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Glioma is the most common intracranial malignant tumor in adults and the 5-year survival rate
of glioma patients is extremely poor, even in patients who received Stupp treatment after
diagnosis and this forces us to explore more efficient clinical strategies. At this time,
immunotherapy shows great potential in a variety of tumor clinical treatments, however, its
clinical effect in glioma is limited because of tumor immune privilege which was induced by the
glioma immunosuppressive microenvironment, so remodeling the immunosuppressive
microenvironment is a practical way to eliminate glioma immunotherapy resistance.
Recently, increasing studies have confirmed that ferroptosis, a new form of cell death,
plays an important role in tumor progression and immunemicroenvironment and the crosstalk
between ferroptosis and tumor immunemicroenvironment attracts much attention. This work
summarizes the progress studies of ferroptosis in the glioma immune microenvironment.
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INTRODUCTION

Glioma is a threateningprimarymalignancy tumor in the central nervous system (1, 2),which is divided
into grades I-IVaccording toWHOstandardwith glioblastoma (WHOgrade IV) as themostmalignant
and common subtype (3).The standard therapy for gliomapatients is the Stuppprotocol, which consists
of maximal safe surgical resection or a diagnostic biopsy, followed by concurrent chemoradiotherapy
and then maintenance chemotherapy, where chemotherapy is comprised of temozolomide (4).
Although glioblastoma (WHO IV) patients receive the most effective treatment/surgery with
radiotherapy and chemotherapy after diagnosis (5, 6), the median survival time is only about 18
months (7), and that is mainly the result of a glioma infiltration boundary and/or the resistance of
chemotherapy. Consequently, new therapeutic approaches for glioma are urgently needed (8).

Recently, immunotherapy represented by PD-1/PD-L1 and CTLA-4 has shown excellent clinical
effects on numerous tumors such as melanoma and non-small cell lung cancer (9, 10), which have
rekindled researchers’ faith in glioma treatment. Unfortunately, its effect is extremely limited in
glioma and relevant clinical data show that it works on less than 10% of glioblastoma patients (11)
An increasing number of studies have confirmed that it is a result of the glioma immunosuppressive
June 2022 | Volume 12 | Article 9176341

https://www.frontiersin.org/articles/10.3389/fonc.2022.917634/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.917634/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.917634/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:wxy95@zju.edu.cn
mailto:zjm135@zju.edu.cn
https://doi.org/10.3389/fonc.2022.917634
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.917634
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.917634&domain=pdf&date_stamp=2022-06-27


Wang et al. Ferroptosis and Glioma
microenvironment (12), therefore, the distruption of the
immunosuppressive microenvironment and revision of the
glioma from a ‘cold tumor’ to a ‘hot tumor’ is practical to
relieve the glioma immunotherapy resistance (8).

The glioma immune microenvironment is composed of
glioma cells, immune cells, cytokines and so on (12). Glioma
cells can recruit numerous kinds of cell including immune cells
that move to the niche by secreting cytokines (like TGF-b, GM-
CSF) (13, 14) and then revise these cells into ‘tumor-friendly’
phenotypes (15). In this case, the recruited cells may serve as a
physical barrier to prevent later immune cells from approaching
and attacking the tumor cells Also, the recruited immune cells
can also secrete cytokines (such as IL1-b, TGF-b) that continue
to assimilate later recruited immune cells as ‘tumor-friendly’
phenotypes (16, 17). Under this “snowball” interaction, coupled
with the unique central nervous system microenvironment, such
as the blood-brain barrier (18) and hypoxia (19, 20), acidic
tumor microenvironment (2, 21), tumor cells can escape
immune surveillance (22) and eventually set the glioma
immunosuppressive microenvironment (23, 24).

