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Abstract

Thanks to the microarray technology, our understanding of transcriptome evolution at the genome level has been considerably

advanced in the past decade. Yet, further investigation was challenged by several technical limitations of this technology. Recent

innovation of next-generation sequencing, particularly the invention of RNA-seq technology, has shed insightful lights on resolving

this problem. Though a number of statistical and computational methods have been developed to analyze RNA-seq data, the

analytical framework specifically designed for evolutionary genomics remains an open question. In this article we develop a new

method for estimating the genome expression distance from the RNA-seq data,which has explicit interpretations under the model of

gene expression evolution. Moreover, this distance measure takes the data overdispersion, gene length variation, and sequencing

depth variation into account so that it can be applied to multiple genomes from different species. Using mammalian RNA-seq data as

example, we demonstrated that this expression distance is useful in phylogenomic analysis.
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Introduction

Despite exciting achievements in transcriptome changes in

genome evolution, mainly based on microarrays (Enard et al.

2002; Caceres et al. 2003; Gu and Gu 2003; Makova and Li

2003; Rifkin et al. 2003; Huminiecki and Wolfe 2004;

Khaitovich et al. 2004; Gu et al. 2005; Gu and Su 2007),

further investigation has been challenged by the availability

of robust gene expression data across a broad range of species

and tissues (Wang et al. 2009). Nevertheless, recent techno-

logical innovations called next-generation sequencing, parti-

cularly the development of RNA-seq technology, have shed

some light to this problem, which can generate tens of

millions of short sequence reads. These reads can be

mapped to each gene through the reference genome or de

novo assembling, enabling researchers to quantify the tran-

scription level in ultra-high resolution (Cloonan et al. 2009;

Morozova et al. 2009; Wang et al. 2009). Indeed, RNA-seq

technology has already made unprecedented advances for

revealing the complexity of transcriptional phenomena,

ranging from the expression profiling, dissection of isoform,

and allelic expression, to the extension of 30-UTR regions,

novel splice junctions, modes of antisense regulation, and in-

tragenic expression (Carninci et al. 2005; Eveland et al. 2008;

Mortazavi et al. 2008; Nagalakshmi et al. 2008; Sultan et al.

2008; Graveley et al. 2010; Trapnell et al. 2010).

The power of RNA-seq in the study of transcriptome evo-

lution was well demonstrated by the recent work of Brawand

et al. (2011). They reported a large-scale RNA-seq analysis of

six mammalian tissues and showed the dynamics of transcrip-

tome evolution that may underlie many phenotypic differ-

ences between species. However, despite many studies in

RNA-seq data analysis (Lu et al. 2005; Robinson and Smyth

2007, 2008; Anders and Huber 2010; Di et al. 2011; Zhou

et al. 2011; McCarthy et al. 2012), statistical methods

designed specifically for evolutionary genomics have not

been well developed. In this article we report a new method

for estimating the genome expression distance based on RNA-

seq data, which has explicit interpretations under the model of

gene expression evolution. Using mammalian RNA-seq data as

example, we show that this expression distance can be used in

phylogenomic reconstruction and related phylogeny-based

expression analysis.
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Materials and Methods

New Methods

Statistical Framework of Transcriptome Evolution

Because RNA-seq technology provides readout counts, the

sampling property is similar to some earlier data types such

as SAGE (Velculescu et al. 1995) or EST (Audic and Claverie

1997; Ewing and Claverie 2000). A variety of statistical meth-

ods were proposed; see Zhou et al. (2011), McCarthy et al.

(2012), and Di et al. (2011) for recent advances and references

therein. Simply to say, these methods considered RNA-seq

overdispersion as well as data normalization to remove nonbi-

ological effects in the data processing, which will be also ad-

dressed in our method.

Though a simple Poisson distribution model p(x; l), char-

acterized by the variance equal to the mean (l), can effectively

handle substantial zero counts, many studies have shown that

RNA-seq counts exhibit a greater variance across biological

replicates than expected (Di et al. 2011; McCarthy et al.

