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Abstract
DNA damage occurs abundantly during normal cellular proliferation. This necessitates that cellular DNA damage response 
and checkpoint pathways monitor the cellular DNA damage load and that DNA damage signaling is quantitative. Yet, how 
DNA lesions are counted and converted into a quantitative response remains poorly understood. We have recently obtained 
insights into this question investigating DNA damage signaling elicited by single-stranded DNA (ssDNA). Intriguingly, our 
findings suggest that local and global DNA damage signaling react differentially to increasing amounts of DNA damage. 
In this mini-review, we will discuss these findings and put them into perspective of current knowledge on the DNA damage 
response.
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In order to ensure genome stability, cells need to detect DNA 
lesions such as DNA double-stranded breaks (DSBs) and 
signal their presence so that an appropriate cellular response 
is triggered (Zhou and Elledge 2000; Harrison and Haber 
2006; Ciccia and Elledge 2010). The central importance of 
the networks carrying out this fundamental task is under-
scored by the observation that mutations in DNA damage 
signaling proteins often coincide with a predisposition for 
cancer development and progeria (O’Driscoll 2012).

DNA damage signaling is commonly understood to be a 
quantitative process, which generates a response appropriate 
to the cellular damage load (Zierhut and Diffley 2008; Balo-
gun et al. 2013; Clerici et al. 2014; Ira et al. 2004; Mantiero 
et al. 2007). It is, however, unclear how such a quantita-
tive response is generated in molecular terms and how the 
dynamic range of the response is tuned.

DNA damage signaling is mediated by proteins of the 
DNA damage checkpoint, which can recognize DNA struc-
tures that indicate the presence of DNA lesions and convert 
them into downstream DNA damage signals. Single-stranded 

DNA (ssDNA) marks sites of DNA damage and can be con-
sidered an upstream DNA damage signal that is recognized 
by proteins of the DNA damage checkpoint in order to trans-
duce this upstream signal into a downstream checkpoint 
signal. While ssDNA is inherently generated during DNA 
replication and transcription, the presence of DNA lesions 
often triggers extensive ssDNA formation (Zou 2007). For 
example, at DSBs ssDNA is generated by a process called 
DNA end resection (Sugawara and Haber 1992; Symington 
2014).

What information does the amount of ssDNA in a cell 
hold? First, it gives information about the number of lesion 
sites, as many lesions will obviously expose more ssDNA 
than few. Second, it could potentially tell us about the per-
sistence time of a given DNA lesion, at least in the case of 
DSBs (Pellicioli et al. 2001). The longer a lesion remains 
unrepaired, the more time for processing and production of 
ssDNA. Long persistence can perhaps be taken as indication 
of lesions difficult to repair. Third, ssDNA is generated in S 
phase upon stalling or nucleolytic processing of replication 
forks (Lopes et al. 2006; Sogo et al. 2002). All three scenar-
ios—a high number of DNA lesions, the presence of per-
sistent lesions and the occurence of DNA lesions or stalled/
broken replication forks in S phase—can be seen as severe 
threat to cellular survival calling for a cell-wide response 
and activation of the DNA damage checkpoint. It therefore 
seems plausible that cells possess a counting mechanism for 
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the ssDNA signal and that the overall amount of ssDNA in 
a given cell must overcome a threshold to activate the DNA 
damage checkpoint.

How is the ssDNA signal read and translated into a down-
stream DNA damage checkpoint signal? Mechanistically, 
ssDNA in cells is bound by RPA (Wold 1997; Chen and 
Wold 2014), which in budding yeast directly interacts with 
the DNA damage kinase Mec1 (ATR in humans) and its 
co-factor Ddc2 (ATRIP in humans) (Zou and Elledge 2003; 
Cortez et al. 2001; Paciotti et al. 2000). More ssDNA will 
attract more Mec1–Ddc2 (Zou and Elledge 2003; Nakada 
et al. 2004; Bantele et al. 2019) suggesting an intuitive 
mechanism of how ssDNA could be quantified. Mec1–Ddc2 
phosphorylates different target proteins. Interestingly, how-
ever, not all proteins targeted by Mec1–Ddc2 show the same 
dependency on the ssDNA signal. In our recent work, we 
define two Mec1 signaling circuits, which respond differ-
ently to quantitatively different amounts of ssDNA (Bantele 
et al. 2019). One circuit activates the DNA damage effector 
kinase Rad53, which mediated by its co-sensors and scaf-
folds is recruited and activated in a manner that strongly 
depends on the ssDNA length and therefore integrates over 
the ssDNA signal (Bantele et al. 2019; Ira et al. 2004). As 
Rad53 sets off the cell-wide DNA damage checkpoint (de 
Oliveira et al. 2015; Harrison and Haber 2006; Branzei and 
Foiani 2006), we call this response the “global” signaling 
circuit (Fig. 1a, left). A second circuit leads to phosphoryla-
tion of the histone H2A (γH2A), which forms a chromatin 
domain surrounding the DNA lesion (Shroff et al. 2004; 
Rogakou et al. 1998) and behaves fundamentally different. 
γH2A phosphorylation appears to be full-blown even at very 
low amounts of ssDNA signal and is seemingly unrespon-
sive to further ssDNA accumulation (Bantele et al. 2019). 
Notably, γH2A is not involved in the cell-wide response 
but rather thought to facilitate local changes in the dam-
aged chromosome and perhaps promote repair (Downs et al. 
2004; Kim et al. 2007; Kruhlak et al. 2006; Redon et al. 
2003; Tsabar et al. 2015). We therefore termed this response 
the “local” signaling circuit (Fig. 1a, right). As both cir-
cuits  are triggered by the same kinase—Mec1–Ddc2, a 
model emerges by which different Mec1 kinase targets have 
different sensitivities towards the kinase. While γH2A, in the 
center of the local response, is efficiently targeted already at 
very low levels of damage-associated Mec1 kinase, activa-
tion of the DNA damage checkpoint effector kinase Rad53, 
which acts globally, requires accumulation of ssDNA-RPA 
(Bantele et al. 2019). Such a separation of responses at dif-
ferent amounts of the ssDNA signal seems to be a reliable 
strategy to ensure immediate full-blown local repair while 
launching a cost-intense, cell-wide checkpoint response 
including cell cycle arrest only if the damage load is high or 
DNA lesions are persistent and a safe passage through the 
cell cycle is no longer guaranteed.