Ferroptosis is a form of regulated cell death driven by lipid
peroxidation, a consequence of imbalance between cell
metabolism and redox homeostasis (25). It is different from
other cell death such as apoptosis, pyroptosis in morphology,
biochemistry and gene (26). Its key process is phospholipids with
polyunsaturated fatty acyl tails (PUFAs) are oxidized in an iron-
or oxidoreductase- dependant way and ultimately induce cell
death (27). Recently, researchers found that activating ferroptosis
could improve temozolomide treatment effectiveness in GBM-
bearing mice (28), and lonizing radiation could induce cell
ferroptosis. The above means that ferroptosis is vital for glioma
chemotherapy and radiotherapy (29).
OVERVIEW OF FERROPTOSIS AND
POTENTIAL SINGLING PATHWAY
IN GLIOMA

The main characteristics of ferroptosis include: cell morphology
(mitochondria crista, volume reduction, and increase of membrane
density); cellular composition [cellular ROS is elevated and lipid
peroxidation is significantly increased (27)]. Meanwhile, the
intracellular pool of antioxidant executor (GSH or/and glutathione
peroxidase 4) was shrunk, and phospholipid peroxide (PLOOH) is
the executive driver of ferroptosis (26, 27). With step by step studies,
researchers found that ferroptosis could be regulated by a variety of
ways including redox homeostasis (30), iron metabolism (31),
mitochondrial activity (32), metabolism of amino acids, lipids, and
glucose (33). Ferroptosis pathways can be broadly divided into
glutathione peroxidase 4 (GPX4) -dependent and -independent
pathways (25, 26) (Figure 1).

GPX4 Dependent Ferroptosis Pathway
Glutathione peroxidase 4 (GPX4), also known as phospholipid
hydrogen peroxide glutathione peroxidase (PHGPx), is a
Frontiers in Oncology | www.frontiersin.org 2
selenoprotein required for peroxidized phospholipids (34).
Cystine/glutamic acid reverse transporter (system x−c ) is an
upstream regulator (25, 35) and its dysfunction can increase
glutamic acid levels and reduce cystine levels (36), which in turn
leads to the exhaustion of the intracellular pool of glutathione
(GSH), the main reducing substance of human body (37).
Subsequently, this causes GPX4 reduction (27), then induces
more PUFAs to turn to PLOOH and eventually induces
ferroptosis (25). Besides, lonizing radiation also could regulate
GPX4 activity directly and then shape ferroptosis (38).

System x−c plays an important role in GPX4 relative pathway,
whether the system x−c dysfunction could result in the pool of GSH
and GPX4 shrinking (35), and then gives birth to intracellular
PLOOH explode and ultimately induces ferroptosis (26, 33). The
monitors regulating system x−c are SLC7A11 (39), SLC3A2 (40),
NRF2 (41) and so on (42). Stephanie demonstrated that SLC7A11
expression is associated with seizures and predicts poor survival in
patients with malignant glioma (43) Ju et al. proved that NRF2 is a
potential prognostic biomarker and is correlated with immune
infiltration in the brain’s lower grade glioma (44). Long et al. found
that dysregulation of system x−c enhances Treg function that
promotes VEGF blockade resistance in glioblastoma (45). The
above indicates that system x−c should be a key hub between
ferroptosis and the glioma immune-microenvironment.

Cystine metabolism is a vital segment in the GPX4-dependent
ferroptosis pathway and the main factors affecting cystine
metabolism include the transsulfuration pathway and/or the
methionine cycle (46). As a vital brick for GSH synthesis, cystine
plays a key role in glioma progression, Liu et al. confirmed that
methionineandcystinedouble deprivation stress suppresses glioma
proliferation by inducing reactive oxygen species (ROS) and
autophagy (47), Wang et al. demonstrated that methionine
deprivation can reset numerous immune pathways such as
macrophages, T cell activation pathways in glioma (48), as cystine
andmethionineare all inmethionine cycle (49), and there shouldbe
cystine/methionine-ferroptosis-immunity related pathways.
Simultaneously, glioma cells can selectively uptake methionine,
cysteine, and serine (47, 50, 51), so other cells will uptake or store
less of these amino acids than glioma cells, which limits the
production of cysteine and GSH. It remains to be determined
whether it would induce other cells to include immune cells more
sensitive to ferroptosis than glioma cells and whether DNA/RNA
methylation is vital for glioma escape ferroptosis, as methionine is
themajormethyl donor (52, 53).Unfortunately, the researchers did
not conduct this corresponding work.

