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ABSTRACT
In March 2020, the World Health Organization (WHO) declared coronavirus disease-19 (COVID-19), caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic. Since then, the search
for a vaccine or drug for COVID-19 treatment has started worldwide. In this regard, a fast approach is the
repurposing of drugs, primarily antiviral drugs. Herein, we performed a virtual screening using 22 antiviral
drugs retrieved from the DrugBank repository, azithromycin (antibiotic), ivermectin (antinematode), and
seven non-structural proteins (Nsps) of SARS-CoV-2, which are considered important targets for drugs, via
molecular docking and molecular dynamics simulations. Drug–receptor binding energy was employed as
the main descriptor. Based on the results, paritaprevir was predicted as a promising multi-target drug that
favorably bound to all tested Nsps, mainly adipose differentiation-related protein (ADRP) (-36.2 kcal mol�1)
and coronavirus main proteinase (Mpro) (-32.2 kcal mol�1). Moreover, the results suggest that simeprevir is
a strong inhibitor of Mpro (-37.2 kcal mol�1), which is an interesting finding because Mpro plays an import-
ant role in viral replication. In addition to drug–receptor affinity, hot spot residues were characterized to
facilitate the design of new drug derivatives with improved biological responses.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is a new beta coronavirus responsible for the worldwide
pandemic of coronavirus disease-19 (COVID-19) since
December 2019. Although it is similar to SARS-CoV (�80%

sequence identity), SARS-CoV-2 has some subtle mutations
that cause the highly contagious and severe COVID-19 (Walls
et al., 2020). Most infected people have mild clinical symp-
toms; however, they still need medical care, which can cause
the healthcare system to collapse. Based on previous
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pandemic experiences and the recommendation of the
World Health Organization (WHO), initially, some non-
pharmacological interventions were established, such as
social distancing, closing schools, and wearing face masks
(Cobey, 2020; Leung et al., 2020; Liu et al., 2020; Verity et al.,
2020). Moreover, the scientific community has been dedi-
cated to testing existing drugs (drug repositioning) for the
treatment of COVID-19 and elucidating most of the molecu-
lar components of the virus structure. For drug repositioning,
three main drugs have been considered: chloroquine, an
antimalarial agent (Colson et al., 2020); remdesivir, currently
in clinical development to treat Ebola infection (Wang, 2020);
and dexamethasone, a corticosteroid that reduced mortality
by approximately one-third for patients on ventilators
(Gordon et al., 2020).

SARS-CoV-2 genome has a length of 30 kb and is very
similar to the SARS-CoV genome. They have an open reading
frame 1ab (Orf1ab) encoding 16 predicted non-structural
proteins (Nsps) and four typical coronavirus structural pro-
teins. The 50 Orf1ab gene encodes polyproteins that are
auto-proteolytically processed into 16 Nsps, forming a repli-
case–transcriptase complex (RTC) (Gordon et al., 2020; Wu
et al., 2020). The RTC consists of multiple enzymes: the com-
plex papain-like protease (PLpro), adenosine diphosphate
ribose-1"-monophosphatase (ADRP) (Nsp3), main protease
(Mpro) (Nsp5), Nsp7–Nsp8 primase complex, ribonucleic acid
(RNA)-replicase (Nsp9), primary RNA-dependent RNA poly-
merase (RdRp) (Nsp12), helicase–triphosphatase (Nsp13),
exoribonuclease (Nsp14), endoribonuclease (Nsp15), and N7/
2’O-methyltransferases (Nsp10/Nsp16). The 30 end of the viral
genome has four structural proteins (namely, spike (S), enve-
lope (E), membrane (M), and nucleocapsid (N)) and nine
putative accessory factors (Wu et al., 2020; Pant et al., 2020).
High-resolution crystal structures of the many Nsps of SARS-
CoV-2 have recently been reported in the Protein Data
Bank (PDB).

Currently, several molecular docking and molecular
dynamics (MD) simulation studies on different Nsps and
drugs are being reported every week worldwide. Most of
these studies involve repositioning of drugs, mainly antiviral
drugs (Alamri et al., 2020; Elfiky, 2020; Gordy et al., 2020;
Hakmi, 2020; Pant et al., 2020; Peele et al., 2020; Shah et al.,
2020; Tazikeh-Lemeski et al., 2020; Wu et al., 2020). These
studies have demonstrated the inhibition potential of some
antiviral drugs against SARS-CoV-2 Nsps. Recently, a study of
infected patients at a Hong Kong hospital showed that a
cocktail of three antiviral drugs (namely, interferon beta-1b,
lopinavir–ritonavir, and ribavirin) was effective in treating
patients infected with SARS-CoV-2 (Hung et al., 2020).
Therefore, antiviral drugs are becoming increasingly import-
ant in the repositioning of drugs for the treatment of
COVID-19.

Herein, we implemented a structure-based virtual screen-
ing approach to repurpose available antiviral drugs as poten-
tial treatments for COVID-19. Drug repositioning is a proven,
cost-effective, and time-saving solution for finding new indi-
cations for already established drugs (Hakmi, 2020; Peele
et al., 2020; Shah et al., 2020; Tazikeh-Lemeski et al., 2020).

Our strategy focuses on the identification of small molecules
with potential activity against SARS-CoV-2 Nsps from a sub-
set of protease inhibitors intended for the treatment of other
viral infections, including hepatitis C virus (HCV) or human
immunodeficiency virus (HIV).