2012). This phenomenon is called overdispersion in statistics.

Among a number of statistical models proposed to remedy

this problem (Lu et al. 2005; Robinson and Smyth 2007, 2008;

Anders and Huber 2010; Di et al. 2011; Zhou et al. 2011;

McCarthy et al. 2012), our study adopts the widely used neg-

ative binomial distribution (NBD). We choose a special form

denoted by p(x; l, o), characterized by the mean parameter

(l) and the overdispersion parameter (o) (see eq. 4 in Data

Processing section). A large value of o indicates a strong over-

dispersion, and vice versa. Wheno¼0, p(x; l,o) is reduced to

the Poisson model.

Next we model the mean parameter l as a random variable

to describe the expression variability among genes. A typical

RNA-seq sample may include many thousands of genes,

showing a highly skewed distribution of read counts. For

instance, in mammalian tissues (Brawand et al. 2011), the

top 5% highly expressed genes received roughly 102–105

RNA-seq counts, whereas the bottom 40% lowly expressed

genes received roughly 0–10 counts. We therefore implement

a lognormal distribution, analogous to the log-transforma-

tion in the microarray data analysis (Kerr and Churchill

2001; Irizarry et al. 2003); the log of l follows a normal

distribution with the mean m and variance Z2. Together, the

RNA-seq counts in a sample follow a negative binomial-

lognormal distribution denoted by f (x). Though the analytical

form of f (x) is not available, the mean and variance of f (x)

can be derived straightforwardly; see equation (5) in Data

Processing section.

In the case of two RNA-seq samples of the same tissue

from two species (genomes) X and Y, the mean parameter

lX (or lY) of genome X (or Y) follows a lognormal distri-

bution accounting for the among-gene expression variabil-

ity. Because lX and lY are correlated by the evolutionary

relatedness of genomes X and Y, without loss of generality

the joint model of lX and lY can be written as follows

(Gu 2004):

ln�X ¼ �X +�XY +�X

ln�Y ¼ �Y +�XY +�Y

ð1Þ

where aXY is the ancestral genetic component shared by X and

Y, bX and bY are the independent genetic effects, and mX and

mY are the ground means. Together, aXY, bX, and bY describe

the evolutionally correlated structure of the underlying regu-

latory machinery. To implement this model, we further

assume that aXY, bX, and bY are mutually independent,

each of which follows a normal distribution with the mean

0, and the variance r2, v2
X, or v2

Y, respectively. As shown in

figure 1, the variance component r2 measures the expression

variability at the common ancestor of species X and Y.

Meanwhile, the variance component v2
X (or v2

Y) measures

the expression variability generated during the evolution

from the common ancestor to the current species X (or Y).

For the current genome X, the marginal expression variability

is given by gX¼ aXY + bX so that the variance of among-gene

variability is given by Z2
X¼r2+ v2

X. Similarly, for genome Y,

we have gY¼ aXY + bY and Z2
Y¼r2+ v2

Y.

Definition of Expression Distance

For a given tissue, the expression distance should measure the

expression divergence between two species that had diverged

t time units ago, reflecting the underlying regulatory

divergence. Because two variance components v2
X and v2

Y

characterize the expression divergence along the lineages

from the common ancestor to species X and Y, respectively,

following our previous work (Gu 2004; Gu and Su 2007) we

define the expression distance between species X and Y as

UXY ¼ v2
X +v2

Y ð2Þ

The biological interpretation of equation (2) can be briefly

summarized as follows; also see figure 1C for numerical

illustrations.

(i) Under the simple Brownian model that represents a

selectively neutral expression evolution (Gu 2004), we have

UXY¼2s2t, where s2 is the rate of mutational variance.

Hence, under the neutral expression model, the expression

distance UXY increases proportionally with the evolutionary

time t, and the rate (r) of expression divergence equals to

the rate of mutational variance, i.e., r¼s2.