In addition, the mevalonate pathway also participated in
GPX4 activity regulation and isopentenyl pyrophosphate was
the core factor regulating the transcription efficiency of GPX4
(54). E. Cimini et al. has confirmed that zoledronic acid, an
aminobisphosphonate drug, can inhibit glioma cell proliferation
by interfering with mevalonate pathway of Vg2 T-cells (55).
Deven found that LXRb knockdown decreased cell cycle
progression, cell survival, and decreased feedback repression of
the mevalonate pathway in densely-plated glioma cells. LXRb
regulates the expression of immune response gene sets and lipids
known to be involved in immune modulation (56) and these
June 2022 | Volume 12 | Article 917634
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works imply that targeting the mevalonate pathway could disturb
ferroptosis and immunity in glioma.

Currently, researchers have demonstrated that lonizing
radiation could consume GSH, inhibit GPX4 activity, and
induce ferroptosis (25, 54), and they denote that ferroptosis
should be essential for glioma treatment because radiotherapy
is an important part of Stupp strategy (8). Zhang et al. revealed
that inhibition of TAZ contributes to radiation-induced
senescence and growth arrest in glioma, and immune-related
genes are specifically affected as the long-term effect (57).
However, we did not know whether ferroptosis cells would act
as or release cytokines that induce glioma cells to adapt to
radiotherapy resistance.

GPX4 Independent Ferroptosis Pathway
Although GPX4 is the core molecule of ferroptosis, we have now
found other pathways that influence PLOOH synthesis and
ferroptosis (25, 26).

The first is the ferroptosis inhibition protein 1(FSP1) (58–60),
which can reduce the mevalonate pathway produced ubiquinone
translate to ubiquinol, suppress production of PLOOH, and
eventually inhibit ferroptosis (58). Furthermore, FSP1 could also
be activated by the MDM2/MDMX-PPARa axis (25, 61), and in
addition to activating FSP1 functions, PPARa also regulates the
Frontiers in Oncology | www.frontiersin.org 3
conversion of PL-MUFA to PLOOH by ACSL3-mediated MUFA
way. It has been reported that FSP1 can protect cells from
ferroptosis which is induced by GPX4 inhibition/knockout (26).
Zou et al. demonstrated that TGF−b1 increases FSP1 expression
in human bronchial epithelial cells (62), as TGF−b1 is an
important cytokine that can be secreted by glioma or/and
immune cell (17, 63, 64), and it means that FSP1 could be a
nexus between glioma or/and immune cell ferroptosis.

A critical factor in inducing ferroptosis is the imbalance of
intracellular iron metabolism which could cause iron overload.
Through the specific receptor TFR1 (transferrin receptor 1),
circulating iron (Fe3+) can be imported into the cell and stored
mostly within ferritin (Fe3+), changing to cytoplasmic iron (65).
A small pool of cytoplasmic free Fe2+ could directly catalyze the
formation of free radical formation via the Fenton Reaction
where changes of ferritin expression levels affect the homeostasis
of iron metabolism by altering the intracellular free and redox
active iron pool. Researchers have reported that the
overexpression of NCOA4 reinforces the degradation of
ferritin, which releases excessive cytoplasmic free Fe2+ and
subsequently, promotes ferroptosis (66).