Methodology

Targets’ collection

Crystal structures of PLpro (PDB: 6W9C), ADRP (PDB: 6W02),
Mpro (PDB: 6W63), RNA-replicase Nsp9 (PDB: 6W9Q), RdRp
(Nsp12 - PDB: 6M71), endoribonuclease Nsp15 (PDB: 6WLC),
and 2’O-methyltransferase Nsp16 (PDB: 6W4H) were selected
and downloaded from the PDB. As some fragments of resi-
dues were missing in the 6W9C and 6M71 structures, it was
necessary to generate homology models for these structures.
The models were constructed using the Modeler software
v9.23 (Eswar et al., 2007). Subsequently, all seven structures
were prepared and converted to Protein Data Bank, Partial
Charge (Q), & Atom Type (T) (PDBQT) format files using
AutoDockTools v1.5.7 (Morris et al., 2009).

Nsp3 has 1945 residues that are divided into two
domains: PLpro and ADRP (Lei et al., 2018; Yoshimoto, 2020).
PLpro is responsible for cleavages located at the N-terminus
of the replicase polyprotein. In addition, PLpro has a deubi-
quitinating/deIS gylating activity and processes both Lys48-
and Lys63-linked polyubiquitin chains from cellular substrates
(Angeletti et al., 2020; Yoshimoto, 2020). It also participates
in the assembly of virally induced cytoplasmic double-mem-
brane vesicles necessary for viral replication. PLpro antago-
nizes innate immune induction of type I interferon by
blocking the phosphorylation, dimerization, and subsequent
nuclear translocation of host interferon regulatory factor-3
and prevents host nuclear factor-kappa-B signaling (Lei et al.,
2018; Yoshimoto, 2020). Nsp3 also exhibits ADRP activity,
which has been proposed to play a regulatory role in the
replication process (Xu et al., 2009; Yoshimoto, 2020).

Nsp5 or Mpro has 306 residues and cleaves at 11 distinct
sites to yield mature proteins of SARS-CoV-2 (Yoshimoto,
2020). Mpro recognizes the sequence of Leu-Gln cleavage
sites. Inhibiting the activity of this enzyme would block viral
replication (Zhang et al., 2020).

Nsp9, with 113 residues, is one of the smallest SARS-CoV-
2 Nsps (Yoshimoto, 2020). It participates in viral replication
by acting as a soluble RNA-binding protein (Krichel et al.,
2020; Littler et al., 2020).

Nsp12 or RdRp has 932 residues and is the second largest
Nsp (Yoshimoto, 2020). It is responsible for the replication
and transcription of the viral RNA genome (Peng et al., 2020;
Yin et al., 2020). Although Nsp12 is capable of conducting
polymerase reactions, it demonstrates extremely low effi-
ciency for these reactions. In contrast, the presence of Nsp7
and Nsp8 remarkably stimulates the polymerase activity of
Nsp12 (Peng et al., 2020; Subissi et al., 2014). Thus, the
Nsp12–Nsp7–Nsp8 subcomplex is defined as the minimal
core component for mediating coronavirus RNA synthesis
(Peng et al., 2020).
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Nsp15 has 346 residues and shows endoribonuclease
activity (Yoshimoto, 2020). It is an Mnþ2-dependent and uri-
dylate-specific enzyme, which leaves 20-30-cyclic phosphates
50 to the cleaved bond (Kim et al., 2020; Yoshimoto, 2020).

Nsp16 has 298 residues and is an RNA-methyltransferase
(MTase) that mediates mRNA cap 20-O-ribose methylation to
the 50-cap structure of viral mRNAs. An N7-methyl guanosine
cap is a prerequisite for the binding of Nsp16 (Tazikeh-
Lemeski et al., 2020; Yoshimoto, 2020) and, thus, plays an
essential role in viral mRNA cap methylation, which is essen-
tial for evading the immune system (Tazikeh-Lemeski
et al., 2020).

Ligands’ collection

A set of 22 antiviral drugs, azithromycin (antibiotic), and iver-
mectin (antinematode) were selected from the DrugBank
database indicated for COVID-19 (Figure S1). Then, 12 struc-
tures were downloaded from the Cambridge Crystallographic
Data Centre database, and 12 structures were created using
the information obtained from the DrugBank database. The
structures were optimized and characterized as a minimum
point on the potential energy surface in the gas phase at the
semi-empirical PM3 level employing the GAUSSIAN 09 Rev.
D.01 program (Frisch et al., 2009).

Molecular docking

Molecular docking simulations of all seven protein receptors
against the approved set of 24 drugs were performed using
the latest version of Autodock Vina v1.1.2 software (Trott &
Olson, 2009). The number of poses was fixed at 20, whereas
the remaining parameters were kept at their default values
(exhaustiveness ¼ 8). Only polar H atoms were considered
for proteins with all residues in their standard protonation
states at neutral pH. The grid sizes and center coordinates of
the seven boxes are presented in Table S1. All seven grid
boxes were set at the active site of the proteins. The results
of the virtual screening experiment were ranked according
to the binding affinity (BA) of the best scoring conformation
(Table S2). The top 10 ranked candidates were selected for
further analysis (Table S3).

Molecular dynamics simulations

To improve the accuracy of docking simulations, the com-
plexes of the best three candidates, namely, paritaprevir
(PAR), simeprevir (SIM), and glecaprevir (GLE), obtained via
the docking simulations (bold entries in Table S3) and the
seven targets were subjected to MD simulations (a total of
21 structures were simulated at this stage). The proteins
were prepared using the pdb4amber utility in AMBER pack-
age (Case et al., 2016) considering that the titratable residues
were in their protonation states at neutral pH, that is, depro-
tonated asparagine (Asn) (AS4 – pKa ¼ 4.0) and glutamic
acid (Glu) (GL4 – pKa ¼ 4.4) and protonated cysteine (Cys)
(CYS – pKa ¼ 8.5), tyrosine (Tyr) (TYR – pKa ¼ 9.6), histidine
(His) (HIP – pKa ¼ 6.6), and lysine (Lys) (LYS – pKa ¼ 10.4).