The concept of signaling thresholds separating different 
cellular responses can be observed already in the bacte-
rial SOS response (Michel 2005; Maslowska et al. 2019). 
The SOS response also monitors ssDNA accumulation and 
ssDNA–RecA binding and signals it via the LexA transcrip-
tional repressor system. Here, the LexA-dependent repres-
sion of repair genes is gradually removed upon increasing 
RecA–ssDNA accumulation/DNA damage. At low doses of 
ssDNA, genes involved in nucleotide excision repair (NER) 
are de-repressed (Courcelle et al. 2001; Michel 2005). Fur-
ther ssDNA accumulation then leads to de-repression of TLS 
genes and an inhibitor of cell division, which can be seen 
as a mechanism to stop cellular proliferation analogous to 
the checkpoint in eukaryotes (Tippin et al. 2004). In this 
case, the transition from proliferation to arrest is therefore 
accompanied by an additional transition from NER to muta-
genic TLS (Michel 2005; Tippin et al. 2004; Courcelle et al. 
2001). Interestingly, quantitative read-out of the ssDNA sig-
nal therefore seems to be a universal feature of prokaryotic 
and eukaryotic DNA damage responses suggesting that a 
decision whether DNA damage levels are tolerable or a 

Fig. 1   Two distinct signaling circuits operate DNA damage signaling. 
a Schematic representation of the two Mec1–Ddc2-dependent signal-
ing circuits within the DNA damage checkpoint. The global signal-
ing circuit (left) integrates the quantitative information of the initial 
ssDNA–RPA signal and over a wide range of signal translates it into 
a proportional amount of activated Rad53 effector kinase. The local 
signaling circuit (right) is already fully active at very low amounts of 
ssDNA–RPA signal and triggers the local response. b Putative model 
of the different mechanisms by which substrates of the local (green) 
and global (blue) checkpoint signaling circuits access Mec1 activity 
(red), which in case of local signaling is likely determined by archi-
tectural characteristics of the chromatin
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full-blown cell-wide DNA damage response is required in 
all cells.

The differentiation of signaling circuits brings up several 
interesting questions regarding the underlying molecular 
mechanisms. How is Mec1 kinase activity differentially 
channeled towards different Mec1 targets? How is the γH2A 
domain established efficiently with low levels of DNA dam-
age-associated kinase? How are thresholds that are locally 
defined at every lesion site integrated over spatially distinct 
lesion sites?

One fundamental difference between targets in the local 
and global circuits is their availability to phosphorylation 
by the Mec1 kinase. The global signaling cascade consti-
tuted by the 9-1-1 co-sensor, the Dpb11 and Rad9 scaffold 
proteins and the Rad53 effector kinase requires several steps 
of protein recruitment to the DNA lesion site, which itself 
is dependent on DNA end resection and Mec1 (Ira et al. 
2004; Ma et al. 2006; Puddu et al. 2008). It therefore seems 
reasonable to suggest that protein recruitment requirements 
dictate subsequent phosphorylation by Mec1. In case of 
γH2A, the scenario is fundamentally different. H2A is an 
integral component of chromatin and as such immediately 
available as substrate for phosphorylation. Therefore, and 
despite the fact that histones were shown to display plastic-
ity at DSBs (Hauer et al. 2017; Hauer and Gasser 2017; 
Adam et al. 2016; Tsabar et al. 2016), encounters between 
Mec1 and H2A over the broad γH2A domain will rather be 
defined by chromatin architecture and mobility than recruit-
ment (Caron et al. 2015; Aymard and Legube 2016; Lee 
et al. 2013; Renkawitz et al. 2013; Zimmer and Fabre 2019). 
Taken together, we therefore propose that Mec1 targets are 
phosphorylated dependent on the frequency of kinase-sub-
strate encounters, which in the global signaling circuit is 
determined by recruitment and in the local signaling circuit 
depends on chromatin architecture (Fig. 1b).

Based on this model, the Mec1–Ddc2 sensor module 
is critically involved in all ssDNA signaling circuits and 
likely involved in transducing the quantitative nature of 
the ssDNA signal. However, a second sensing mechanism 
might be required to confer the amount of ssDNA in the 
global signaling circuit. Currently, the best candidates for 
this second sensor are the 9-1-1 clamp and factors associated 
with it (Bantele et al. 2019). It has been shown that 9-1-1 
is recruited to the border of resection (Majka et al. 2006; 
Majka and Burgers 2007), and we could observe resection-
dependent 9-1-1 accumulation. However, by which molecu-
lar mechanism the 9-1-1 complex or its associated factors 
are involved in sensing or transducing the ssDNA signal will 
need to be determined by future research.

We therefore suggest that the cellular DNA damage 
response should not be viewed as a single pathway, but 
rather as separable signaling circuits. Different DNA damage 
scenarios trigger differential responses in these individual 

circuits. A quantitative understanding of the signal trans-
duction in the individual circuits is therefore required to 
understand and manipulate cellular decision making upon 
DNA damage.
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