As a “double-edged sword”, autophagy is crucial in glioma
progress (67, 68) due to the unbridled proliferation tumor cells
that require a large amount of nutrients. Also, an appropriate
FIGURE 1 | The snapshot of ferroptosis pathways. TfR1, transferrin receptor 1; GLS, glutaminase; GCS, glutamylcysteine synthetase; GSS, glutathione synthetase;
GSH/GSSH, glutathione; GSR, glutathione S-reductase; GPX4, glutathione peroxidase 4; MDM2, mouse double minute 2; MDMX, mouse double minute 4; PPARa,
peroxisome proliferator activated receptor alpha; FSP1, ferroptosis suppressor protein 1; GCH1, GTP cyclohydrolase 1; BH4, tetrahydrobiopterin; PL, phospholipid;
MUFA, monounsaturated fatty acid.
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level of autophagy is conducive to ensure necessary cellular
function, as their own bricks, could be reused but excessive
levels of autophagy will induce cell ‘self-digestion’ and eventually
induce glioma death (69). Recent studies have proven that
autophagy can participate in ferroptosis and the main progress
is called ferritinophagy (25), and the key interaction hub of these
two pathways is NCOA4 and FTH1. Zhang et al. confirmed that
COPZ1 is the key molecule that mediates autophagy-dependent
ferroptosis in glioma (70). Meanwhile, autophagy is essential for
immune cell proliferation and function, and Enyong confirmed
that autophagy-dependent ferroptosis drives tumor-associated
macrophage polarization via the release and uptake of the
oncogenic KRAS protein (71). Sun et al. confirmed that
autophagy-dependent ferroptosis-related signature is closely
associated with the prognosis and tumor immune escape of
patients with glioma (72). Therefore, we recognize autophagy
should be one of the hubs between ferroptosis and immunity
in glioma.

Moreover, researchers have also confirmed that GTP
cyclohydrase 1 (GCH1) inhibits the production of PLOOH
through its metabolite BH2/4. Meanwhile, BH4 could also reduce
PLOOH pool by regulating the production of Ubiquinol (26). Anh
proved that the GCH1 knockdown with short hairpin RNA led to
GBMcell growth inhibition and reduced self-renewal in association
with decreased CD44 expression (73). Yan et al. showed that
blocking CD44 inhibited glioma cell proliferation by regulating
autophagy (67) and this means GCH1 could induce glioma cell
ferroptosis and influence immunity by autophagy.

Furthermore, AMPK associated energy stress and Hippo
pathways are all associated with ferroptosis by regulating the
PLOOH pool (25, 26), and these factors are also vital for the
glioma immunosuppressive microenvironment (GIME) and
glioma proliferation (24).
FERROPTOSIS AND IMMUNE
MICROENVIRONMENT

Inducing tumor cell death is one of the effective methods to treat
cancer, so inducing cancer cell ferroptosis is a feasible way for
glioma treatment (34). Dead cells can release a series of “find me”
and “eat me” signals for immune cells to locate, migrate, and clean
dead cells which is confirmed by the phenomenon that ferroptosis
tumor cells can be effectively engulfed bymacrophages in vitro (74).
The calreticulin (CRT), a solubleER-associated chaperone, is one of
the ferroptosis-mediated proteins which regulate the tumor
microenvironment. Ferroptosis facilitates the translocation of
CRT to expose it on the surface of tumor cells, where CRT could
serve as a potent “eat-me” signal and induce a robust antitumor
immune response (75). However, the signal communication
between ferroptosis glioma cells and surrounding immune cells is
not clear (76) (Figure 2).

The potential signal is the arachidonic acid (AA) oxidation
product released by ferroptosis cells therefore, it has been
hypothesized that lipoxygenases (LOXs) can not only induce the
PUFAs production but also promote ferroptosis cells to release
immune signals and regulate tumor immunity (26). A study has
Frontiers in Oncology | www.frontiersin.org 4
shown that ferroptosis cells can release eicosanoids (5-HETE, 11-
HETE, 15-HETE, etc.) when GPX4 was suppressed. Contrarily,
ferroptosis cells reduce the production of pro-inflammatory lipids
when GPX4 activity was increasing, afterwards inhibiting the
production of TNF and IL-1 b by the NF-kB pathway (77). A
liposome analysis offerroptosis cells found that the accumulationof
oxygenated AA-containing phosphatidylethanolamine species was
associated with ALOX15 (78), which can shape adaptive immune
response by inhibiting dendritic cell maturation and T cell helper
cell 17 (TH17) differentiation via activating transcription factor
NRF2 (79).