(ii) Under the Ornstein-Uhlenback (OU) model (Gu and Su

2007), gene expression has been maintained around its opti-

mum by the stabilizing selection and any deviation of expres-

sion profile may reduce the organismal fitness. It has been

shown (Gu and Su 2007) that the expression distance is

expected to be UXY¼ (1� e�2�t)/W, where W describes the

selection strength and the decay rate b¼Ws2. Importantly,

when t!1, UXY!1/W, which means that the expression dis-

tance approaches a saturated level determined by the strength

of stabilizing selection. Ina special caseofW!0, i.e., veryweak
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stabilizing selection, one can show UXY!2s2t, i.e., the neutral

Brownian model. Intuitively, expression divergence under the

stabilizing model evolves more slowly than the neutral expec-

tation. Indeed, the rate of expression divergence (r) under the

stabilizing model can be symbolically written by r¼s2f, where

the expression constraint f< 1 measures the effect of purifying

selection. In short, stabilizing selection model of expression

divergence is consistent with the nearly neutral model.

(iii) Despite many forms of adaptive expression divergence,

the general pattern is that the rate of expression divergence

can be accelerated by the adaptive evolution, i.e., r>s2. For

instance, gradual directive selection (Gu 2004) predicts that

the expression distance is proportional to t2.

Estimation of Expression Distance from RNA-seq Data

Suppose that we have RNA-seq data of a tissue from genomes

X and Y, both of which contain n orthologous genes with

RNA-seq counts denoted by x1, . . . , xn and y1, . . . , yn. When

RNA-seq data contain multiple biological replicates, we use a

simple mean. It is thus straightforward to obtain the estimates

of first, second, and cross moments E[x], E[x2], E[y], E[y2], and

E[xy], respectively; for instance, the estimate of E[xy] is given

by �i xi yi/n. On the other hand, the expectations of these

moments under the NBD-lognormal model can be found in

equations (5) and (6) in Data Processing section, allowing us to

develop a simple method to estimate the expression distance

UXY¼ v2
X + v2

Y. To this end, we first define three basic quan-

tities: JXX¼ E[x2]� E[x], JYY¼ E[y2]� E[y], and JXY¼ E[xy]. The

(mean-corrected) second moments JXX and JYY represent the

expression variability in genomes X and Y, respectively, and

the cross-product JXY measures the co-expression pattern.

Putting together with equation (2) and equations (5) and

(6), one can derive the relationships of JXX, JYY, and JXY with

the underlying model parameters (presented in the second

column of table 1). It follows that the expression distance

defined by equation (2) can be rewritten as follows:

UXY ¼ �ln
J2
XY

JXX JYY
��X ��Y ð3Þ

where �X¼ ln(1 +oX /LX) and �Y¼ ln(1 +oY /LY) are the

effects of overdispersion; LX and LY are the numbers of bio-

logical replicates of genomes X and Y, respectively.

The flow chart in figure 2 shows the statistical procedure

for the estimation of UXY; see Data Processing section for

technical details. In the first step of data normalization, we

introduced two correction constants of each genome (X) to

remove the overestimation of expression distance: constant CX

accounts for the effect caused by the sequence length varia-

tion among genes and BX for the sequencing depth variation

FIG. 1.—Model of transcriptome evolution between two species. (A)

A schematic illustration for a rooted two-gene tree: r2 refers to among-

gene expression variability at the common ancestor of species X and Y; v2
X

and v2
Y measure the among-gene expression variability in lineage X and Y

since the split of common ancestor, respectively. (B) The variance–covari-

ance matrix of genome expression between for current genomes X and Y.

(C) The expression distance UXY plotted against the evolutionary time t.

Expression divergence is an accelerated process under the adaptive model,

a constant-rate process under the neutral model, and a decelerated pro-

cess under the stabilizing model. In particular, when W!0, we have UXY

!2s2t, i.e., the stabilizing selection model is reduced to the neutral

model; and when t!1, UXY !1/W, i.e., the expression divergence

approaches a saturated level.