The final PDB files contained all the residues sequentially
numbered from 1 to N. Table S4 demonstrates the procedure
to convert the abovementioned numbered residues into ori-
ginal residues. For ligands, we used a set of parameters from
the generalized AMBER force field 2 (GAFF2) as implemented
in the AMBER package and semiempirical AM1-BCC charges,
which were parameterized to reproduce HF/6-31G�
restrained electrostatic potential (RESP) charges (Case et al.,
2016). We used the force field ff14SB (Maier et al., 2015) for
the targets and the transferable intermolecular potential
model (TIP3P) (Jorgensen et al., 1983) for solvents. The sys-
tem containing the ligand and target in distinct docking
modes was neutralized and immersed in a truncated octahe-
dral water box with the minimum distance between the sol-
ute and the periodic box set to 8.0 Å. The MD simulations
involved the following steps: (i) optimization of the solvent
while keeping the solute fixed, (ii) optimization of the entire
system, (iii) NVT heating up to 310.0 K for 250 ps (s¼ 2 fs),
(iv) NPT density equilibration for 1 ns (s¼ 2 fs), and (v) three
independent NPT runs for 20 ns each (s¼ 1 fs). Temperature
and pressure were controlled using a Berendsen thermostat
(Berendsen et al., 1984) and a Langevin barostat (Uberuaga
et al., 2004), respectively. The non-bonded cutoff was 12 Ð,
and long-range electrostatic interactions were evaluated
using the particle mesh Ewald approach (Ryckaert et al.,
1977). All bonds involving H atoms were constrained via the
SHAKE algorithm (Ryckaert et al., 1977). Production trajecto-
ries were analyzed and employed to predict the ligand–re-
ceptor binding energy using the generalized Born/surface
area model (GB/SA) (Miller et al., 2012) with igb ¼ 2 in the
sander program. The binding energy for each run was aver-
aged over 200 frames evenly spaced in time.

Finally, the previously calculated GB/SA binding energies
were used to narrow the screening and to select two best
ligands and three best targets. Subsequently, the six com-
plexes were subjected to a longer MD simulation using the
abovementioned protocol with the production phase
extended to 200 ns with s¼ 2 fs. The last 100 ns were consid-
ered for analyzing the GB(PB)/SA binding energy (PB stands
by the Poisson� Boltzmann approach), root-mean-square
deviation (RMSD), frequency of contacts, and ligand–receptor
H bonds.

In summary, the virtual screening was initiated with 24
ligands and seven targets, and the number of ligands and
targets was progressively reduced to three and seven using
the docking results, respectively. Then, based on the MD
simulation results, the best two ligands and three targets
were chosen, which were further examined via long MD sim-
ulations. The analyses of trajectories were performed using
CPPTRAJ software (Roe & Cheatham, 2013), and images cre-
ated by the Visual Molecular Dynamics (Humphrey et al.,
1996) and Discovery Studio Visualizer
V.20.1.0.19295 programs.

Results and discussion

A previously reported study on the SARS-CoV-2 genome (Lu
et al., 2020) allows drug designers to identify the main viral
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proteins as potential targets and search for possible drugs to
prevent the spread of the virus. The main targets are Nsps
because they are directly involved in the replication and
maturation of SARS-CoV-2 inside the host cell. Table S3
presents the results of the docking simulations for the 10
best candidates among the 24 drugs evaluated herein (see
Table S2 for the entire set of ligands).

The next step of virtual screening was to select antiviral
drugs with BA lower than �9.0 kcal mol�1, and herein, PAR,
SIM, and GLE were chosen (entries in bold in Table S3). PAR
showed the best BA for all the seven selected targets. PAR is
a part of combination therapy for the treatment of chronic
hepatitis C, an infectious liver disease caused by infection
with hepatitis C virus (HCV) (Badri et al., 2016). Its action pre-
vents viral replication by inhibiting the NS3/4A serine prote-
ase of HCV; PAR was first available in the market in a fixed-
dose combination with ombitasvir, dasabuvir, and ritonavir
as an FDA-approved medication (Badri et al., 2016). Its com-
mon side effects include headache, fatigue, nausea, pruritus,
and insomnia, reported in >10% of patients (Kumar et al.,
2019). Other studies have reported a lack of significant side
effects and a short duration of therapy, which are consider-
able advantages of PAR over other antiviral drugs (Alamri
et al., 2020; Yaras et al., 2019). A virtual screening study con-
ducted using Autodock Vina software demonstrated that
PAR was the best antiviral drug for inhibiting Mpro (Khan
et al., 2020), and the estimated BA was �9.8 kcal mol�1.

Other antiviral drug selected from docking simulations
was SIM. It showed the second-best BA to four of the seven
selected targets, that is, PLpro, Nsp12, Nsp15, and Nsp16
(Table S3). SIM is a NS3/4A serine protease inhibitor indi-
cated in patients with HCV genotype 1 and has been classi-
fied as a second-generation protease inhibitor (Alamri et al.,
2020; Mahdian et al., 2020). As the viral NS3/4A protease

complex is essential for cleaving the HCV-encoded polypro-
tein into individual viral proteins facilitating replication, SIM
blocks the viral replication process (Mahdian et al., 2020).

The third antiviral drug selected in this study was GLE
because it exhibited a suitable BA (-9.2 kcal mol�1) to ADRP
(Table S3). GLE is a direct-acting antiviral agent against HCV
and an NS3/4A protease inhibitor that targets viral RNA repli-
cation. It is a useful drug for patients who experience thera-
peutic failure from other NS3/4A protease inhibitors (Lawitz
et al., 2016). Recently, via well-defined computational meth-
ods, the combination of GLE and maraviroc was identified as
a potential inhibitor of SARS-CoV-2 Mpro (Shamsi et al.,
2020). Both drugs bind to the substrate-binding pocket of
SARS-CoV-2 Mpro and form a significant number of non-
covalent interactions with conserved residues (Shamsi
et al., 2020).