Prostaglandin E2 (PGE2) is considered to be one of the
important immunosuppressive factors and it can be released
after most death cells (26, 80) and then disturb immune cells
mainly in the following ways: 1. directly inhibit NK, cytotoxic
T cell clean function (81, 82), 2. inhibit the infiltration of
Conventional Type 1 dendritic cell (cDC1) into tumor niche
via inhibiting the secretion of CCL5 and XCL1 by NK cells (83),
and 3. inhibit cDC1-dependent CD8+ T cell-mediated immune
response (84). Yoshiteru proved that inhibition of macrophagic
PGE2 synthesis is an effective treatment for the induction of anti-
glioma immune response (85).

Recent studies have confirmed that GPX4 activity is
associated with chronic inflammation (26), and current studies
have confirmed that glioma progression is related to chronic
inflammation (86). Moreover, Xu et al. demonstrated that GPX4
is crucial for protecting activated Treg cells from lipid
peroxidation and ferroptosis and offered a potential therapeutic
strategy to improve cancer treatment (87). All of the above has to
remind us that GPX4 may be a hub to connect ferroptosis and
inflammation/immune in glioma.

In addition to releasing lipid mediators, ferroptosis cells can
also release HMGB1 in an autophagy-dependent manner (88).
HMGB1 belongs to DAMPs and is one of the key elements for
tumor cell immunogenicity, as it will bind to its receptor and
activate the immune system once it is released outside of cell
(89). Wen et al. confirmed that RAGE is essential for HMGB1
mediated TNF releasing in macrophage when they respond to
ferroptosis cells (90). Lowenstein et al. considered that HMGB1-
activated dendritic cells, loaded with glioma antigens, migrate to
cervical lymph nodes to stimulate a systemic CD8+ T cells
cytotoxic immune response against glioma and induce
immunological memory (91).

In addition to the above cytokines, there are other cytokines
worth exploring (76). Although researchers believe that the
cytokines are critical for the “crosstalk” between ferroptosis
cells and immune cells, the mechanism remains unclear.
Additionally, attention should also be paid to off-target effects
of ferroptosis induction (92).
CHALLENGES OF FERROPTOSIS IN GIME

The glioma immunosuppressive microenvironment (GIME) is the
main reason for poor efficacy of immunotherapy in glioma (8, 22,
23). The rapid proliferation of glioma causes an arduous
microenvironment such as acidity, limited of nutrients, and
June 2022 | Volume 12 | Article 917634
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oxygen (47, 93, 94). In this circumstance, immune cells will betray,
retreat, or die as they cannot adapt (95, 96) but glioma can adapt to
this harsh microenvironment due to their own tremendous
plasticity (97, 98). The blood-brain barrier can also hinder
immune cells from migrating to the tumor (99, 100). Also, many
of the inhibitory cytokines secreted by glioma (101) and inhibitory
immune cells suppress the antitumor effect of immune cells (21,
102). In addition, glioma cells can also secrete numerous cytokines
to trap immune cells as they present ‘non-tumor cells’markers (95,
103) and then these “tricked” cells secrete cytokines and continue to
later recruit immune cells (104). In this circumstance, glioma cells
escape immune surveillance (22, 105)and we should take the above
into account when considering glioma immunotherapy (106).
Meanwhile, immunotherapy combination regimens (22),
administration mode, and timing (107) can also influence the
therapeutic efficacy. Currently, accruing studies demonstrate that
ferroptosis is crucial for tumorprogressionand targeting ferroptosis
maybe a latent way to remodel the tumor immune
microenvironment (26, 27, 34). While we have already done a
brief description above, we should also recognize the challenges.