Table 1

Definitions, Theoretical Expectations, and Formulas of Statistical

Estimation for Three Quantities JXX, JYY, and JXY

Quantitya Expectationb Estimationc

JXX¼ E[x2]� E[x] 1+ !X

LX

� �
e2ð�X +�2+�2

X
Þ ĴXX ¼

Pn

i¼1
x2

i
=n

B2
X

CX
�

Pn

i¼1
xi=n

BX

JYY¼ E[y2]� E[y] 1+ !Y

LY

� �
e2ð�Y +�2+�2

Y
Þ ĴYY ¼

Pn

i¼1
y2

i
=n

B2
Y

CY
�

Pn

i¼1
yi=n

BY

JXY¼ E[xy] e�X +�Y +2�2+ �2
X

+�2
Yð Þ=2 ĴXY ¼

Pn

i¼1
xi yi=n

BX BY CXY

aE[.] is short form for expectation.
bDerivation of each expectation can be found in Materials and Methods. See

figure 1 and the text for the description of model parameters.
cxi. (or yi.) is the mean RNA-seq count of gene i over its biological replicates in

genome X (or Y); and n is the number of genes under study.
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among genomes. After data normalization, one can compute

JXX, JYY, and JXY, respectively, by the formulas in the third

column of table 1. When genes have the same sequence

length and genomes have the same sequencing depth, we

have CX¼1 and BX¼1; in this case, JXX, JYY, and JXY are simply

calculated by the method of moments. The next issue is to

estimate overdispersion. We implemented a simple method to

estimate �X and �Y even for only two biological replicates

available. One may see Results and Discussion for a special

treatment in the case of single biological replicate. Finally,

the sampling variance of the estimated UXY can be empirically

determined by the bootstrapping approach or a simple ap-

proximate method.

Data Sets

We downloaded the mammalian RNA-seq data in five tissues

(brain, cerebellum, liver, heart, and kidney) from Brawand

et al. (2011). For simplicity, we used the total reads of all

5,636 1:1 orthologous genes, suggested by the original au-

thors. Nevertheless, we obtain the RNA-seq counts indepen-

dently from the raw reads and found virtually the same results.

Data Processing

Calculation of Moments

The specific form of NBD we used in our study is as follows:

p x; �,!ð Þ ¼
�ðx+�Þ

x!�ð�Þ

�

�+�

� �x �

�+�

� ��
ð4Þ

where a¼1/o. Let j(l) be a lognormal distribution j(l) such

that the log of l follows a normal distribution with the mean m

and variance Z2. Then, the negative binomial-lognormal dis-

tribution for RNA-seq counts (x) of genes is given by f (x)¼R
p(x; l,o)j(l) dl. Next we derive first and second moments.

From the conditional expectation E[xj l]¼l according to

equation (4), we have E[x]¼ E[E[xj l]]¼ E[l]. Similarly, we

have E[x2]¼ E[E[x2
j l]]¼ E[l+ (o+ 1)l2]. With respective

the lognormal distribution j(l), we obtain

E x½ � ¼ exp �+
�2

2

� �

E x2
� �
¼ exp �+

�2

2

� �
+e2� !+1ð Þ exp 2�2

� 	 ð5Þ

In the case of two genomes X and Y, the first and second

moments of x or y are given by equation (5). For the cross-

moment of x and y, from equation (4) we have E[xy]¼ E[E[xyj

lXlY]]¼ E[lXlY]. Together with the independent assumption

of three components in equation (1) and the lognormal

distribution j(l), we derive E[lXlY]¼ E[exp(mX + aXY + bX)

exp(mY + aXY + bY)]¼ exp(mX + mY) E[exp(2aXY)] E[exp(bX)]

E[exp (bY)], resulting in

E xy½ � ¼ exp �X +�Y +2�2+
v2

X +v2
Y

� 	
2


 �
ð6Þ

When the mean RNA-seq counts over L number of biolog-

ical replicates is used to estimate the expression distance, the

first, second, and cross-moments can be derived with a similar

FIG. 2.—Flow chart for illustrating the statistical procedure of expression distance estimation.
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approach, except for the overdispersion parameters o.¼o/L

(omitting the subscripts X or Y).