The 21 complexes (three ligands and seven receptors)
selected via the docking simulations were subjected to MD
simulations (60 ns) in an aqueous solution under thermo-
dynamic conditions (T¼ 310 K) to relax the docking poses
and narrow the antiviral screening. Herein, three distinct tra-
jectories of 20 ns each were analyzed for each drug–receptor
complex, and a total of 6,000 frames were monitored over
60 ns. The average GB/SA binding energies for all complexes
are reported in Table 1 and plotted against the Vina docking
scores in Figure 1.

Correlation between the data shown in Figure 1 suggests
that the binding mode for most ligands is not substantially
affected by dynamics in a short simulation time; however,
some deviations were observed. Considering the most stable
complexes, PAR was predicted as the strongest inhibitor for
five of the seven receptors among the tested antiviral drugs
(Table 1). In contrast, for Mpro and Nsp15, SIM and GLE were
predicted to be the best ligands, respectively. With respect
to receptors, PAR and SIM demonstrated the highest BAs for
ADRP, Mpro, and Nsp12 and were the best candidates as
inhibitors for these receptors, with the GB/SA binding energy
< �40 kcal mol�1. Therefore, the two best inhibitors PAR
and SIM and the three most sensitive targets ADRP, Mpro,
and Nsp12 were selected for further analysis and discussion
based on long (200 ns) MD simulations.

The six drug–receptor complexes selected from the
sequential molecular docking–MD simulations (bold entries
in Table 1) were subjected to 200 ns of simulation. Structural
evolution over time is represented by the RMSD in Figure 2.
The images presented in the figure were obtained at every
20 ps during a 100 ns simulation, with the first frame consid-
ered as a reference for each trajectory. Note that all struc-
tures stabilized after 20 ns (1000 frames) and the average
RMSD was lower than 2.8 Å. Most of the structural changes
originated from ligands. For instance, for PAR@Nsp12, which

Table 1. GB/SA average binding energy calculated over two trajectories of 20 ns of simulation. The entries in bold present the three lowest binding energy.

ADRP Mpro Nsp9 Nsp12 Nsp15 Nsp16 Plpro

GLE �38.28 ± 0.88 �31.24 ± 1.60 �24.26 ± 0.31 �12.27 ± 0.44 �20.90 ± 0.39 �21.77 ± 1.15 �31.96 ± 0.09
PAR 244.19 ± 0.61 �30.89 ± 0.33 �35.09 ± 0.27 241.97 ± 1.69 �18.35 ± 3.18 �38.69 ± 0.82 �36.38 ± 2.29
SIM �27.11 ± 0.32 245.26 ± 0.16 �20.92 ± 0.07 �28.59 ± 0.11 �20.68 ± 1.00 �30.97 ± 1.81 �33.55 ± 0.39

The values are in kcal mol� 1.
The binding energy for each trajectory was calculated over 200 frames.

Figure 1. Correlation between the GB/SA average binding energy and the Vina
docking score. The outliers are explicitly indicated.
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presented the largest average RMSD (2.8 Å), the RMSD values
for the protein backbone (Ca only) and PAR were 2.2 and
2.9 Å, respectively. The complexes of drugs with Nsp12 were
more flexible, followed by those with Mpro and ADRP (see
the caption of Figure 2 for the corresponding average
RMSDs). Subsequently, we investigated the effects of the
high flexibility of the drug–Nsp12 complexes on the overall
stability of these complexes.

Average GB/SA binding energies calculated over the last
100 ns are presented in Table 2, and the main individual con-
tributions are explicitly included.

By comparing the values provided in Tables 1 and 2, we
noticed that except for PAR@Mpro and SIM@ADRP, which
were slightly more stable during the long simulation, the
remaining four complexes were less stable at long simulation
times. Moreover, the stability order of the complexes with
ADRP and Mpro was the same as exhibited in Tables 1 and 2
and was different from that of the complexes with Nsp12,
which were predicted to be over-stabilized in a short simula-
tion time. For easy comparison, the data shown in Tables 1
and 2 are graphically presented in Figure S2.

Considering the importance of Mpro in viral replication,
high stability of SIM@Mpro is crucial. This complex was the
most stable among all the complexes evaluated herein, and
its binding energy in aqueous solution was �37.2 kcal mol�1.
Most of the binding energy (66%) is contributed by non-elec-
trostatic interactions (van der Waals (v.d.W.), Table 2) because
of the large size of the ligand and thus significant number of
dispersive contacts. Nevertheless, electrostatic contribution
plays a primary role in the relative stabilities of SIM@Mpro
and PAR@Mpro, accounting for 34% of the total binding
energy. The electrostatic contribution to the binding energy
of SIM@Mpro was approximately twice that calculated for
PAR@Mpro (Table 2). Figure 3 shows the GB/SA binding
energy per frame for the four most stable complexes. The
values were calculated for 250 frames sampled at 400 ps
intervals along the trajectory. The binding energy of
PAR@Mpro slightly decreased with time mainly because of
the increase in the electrostatic contribution (Figure 3a and
b). In contrast, SIM@Mpro stabilized over time owing to the
decrease in the non-electrostatic contribution, mainly at the
end of the simulation. Overall, Figure 3a and b clearly

Figure 2. Root-mean-square deviation (RMSD) calculated along 100 ns trajectory (1 frame at each 20 ps). The average values (in Å) are 2.7 ± 0.5 (SIM@Mpro),
2.6 ± 0.3 (PAR@Mpro) (a), 1.9 ± 0.1 (SIM@Adrp), 2.1 ± 0.2 (PAR@Adrp) (b), 2.8 ± 0.3 (SIM@Nsp12), 2.8 ± 0.3 (PAR@Nsp12) (c).