Although ferroptosis does play a crucial role various tumor
immune microenvironments, its own mechanism is still unclear
Frontiers in Oncology | www.frontiersin.org 5
(25, 26), which is reflected on the following aspects: 1. The
exactly mechanism of PLOOH in ferroptosis is unclear. At
present, although it is clear that PLOOH is the ultimate
executor of ferroptosis, the exact mechanism of PLOOH
inducing ferroptosis is unknown (26); 2. Ferroptosis studies
lack a ‘gold standard’. Although we have made great progress in
ferroptosis study (26), we have not yet found a relative “gold
standard” like LC3, and P62 in autophagy (108) and researchers
usually select one or more targets such as GPX4, P53, FTH1
(109–111) in a paper, even worse the targets just like scraped
together, which has troubled the following researchers. 3.
Ferroptosis shows a ‘double-edged sword’ role in diseases. It
is easy to understand that ferroptosis plays different roles in
different diseases such as the beneficial outcome of inducing
ferroptosis in tumor cells is for disease (112), but inhibiting
ferroptosis in stroke is beneficial to the prognosis (113). We
hypothesize that ferroptosis may also play different roles in one
disease, for example, and there may be tumor cells that choose
to sacrifice themselves. Then, the secreted cytokines can make
the surrounding tumor cells in a stress state and finally avoid
ferroptosis (26). 4. What and how ferroptosis cells release
signals after death and what are the functions of these signals
FIGURE 2 | Possible ferroptotic signals in glioma immune-microenvironment. AA, arachidonic acid; PE, phosphatidylethanolamine; GPX4, glutathione peroxidase 4; LOXs,
lipoxygenases; ALOX15, arachidonate lipoxygenase 15; DAMPs, damage-associated molecular patterns; HMGB1, high mobility group box-1; PGE2, prostaglandin E2; HETE,
hydroxy eicosatetraenoic acid; AdA, adrenic acid; IL1, interleukin-1; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; NK, natural
killer; cDC1, conventional type 1 dendritic cell; TAM, tumor- associated macrophage; CAF, cancer-associated fibroblast; T reg cell, regulatory T cell.
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(33, 71). 5. The crosstalk between ferroptosis and other forms of
death is not clear (26, 27, 33). For cells that may suffer from
different kinds of death at the same time (114), it is unknown
how can they communicate with each other or whether
ferroptosis works more or less in cell death. This is because
we found cells suffer ferroptosis but cells still died after we used
ferroptosis inhibitors in a proper dose. This means that
ferroptosis can induce other kinds of cell death, and/or it
plays a minor effect in cell death, or we use inhibitors after
the ‘reversible point’ and once this threshold is exceeded,
ferroptosis will be irreversible

Recently, we also found that ferroptosis is vital for tumor
immunity such as macrophage phagocytosis (71) and T cell
killing (115) but the “crosstalk” between ferroptosis and the
glioma immunosuppressive microenvironment is not clear.
Additional issues to be addressed are: 1. The signal interaction
between ferroptosis cells and surrounding immune cells is not
clear which is mainly manifested in the specific cytokines of ‘find
me’ and ‘eat me’ released by ferroptosis cells (26). 2. Will the
cytokines released by ferroptosis cells help other glioma cells
escape immune surveillance by seducing or misleading immune
cells (34, 88, 103)? 3. Whether GPX4-induced chronic
inflammation engaged in glioma progression or outcome (116).
4. What is the role of ferroptosis in glioma immunotherapy
tolerance? (95, 103).
CONCLUSION

The clinicians and researchers are always trying to find new
treatments for tumors and it is comforting that treatment
methods such as immunotherapy and oncolytic virus have
Frontiers in Oncology | www.frontiersin.org 6
been found. Unfortunately, immunotherapy, which has shed
light on numerous tumor treatments, does not always work
regarding glioma. Increasing research demonstrates that this is
result of the glioma immunosuppressive microenvironment, so
researchers are searching for an antidote for remodeling GIME.
Ferroptosis, a new form of cell death, plays an important role in
glioma cell and immune cell. The exactl mechanism is unclear
and multipley works demonstrate that it is deserved to explore its
role in GIME and how to regulate ferroptosis for glioma therapy.
Although there are still many obstacles in the cognition of
crosstalk between ferroptosis and GIME, we believe we will
address this with further studies and new technologies, such
single cell sequencing and spatial transcriptomics. This will not
only improve our understanding of ferroptosis and GIME but
also provide a new solution for glioma immunotherapy
resistance, a new breakthrough point for glioma treatment.
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