RNA-seq Data Normalizations

Two main nonbiological effects inherited in the RNA-seq data

processing need to be removed to avoid potential biases in the

estimation of expression distance: sequence length variation

and sequencing depth variation. To this end, we assume that

the RNA-seq count of any gene (xi) can be written as

xi ¼ ciBXzi ð7Þ

where ci and BX are the normalization constants and variable zi

is the normalized count when all genes have the same length

(equal to the genome mean) and the same sequencing depth

(equal to the mean over the genomes under study). Similar

to RPKM (reads per kilobase per million mapped reads), we

set ci¼ li/l, where li is the sequence length of gene i and l is the

genome mean of sequence lengths. To correct sequencing

depth variation, one has to consider the factor that the

number (N) of genes may vary among genomes. Here we

used a relative measure for any genome X by defining

RX¼ Total counts/N. That is, we actually normalize the data

such that the mean count per gene is roughly the same among

the genomes under study. Moreover, we choose BX¼RX/R0,

where R0 is the mean over all genomes under study.

Next we derive the formulas in the third column of table 1

to estimate the expression distance after the data normaliza-

tion. From equation (7) we claim that the expectations E[x] is

given by E[x]¼BX E[z] Si ci/n¼ BXE[z] because Si ci/n¼1.

Similarly, we have E[x2]¼BX
2E[z2] Si ci

2/n¼ BX
2CXE[z2],

where CX¼Si ci
2/n. Therefore, after data normalization, we

have JXX¼ E[z2]� E[z]¼ E[x2]/(BX
2 CX)� E[x]/BX. In the same

manner, we have JYY¼ E[y2]/(BY
2 CY)� E[y]/BY, and JXY¼

E[xy]/(BX BY CXY), where CXY¼Si ci,X ci,Y/n. After replacing

these moments by their corresponding sampling moments,

we obtain the results as shown in table 1.

Outlier Control

There are always a few outlier, i.e., extremely highly expressed

genes. Their expression variations are very sensitive to the

physiological or developmental condition when the sample

was obtained. Because the distribution of RNA-seq is highly

skewed, estimation of expression distance could be distorted

by these outliers. As the first attempt, we implemented a

simple cutoff to alleviate this problem: for the top 2.5% of

highly expressed genes, we reset their RNA-seq counts to the

value of the 97.5% quantile. Our preliminary analysis indicates

that this approach is efficient and not sensitive to the selected

cutoff (not shown).

Estimation of Overdispersion

If the number of biological replicates in RNA-seq data set is

small, estimation of gene-specific overdispersion remains a

difficult task. To deal with this problem, a number of statistical

methods were proposed by sharing a certain amount of

information between genes. For the practical reason, we

implemented a fast but robust method to estimate the

genome-wide overdispersion parameters o (for oX or oY) by

maximizing the joint likelihood function of NBDs.

We use genome X for illustration. Suppose that xik is the

RNA-seq count of the k-th biological replicate of gene i. The

log-likelihood function of gene i, denoted by liki(li, oXjxik),

is formulated according to the NBD, whereas the mean (li)

is gene-specific and oX is the common parameter. Thus, the

overall likelihood function Lik over all genes is the sum of all

liki(li, oXjxik). A standard numerical procedure can be applied

to obtain the maximum likelihood estimate of oX, which is

converged rapidly when the moment estimate is used as an

initial value: Let xi. and Vi,X be the sampling mean and variance

of gene i. The initial estimate of oX can be calculated as �i

(Vi,X� xi.)/�i xi.
2.

A Simple Method for Estimating Sampling Variance of UXY

The sampling variance of the estimated expression distance

can be numerically calculated by the bootstrapping method.