Table 2. GB/SA average binding energy calculated over 100 ns of simulation.

DEv.d.W DEele DGgas DGaq
PAR@Adrp �57.8 ± 4.5(±0.29) �10.6 ± 5.7(±0.36) �68.4 ± 7.7(±0.48) �36.2 ± 4.4(±0.28)
SIM@Adrp �44.1 ± 4.1(±0.26) �23.3 ± 5.6(±0.36) �67.4 ± 8.2(±0.52) �27.6 ± 4.2(±0.26)
PAR@Mpro �53.5 ± 6.4(±0.4) �13.9 ± 9.4(±0.6) �67.5 ± 13.4(±0.8) �32.2 ± 5.7(±0.40)
SIM@Mpro �51.1 ± 5.0(±0.32) �25.8 ± 6.4(±0.40) �76.9 ± 8.1(±0.50) �37.2 ± 4.6(±0.29)
PAR@Nsp12 �39.6 ± 5.9(±0.37) �25.4 ± 10.6(±0.70) �64.9 ± 13.8(±0.90) �16.9 ± 4.4(±0.28)
SIM@Nsp12 �30.2 ± 6.4(±0.40) �8.99 ± 6.4(±0.40) �39.2 ± 9.8(±0.62) �18.5 ± 5.3(±0.33)

The values are in kcal mol�1. DEv.d.W and DEele are the van der Waals and electrostatic contributions for the binding energy,
respectively. DGgas is the binding free energy in gas phase (¼ DEv.d.W þ DEele) and DGaq is the binding free energy in aqueous
solution (¼ DGgas þ DGsolv).
The binding energy was calculated over 250 frames.
The values in parenthesis are the standard mean error (SME) and reflect how precise the mean value is as an estimate of the
true mean.
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demonstrate that although the non-electrostatic contacts
drive the binding of both antiviral drugs to the receptors,
electrostatic contacts are essential for the binding of SIM
to Mpro.

To gain insights into the molecular bases of the binding
mode and complex stability, the ligand–receptor contacts
were mapped over the MD trajectory. The native contacts
were labeled as any two atoms within a cut-off distance of
5 Å in a reference structure, which was defined as the first
frame of the last 100 ns of the production trajectory. The
results for SIM@Mpro and PAR@Mpro are shown in Figure 4a
and c, respectively, where the total fraction of frames in
which the specified contact is present (frequency of contacts)
is plotted against the number of residues. Figure 4a and c
might be used to establish the binding sites. Further, in this
specific case, the binding sites were represented by the resi-
dues with a frequency of contacts > 20%. Note that the

frequency of contacts is based on geometric criteria, and,
hence, the contacts can be either attractive or repulsive.
Thus, the frequency of contacts provides an idea of the
“strength” of the ligand–receptor interaction.

In the most stable complex SIM@Mpro (Figure 4a), the
important ligand–receptor contacts were in Asn142-Cys145,
Glu166, and Gln189 enzymatic moieties. In Asn142-Cys145,
some contacts are assigned as H bonds (Figure 4b). H bond
was defined based on the structural criteria of a donor (D-
H)–acceptor (A) distance of 3.0 Å and D–H–A angle cutoff of
135�. Figure 4b shows the frequency of the H bonds formed
during the trajectory per residue. The three main anchor
points, which may be considered the minimum requirement
for drug activity, are Gly143 (59%), Cys145 (22%), and
Asn142 (12%), with SIM acting as a H-bond acceptor.
Moreover, the H bond with Gly143 has the longest lifetime
(21); that is, it appears in 21 consecutive frames (420 ps). A

Figure 3. GB/SA binding energy calculated along the trajectories for the four most stable complexes listed in Table 2. 250 frames were analyzed sampled at each
400 ps. The figure represents the moving average calculated for sets of 15 frames. The straight black line represents the average binding energy.

Figure 4. Frequency of ligand-receptor contacts and H bonds monitored along the last 100 ns of the 200 ns MD trajectory for SIM@Mpro (a,b) and PAR@Mpro
(c,d) complexes.
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representative structure of SIM@Mpro is shown in Figure 5a
and b, where the residues participating in H bond formation
are indicated.

Asn142-Gly143-Ser144-Cys145 forms a network of H
bonds around the cyclopropylsulfonyl group of SIM, stabiliz-
ing the SIM–receptor complex. On the other side of the bind-
ing site, the hydrophobic thiazole–quinoline group is in
frequent contact with Gln189, strengthening the v.d.W. inter-
action. The thiazole–quinoline group is exposed to the solv-
ent (solvent-accessible surface area (SASA) ¼ 416.9 Å2) and
has considerable mobility along the MD trajectory. For
PAR@Mpro, we observed large movements in the methylpyr-
azine group. However, the phenanthridine group remained

at the same binding site along the entire trajectory (Figure
5c), which was the main anchor point for PAR@Mpro dock-
ing. The H bond with Gln189 appears in 24% of the frames
(Figure 4d) with a short lifetime (<14 consecutive frames,
280 ps). Thr24 and Ser46 also form low-frequency H bonds
with the methylpyrazine group of PAR; nevertheless, these
bonds have a short lifetime due to the high flexibility of the
methylpyrazine group. Consequently, 79% of the favorable
binding energy of PAR@Mpro originates from v.d.W. accord-
ing to Table 2.

