβ-arrestins interfere
with several intracellular signaling pathways which are involved
in the regulation of key mitochondrial processes (Figure 3)
and could be a promising target for the regulation of
mitochondrial function.

CONCLUSION

Several reports support the proof of concept that GRK2
and β-arrestins are able to regulate intracellular signaling in
a GPCR independent manner. These activities affect several
compartments within the cell, including mitochondria. The
involvement of GRK2 in the regulation of mitochondrial function
has been recently identified showing its ability to regulate
ATP content, ROS production, mitochondrial dynamics, and
apoptosis. However, the exact role of the kinase (detrimental
or protective) still remains to be elucidated given the opposing
results from reports on this issue. Overall, we tried to reconcile
these opposing findings pointing to a protective role of GRK2
in mitochondria through its binding to HSP90. Such an effect
has important implications in the onset of cardiovascular disease,
which are characterized by an impaired mitochondrial function.
In this context, β-arrestins are novel identified targets whose
activities in mitochondria are not completely clear yet. Few
studies are available on β-arrestins dependent regulation of
mitochondrial functions thus further investigations are needed.
However, the available ones strongly suggest the involvement of
β-arrestins in the regulation of mitochondrial ROS production
and mitochondrial respiration. The better understanding of the
role of these proteins in mitochondria could have important
implications providing the basis for new therapeutic approaches
to treat mitochondrial dysfunction in cardiovascular diseases.
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