Nevertheless, by computer simulations we found that the

following simple formula is close to the bootstrapping result:

Var(UXY)¼q/[(1�q)n], where q¼ J2XY/JXX JYY, and n is the

number of genes.

Results and Discussion

Mammalian Tissue Expression Evolution

We used mammalian RNA-seq data (Brawand et al. 2011) in

brain, cerebellum, kidney, heart, and lung to demonstrate the

application of our newly developed method. For simplicity, we

used the RNA-seq counts of 5,636 1:1 orthologous genes

used by the original authors. We estimated CX for the effect

of sequence length variation in each genome. Since we

observed that it has only a small-scale variation among ge-

nomes, we used the averaged correction constant C¼1.324

in the following analysis. By contrast, each tissue we have

studied reveals a great deal of BX variation, suggesting that

the sequencing depth variation among genomes should

be corrected appropriately (see table 2 for examples). After

estimating the effects of overdispersion, we calculated the

pairwise expression distances between mammalian genomes

(the up diagonal in table 3 for brain and the down diagonal

for cerebellum); the sampling variances of expression distance

are presented in the form of standard error. Apparently, the

expression distance is small between phylogenetically closely

related genomes and large between distantly related

genomes. Based on the expression distance matrices, we

reconstructed the genome expression phylogeny by the

neighbor-joining method. For illustration, figure 3A shows

the expression phylogeny for the mammalian brain. With
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some minor exceptions, the inferred tree is consistent with the

known mammalian phylogeny, which correctly resolved the

lineage of placentals, or eutherians from marsupials and

monotremes, and separated two major eutherian lineages

(primates and rodents). On the other hand, we mapped the

expression distances onto the known mammalian phylogeny,

as shown in figure 3B. We have performed all analyses in the

other four tissues. All inferred expression phylogenies are

roughly consistent with the known mammalian phylogeny.

Similar to Brawand et al. (2011), we found that different

tissues and lineages may show different expression distances.

For instance, the expression rate of testes is more rapid than

the rest of tissues. Because of the space limit, we will show

these results in detail elsewhere.

FIG. 3.—Mammalian brain expression phylogeny. (A) Expression phylogeny inferred by the neighbor-joining method based on expression distance

matrix of brains. Nodes with * means bootstrapping values >0.95 and with ** values >0.99. (B) The result of mapping the expression distance to a given

species tree, which is extracted from the tree of life (http://tolweb.org/, last accessed September 18, 2013).

Table 3

Pairwise Tissue Expression Distance (UXY) Matrix of Brain and Cerebellum in Mammals

Human Chimpanzee Gorilla Orangutan Macaque Mouse Opossum Platypus

Human 0 0.116�0.038 0.174�0.031 0.338�0.021 0.247�0.025 0.248�0.025 0.473�0.017 0.797�0.012

Chimpanzee 0.304�0.023 0 0.191�0.029 0.300�0.023 0.258�0.025 0.333�0.021 0.494�0.017 0.799�0.012

Gorilla 0.357�0.021 0.329�0.022 0 0.348�0.021 0.299�0.023 0.379�0.020 0.512�0.016 0.890�0.011

Orangutan 0.523�0.016 0.393�0.019 0.511�0.016 0 0.302�0.023 0.426�0.018 0.535�0.016 0.912�0.011

Macaque 0.468�0.017 0.343�0.021 0.456�0.018 0.459�0.018 0 0.306�0.023 0.464�0.018 0.852�0.012

Mouse 0.493�0.017 0.467�0.017 0.549�0.016 0.680�0.014 0.518�0.016 0 0.361�0.020 0.704�0.013

Opossum 0.810�0.012 0.699�0.013 0.785�0.012 0.821�0.012 0.672�0.014 0.676�0.014 0 0.512�0.016

Platypus 1.010�0.010 0.842�0.012 0.976�0.010 0.992�0.010 0.823�0.012 0.786�0.012 0.777�0.012 0

NOTE.—Up diagonal for brain and down diagonal for cerebellum; the sampling variances of expression distance are presented in the form of standard error.