Note that SIM and PAR bind to Mpro in different ways
(Figure 5). Although both ligands have a cyclopropylsulfonyl
group, which is strongly H bonded to Asn142-Gly143-Ser144-

Figure 5. Representative snapshots for SIM@Mpro (a,b) and PAR@Mpro (c,d) complexes. The residues shown were selected according to the relative contact fre-
quency normalized to 100. The arrows indicated the H bonds and the residues involved.
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Cys145 in SIM@Mpro, the docking mode in PAR@Mpro is
driven by the intercalation of the phenanthridine group into
the protein cleft between Leu141-Asn142 and Glu166 residues.
Accordingly, two main molecular characteristics can explain
this difference: the methylpyrazine group in PAR favorably
interacts with Thr24 and Ser46, positioning the hydrophobic
phenanthridine group toward Asn142-Gly143-Ser144-Cys145,
and the large volume of the thiazole-quinoline group in SIM
prevents intercalation of this group into the protein gap
formed by the Leu141-Asn142 and Glu166 residues. Moreover,
the energy gain in PAR@Mpro due to v.d.W. interactions is the
same as that predicted for SIM@Mpro (�-50 kcal mol�1, Table
2). This implies that the binding mode of SIM must be predom-
inantly driven by the H bonds between the cyclopropylsulfonyl
group and the Asn142-Gly143-Cys145 triad. To obtain a com-
prehensive understanding, a per-residue energy decompos-
ition analysis was carried out. Figure 6 shows the GB/SA
energy contributions for the 10 main residues. The hot spot
residues (with a binding energy contribution of < �1 kcal
mol�1) are shown in the red bar.

Results for Mpro are shown in Figure 6a and b. For
SIM@Mpro (Figure 6b), the hot spot residues Asn142-Gly143-
Ser144-Cys145 and Met49 contribute 28% of the total bind-
ing energy. Met49 attracted our attention as it had a signifi-
cant contribution to the binding energy owing to the short
contact of its sidechain with the macrocycle ring in the lig-
and. The energy contribution of Met49 completely arises
from the v.d.W. term, whereas the energy contribution of the
Asn142-Gly143-Ser144-Cys145 residues, which form H bonds

with the ligand, originates from the Coulomb term. For
PAR@Mpro (Figure 6a), Asn142 and Gln189 are the main
anchor points; Asn142 is responsible for positioning the
phenanthridine group (Figure 5c), and, therefore, its contri-
bution to the binding energy stems from the non-electro-
static term. Meanwhile, the Gln189 residue is a part of the H
bond formed with the ligand (Figure 4d), and, thus, its con-
tribution to the binding energy originates from the electro-
static term. Similar to the case of SIM@Mpro, Met49 acts as
an anchor point for PAR@Mpro binding.

Mpro is certainly the main drug target in SARS-CoV-2
because its inhibition blocks viral replication. In a recent
study, Kumar et al. (Kumar et al., 2020) evaluated 13 antiviral
drugs against Mpro using in silico approaches. They found
that indinavir was the best inhibitor, with a docking score of
�8.8 kcal mol�1, among the analyzed antiviral drugs. Its
mode of interaction involves the formation of H bonds with
Glu166 and Gln189, which are also found in frequent con-
tacts with SIM and PAR (Figure 4). In addition, in the same
study, a broad set of hydroxyethylamine (HEA) analogs was
examined; the main compound (labeled as 16) formed H
bonds with Gly143, Ser144, Cys145, and His164, and the H
bond with Gly143 was maintained throughout the MD trajec-
tory. According to the present study, the H bonds of SIM
with Gly143 and Cys145 were retained for more than 20% of
the simulation time (Figure 4b), and the H bond of SIM with
Gly143 was observed in 60% of the 5,000 frames analyzed
along 100 ns of simulation. Besides, Figure 6b shows these
two residues are the main hot spots in the binding mode.

Figure 6. Per-residue energy decomposition analysis. The so-called hot spot residues (contributing to the binding energy by < -1 kcal mol�1) are shown in
red bar.
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Interestingly, SIM interacts with Mpro via the main anchor
points found for indinavir and HEA 16 (Shamsi et al., 2020);
this can help understand the most favorable binding energy.
Previously, hierarchical virtual screening was used to test
more than 2,000 approved drugs from DrugBank against
Mpro, among which 39 drugs were further subjected to MD
simulations (Wang, 2020). Results suggested that Asn142,
Glu166, and Gln189 were hot spot residues. Herein, in add-
ition to Leu141, Asn142, and Glu166, Gln189 was assigned as
an important anchor point for PAR@Mpro binding (Figure 4d
and 6a). Huynh et al. (Huynh et al., 2020) used in silico meth-
ods to evaluate 19 market drugs against Mpro and chose
entecavir, used to treat hepatitis B virus infection, for MD
simulation. Their findings showed that the main anchor
points were His41, Glu166, and Gln189, as found for PAR in
the present study (Figures 5c and d & 6a). Recently, Gao
et al. (Gao et al., 2020) reported a very interesting study
based on the repositioning of structure-based drugs to more
than 8,000 molecules using Mpro as a target. Proflavin was
the best representative of the FDA-approved set of drugs
and binds Mpro via Glu166 as an anchor point. The other
two promising candidates are chloroxine and demexiptyline,
which also bind to Mpro via Ser144 and Cys145. These
results indicate that SIM and PAR possess the main structural
requirements for strongly binding to Mpro, as found in the
present study. Moreover, the results acquired for SIM@Mpro
suggest that the orientation of the polar group acting as a
H-bond acceptor close to the Gly143–Ser144–Cys145 triad
might be a relevant molecular feature to the design of novel
Mpro inhibitors (Figure 5a and b). Although PAR also has a
polar cyclopropylsulfonyl group in its structure as in SIM, its
binding mode is driven by the hydrophobic methylpyrazine
and phenanthridine groups (Figure 5c and d).

Stability of the complexes with ADRP was slightly lower
than that of the complexes with Mpro, and PAR@ADRP was
the second most stable complex (Table 2). The GB/SA binding
energies for SIM@ADRP and PAR@ADRP were �27.6 and
�36.2 kcal mol�1, respectively. Higher stability of PAR@ADRP
is mainly because of the dispersion contribution, which
account for 85% of the favorable binding energy (Figure 3c).
This favorable hydrophobic contact between PAR and ADRP is

due to the interaction of the phenanthridine group of PAR
with Ala127, Phe130, and Pro154 (Figure 7c). Electrostatic con-
tributions for PAR@ADRP are only �10.6 kcal mol�1 because of
the formation of H bonds between Phe154 and the cyclopro-
pylsulfonyl group (24%) and Gly46 (12%) and between Leu124
and the methylpyrazine-2-carbonyl group (5%) (Figure 7d).
Although these H bonds have measurable frequencies, their
lifetimes are always less than 15; that is, they survive a max-
imum of 15 consecutive frames (300 ps). The three main hot
spot residues for PAR@ADRP binding are Phe154, Val47, and
Ile129, accounting for 20% of the total binding energy (Figure
6c). For SIM@ADRP, the electrostatic energy contribution is
�23.3 kcal mol�1 owing to the formation of H bonds between
the cyclopropylsulfonyl group and Val47 and Ile129 (Figures
3d and 7b). Although the frequencies of these H bonds are
similar to those in the case of PAR@ADRP, their maximum life-
time is longer: 21 (420 ps) for Val47 and 19 (380 ps) for Ile129;
this implies a greater electrostatic contribution in the case of
SIM@ADRP (Figure 3d). Ile129 was assigned as the main resi-
due contributing to the SIM@ADRP binding, followed by
Leu158 and Pro134 (Figure 6d).

The phenanthridine group in PAR and the cyclopropylsul-
fonyl group in SIM are essential for the binding of these drugs
to ADRP and Mpro. In the ADRP complexes (Figure 8), the
phenanthridine and thiazole-quinoline groups are oriented in
the same direction, and the phenanthridine group is consider-
ably more exposed to the solvent because its large size makes
its intercalation into the protein cleft difficult.

Figure 8 shows that the methylpyrazine group in PAR
occupies the binding site where SIM forms H bonds. The H
bonds in SIM@ADRP are not sufficient to overcome the
hydrophobic contacts in PAR@ADRP (Figure 3), which is
more stable according to Table 2. The MD simulations sug-
gest that although both SIM and PAR interact with ADRP,
PAR is a stronger inhibitor of ADRP due to the non-electro-
static contributions.

PAR and SIM weakly interact with Nsp12, with the binding
energies of only �16.9 and �18.5 kcal mol�1, respectively
(Table 2). The ligand–receptor contacts are shown in Figure 9,
where the low frequency of contacts between SIM and Nsp12
can be noticed.

Figure 7. Frequency of ligand-receptor contacts and H bonds monitored along the last 100 ns of the 200 ns MD trajectory for SIM@ADRP (a,b) and PAR@ADRP
(c,d) complexes.
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Figure 8. Representative snapshots for SIM@ADRP (a,b) and PAR@ADRP (c,d) complexes. The residues shown were selected according to the relative contact fre-
quency normalized to 100. The arrows indicated the H bonds and the residues involved.

Figure 9. Frequency of ligand-receptor contacts and H bonds monitored along the last 100 ns of the 200 ns MD trajectory for SIM@Nsp12 (a,b) and PAR@Nsp12
(c,d) complexes.
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Only Pro843 and Asn844 have a frequency of contacts
>20% in SIM@Nsp12, and Leu789 participates in the forma-
tion of H bonds with SIM in 12% of the simulation time. This
indicated that, although SIM was docked inside the binding
site at the beginning of the 200 ns MD simulation (Figure
S3a), it “adsorbed” on the receptor surface via the thiazole-
quinoline group (Figure 10a and b).

The PAR@Nsp12 binding mode involves frequent contacts
between the cyclopropylsulfonyl group and Tyr516-Arg525;
some of these contacts are characterized as H bonds
between PAR and Arg523 (5%), Ser519 (8%), and Ala520
(28.5%). In addition to high frequency, these H bonds have
relatively long lifetimes: 40 (800 ps) for Ser519 and 33
(660 ps) for Ala520, which reflect their favorable electrostatic
contributions. Hydrophobic contacts between the phenan-
thridine group and Arg525 and Lys591-Asp593 and between
the methylpyrazine group and Tyr516, Glu781, and Arg806
strengthen the binding of PAR to Nsp12. Figure S3b shows
that, in the case of PAR@Nsp12, the position of PAR does
not significantly change along the simulation trajectory,

which is contrary to the case of SIM@Nsp12 (Figure S3a). For
Nsp12 complexes, the effect of solvation energy was consid-
erable. As shown in Table 2, PAR@Nsp12 is substantially
more stable than SIM@Nsp12 in the gas phase (-64.9 versus
�39.2 kcal mol�1, respectively), but in the aqueous phase,
SIM@Nsp12 is slightly more stable than PAR@Nsp12.
However, the stability order of the four most stable com-
plexes was the same in both phases: SIM@Mpro>
PAR@Adrp> PAR@Mpro> SIM@Adrp.

Finally, an additional discussion on the binding energies
based on Poisson� Boltzmann/solvent accessibility (PB/SA)
and entropic data is provided. Figure 11 depicts the binding
energies of the four main complexes evaluated using both
the GB/SA and PB/SA approaches.