Table 2

Summary for the Estimates of Deep-Sequencing Parameters and

Overdispersed Parameters in Mammalian Brains and Cerebellums

Bx :X

Brain Cerebellum Brain Cerebellum

Human 0.619 1.183 0.165 0.034

Chimpanzee 0.660 0.831 0.102 0.049

Gorilla 1.215 1.063 0.051 0.034

Orangutan 1.462 0.970 0.039 0.033

Macaque 0.846 0.598 0.046 0.009

Mouse 1.439 0.876 0.162 0.054

Opossum 1.030 0.746 0.153 0.003

Platypus 1.093 0.999 0.034 0.013
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Some Technical Comments

There are several ad hoc distance measures that have been

used to analyze the divergence in expression. For instance,

Brawand et al. (2011) used 1�R, where R is the Spearman’s

correlation coefficient, and the Euclidean distance in their

analyses. Although these measures are useful, our model-

based expression distance has a unique strength for the

study of transcriptome evolution because it provides a basis

to generate testable hypotheses under the phylogenetic

framework. In addition, our method has considered the

effects of sampling and data processing so that the user can

justify whether a conclusion is sensitive to the high through-

put-dependent noise.

Our model implements a NBD to account for data over-

dispersion. Though it is a common practice in statistics, some

studies suggested that it may not be sufficient in RNA-seq

analysis. Meanwhile, we use the lognormal-normal distribu-

tion to account for highly skewed RAN-seq variability. It

remains our further work to evaluate whether the current

model is the most appropriate for RNA-seq data, and how

to improve the robustness of our method in the estimation

of expression distance.

In real data analysis, application of new expression distance

is difficult in the case of no biological replicate, because �X

and �Y cannot be estimated. To resolve this problem, we

suggest a modified expression distance by omitting the

overdispersion effects, that is,

U�XY ¼ �ln
J2
XY

JXX JYY
ð8Þ

Though U*XY tends to overestimate the expression distance,

one can show that U*XY satisfies the “four-point condition”

(Gu and Li 1996). In other words, U*XY is a paralinear distance

to UXY, which has the following properties: 1) Under the strict

additivity, the phylogenetic topology inferred from U*XY is the

same as that from UXY. 2) External branch lengths tend to be

overestimated, whereas internal branch lengths are expected

to be unbiased. Our software has the option of paralinear

expression distance estimation.

Software Availability

We have developed a software system, called PhyExp, short

for phylogenomic analysis of expression profiles, to help the

evolutionary analysis of RNA-seq data. There are several com-

mercially available platforms such as Illumina, SOLiD, or 454

Genome Sequencer, but the RNA-seq data processing and

analysis is about the same. Two distribution R packages, com-

patible with Windows and Linux operating systems, respec-

tively, are available at http://www.xungulab.com (last

accessed September 23, 2013). The first version, PhyExp1.0,

has implemented the following options: 1) After the input file

(RNA-Seq counts of genes) has been loaded, the expression

distance matrix, including the paralinear distances, as well as

their sampling variances are calculated.2) Infer the expression

phylogeny by the neighbor-joining method; the statistical reli-

ability can be examined via the bootstrapping. 3) PhyExp1.0

has the option to input the amino acid sequence alignment,

which allows the user to map the expression distances onto

the inferred molecular phylogeny or to a user-provided

phylogeny.

There are several directions in further improvements: 1)

Implement a suite of phylogeny-based analysis tools, including

testing asymmetry of expression divergence, ancestral expres-

sion inference, and phylogeny-dependent detection of differ-

entially expressed genes (unpublished results). 2) Develop

and implement advanced methods for dealing with data

normalization and data overdispersion. And 3) for the practical

purpose, implement the option of expression divergence anal-

ysis based on microarray data. Moreover, we are particularly

interested how expression divergence is correlated with se-

quence divergence as well as related phenotypes along the

phylogeny (Lartillot and Poujol 2011).
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