These approaches differ in the way the solvation energy is
obtained (grey bars in Figure 11) (Genheden et al., 2015;
Wang et al., 2019). Basically, the solvation energy is divided
into two contributions: electrostatic (el) and non-electrostatic
(nel); the nel solvation energy is calculated as an empirical
linear function of SASA in both models.

Figure 10. Representative snapshots for SIM@Nsp12 (a,b) and PAR@Nsp12 (c,d) complexes. The residues shown were selected according to the relative contact fre-
quency normalized to 100. The arrows indicated the H bonds and the residues involved.
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DGsolv ¼ DGel þ DGnel [ DGnel ¼ c SASAþ b (1)

In the GB model, the el solvation energy is analytically cal-
culated using Eq. (2),

DGGB
el ¼ � 1

2
1� 1

e

� �X
i, j

qiqj
fGBðrij, Ri, RjÞ (2)

where q is the atomic charge, e is the solvent dielectric con-
stant, and fGB is a function of rij (the distance between the
atoms i and j, and the so-called effective Born radii Ri and
RjÞ: The GB approach is considerably easier to implement
and faster than the PB approach, in which the el solvation
energy is obtained from the numerical solution of the
Poisson equation (3) (Wang et al., 2019).

r:e rð ÞrU rð Þ ¼ �4pq rð Þ [DGGB
el ¼ � 1

2

ð
q rð ÞU rð Þdr (3)

where e rð Þ, U rð Þ, and q rð Þ are the dielectric function, electro-
static potential, and solute charge density as a function of
the atomic coordinate r, respectively.

As shown in Figure 11, DGsolv is positive and mainly
arises from the “desolvation” of the ligand when the solv-
ation energies for the complex and receptor are of the
same magnitude and almost cancel out. For the GB/SA
approach, DGsolv ranges from 32.2 to 39.8 kcal mol�1,
which decreases the stability of the complex by �50%
(Figure 11a). This effect is significantly higher in the case
of the PB/SA approach, where DGsolv is larger than DGgas

(Figure 11b), making the final binding energy in solution
positive. The relative order of complex stability slightly dif-
fers between these methods; however, in both cases, the

best inhibitor of Mpro is SIM (SIM@Mpro). An attempt to
include entropy variation was also made using quasi-har-
monic approximation. The decrease in entropy was sub-
stantially high for all complexes, with -TDS in the range of
105� 126 kcal mol�1 (almost twice the value of DGgas),
and the final absolute binding free energy was not consid-
erable. The significant entropy decrease is because of the
highly flexible ligands, and, thus, the application of the
quasi-harmonic approximation may not be suitable. The
applications of the GB(PB)/SA approaches are hindered by
many limitations, such as the force-field uncertainties, diffi-
culty in entropy calculation, limited number of MD replicas,
and short trajectory length (Wang et al., 2019). The overall
conclusion about all these factors is still unclear, and,
therefore, the impacts of these factors should be evaluated
and considered during the MD simulations. Herein, the GB/
SA data were chosen, and the relative stability of the com-
plexes was analyzed. When the binding energy was investi-
gated without entropy, the best candidate was SIM@Mpro
in the gas and solution phases, regardless of whether the
GB or PB approach was used for calculating the solv-
ation energy.

Conclusion

A set of 24 market drugs, including 22 antivirals, were
assessed against non-structural proteins (Nsps) of SARS-CoV-
2, responsible for the COVID-19 disease. A sequential dock-
ing-molecular dynamics (MD) approach was used to screen-
ing for the best candidates. The results suggested the
paritaprevir (PAR) as a promising antiviral to block most of
important functional proteins of SARS-CoV-2. This drug
binds very favorable to five of the seven Nsps, including
the ADP-ribose-1"-monophosphatase (ADRP), which plays a
role in the virus replication process. The complex
PAR@ADRP was the second most stable among the six
most stable complexes evaluated and the high stability is
provided by hydrophobic contacts of the phenanthridine
and methylpyrazine rings with the protein binding site. The
hot spot residues in ADRP were Phe154, Val46 and Leu124,
which are H bonded to the PAR. Besides, Val47 and Ile129
also contribute favorably for PAR@ADRP stability. Overall,
the multi-target characteristic of PAR is due to the its struc-
tural flexibility, mainly the aromatic side chains, phenan-
thridine and methylpyrazine, which allow to adjust in the
binding site favoring the contacts at the anchor points.
Added to the multi-target property of the PAR, the results
indicated the simeprevir (SIM) as the best inhibitor of Mpro,
a protein active in the viral replication. The high stability of
SIM@Mpro comes mainly from non-electrostatic terms, as
found for PAR@ADRP, but with important contributions
from H bonds with Gly143, Cys145, Asn142 and Ser144 resi-
dues, which form a hydrogen bond network around the
cyclopropylsulfonyl group of SIM. In summary, the present
study allowed to understand the behavior of commercial
antivirals in contact with functional proteins of SARS-CoV-2,
and suggests that a combination of PAR and SIM could

Figure 11. GB/SA (a) and PB/SA binding energies in aqueous solution calcu-
lated for the four most stable complexes. The gas phase binding energies and
the main contributions are also shown.
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lead to a cooperative biological response against the SARS-
CoV-2 virus.

Associated content

The Supporting Information provides the docking parameters
used for virtual screening (Table S1), docking scores for all
drugs evaluated against the seven Nsps (Table S2), docking
scores for the best ten ligands (Table S3), and the numbering
schemes used for all proteins as discussed in the text (Table
S4). The structures for all compounds analyzed (Figure S1),
comparison of GB/SA binding energies calculated at 60 ns
and 200 ns of MD simulation (Figure S2), and the structures
of PAR and SIM complexes with Nsp12, showing the large
amplitude movement of the SIM ligand along the MD trajec-
tory (Figure S3).
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