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ABSTRACT: In this work, we report the first selective, photo-
catalyzed [2+2]-cycloaddition of dehydroamino acids with styrene-
type olefins. This simple, mild, and scalable approach relies on the
use of the triplet energy transfer catalyst [Ir(dFCF3ppy2)dtbpy]PF6
under visible light irradiation and provides fast access to value-
added substituted strained cyclobutane α-amino acid derivatives.
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■ INTRODUCTION
Amino acids play an essential role in modern life sciences as
they are precursors for chiral auxiliaries,1,2 catalysts,3 and
numerous drugs.4 Regarding their biological activity, they
present a limitless source for novel structurally diverse target
molecules. However, poor physical properties and low
metabolic stability among others remain considerable
challenges in peptide drug design.5,6 To overcome these
challenges, the modification of natural amino acid side chains
as well as the introduction of unnatural amino acids have
proven advantageous.7

In this regard, cyclobutane amino acids (CBAAs)8 have
evolved as an interesting class of derivatives for the
development of new classes of strained, conformational
restricted peptide mimetics for medical applications as well
as diverse uses as synthetic building blocks or catalysts.9−12 As
a result, many efforts have been set to the synthesis of
cyclobutane α-,13−15 β-,16−19 and γ-amino acids20−22 (Scheme
1a). However, although some derivatives exhibit potent
biological activities,23−25 cyclobutane α-amino acids have
recently received much less attention, which might be due to
a lack of efficient, straightforward approaches for their
preparation.26−28

In the past few years, visible light photocatalysis29−31 has
emerged as a general, potent, and versatile synthetic tool. The
mildness of this growing technology has recently also allowed
for derivatization of amino acids by selective C−C bond
formation reactions.32−37 Recent developments in this field
include photoredox catalyzed additions of photooxidative
generated radicals into α,β-dehydroamino acids (DhAAs)

(Scheme 1b).38−43 However, despite its tremendous potential,
no photocatalytic [2+2]-cycloaddition44,45 with this type of
dehydroamino acids that will permit the direct construction of
the desired α-CBAAs has been reported to date. Indeed, only
scarce examples involving formal [2+2]-cycloaddition method-
ologies have been described, which rely on thermal26 or Al-
based Lewis acid promoters.27,28

Inspired by earlier works on energy transfer (EnT)
photocatalysis46 and our previous contribution to photo-
catalyzed radical additions toward unnatural amino acids,42,47

we envisioned an unprecedented method for the functionaliza-
tion of α,β-dehydroamino acids using a photocatalytic, visible
light mediated [2+2]-cycloaddition. Hence, it provides ready
access to a variety of cyclobutane 2-substituted α-amino acids
while allowing for high selectivity and functional group (FG)
tolerance (Scheme 1c).

■ RESULTS AND DISCUSSION
We started our investigation by optimizing the model reaction
between methyl 2-acetamidoacrylate (1a) and 4-methyl
styrene (2a) under irradiation with blue LEDs at 20 °C
(Table 1; see the Supporting Information (SI) for full
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screening). No product was formed in the control experiments
without photocatalyst (PC) and/or light (entry 1). Hence, a
screening of a few selected metal and organic photocatalysts
such as [Ir(dFCF3ppy2)dtbpy]PF6, [Ru(bpy)3](PF6)2, thio-
xanthone, and 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanoben-
zene (4Cz-IPN) in CH3CN (0.2 M) was conducted (entries
2−6). The Ir-complex was identified as the best catalyst, giving
with just 2 mol % loading the desired product 3aa/3aa’ in 82%
yield and a good 8:1 diastereoselectivity (entry 2). The
increase of the Ir-catalyst loading to 4 mol % (entry 3),
employing other solvents rather than CH3CN (entry 7−10), or
varying the concentration (entry 11−12) did not further
improve the yield.
With the optimized conditions in hand, 2 mol %

[Ir(dFCF3ppy2)dtbpy]PF6 as catalyst in CH3CN (0.2 M) at
20 °C for 24 h, we next explored the scope and limitations of
the reaction (Scheme 2). The influence of other N-protecting
groups such as Boc, Fmoc, and Cbz was first addressed.
Although the N-acyl group proved the most efficient, Boc and
Cbz derivatives were also well tolerated, affording the products
3ba and 3ea in moderate to good yields and diastereoselectiv-
ities (72%, 8:1 d.r. and 64%, 6:1 d.r., respectively). Notably,
the introduction of a second Boc unit (3ca) or utilizing the
Fmoc protecting group (3da) led to diminished reactivity and
diastereoselectivity.
We then focused our attention on the effect of the

substitution at the alkene reagent. The use of α-methylstyrene
provided the product 3ab in a moderate yield and
diastereoselectivity (66%, 3.8:1 d.r.). To our delight, switching
to a 1,2-substitution pattern afforded the corresponding
products 3ac−3ae in good yields (up to 80%) and excellent
diastereoselectivities (up to 20:1 d.r.). It is worthy to note that
the same diastereoselectivity (20:1 d.r.) was obtained for 3ad
using either the trans- (2d) or cis-stilbene (2d’), suggesting a
stepwise process. Additionally, it was possible to construct a
fused ring system 3af with a good 88% yield and moderate
diastereoselectivity (2.9:1 d.r.). Interestingly, the opposite
relative alignment with respect to the ester group compared to
the one obtained with acyclic olefins was observed for the
major product, which was confirmed by X-ray structure
analysis of representative products 3 (see the SI for details).48

Pleasingly, different substitution on the styrene aromatic ring
was allowed, leading to the desired products 3ag−3as in
moderate to high yields (45−93%). While a significant drop in
both yield and diastereoselectivity (45%, 1.1:1 d.r.) was
observed by introducing the bulky mesitylene group (3ag),
halide-containing styrenes afforded the products 3ai−3am in
good yield (71%−81%) and diastereoselectivity (8:1 d.r.).
Only in the case of the bromide derivative 3am, a less efficient
reaction was monitored (39%, 5.3:1 d.r.). Moreover, both
electron withdrawing and donating groups were well tolerated,
providing the products 3an−3ar in good yields (60−85%) and
moderate to high diastereoselectivities up to 10.6:1 d.r..
Remarkably, a boronic ester derivative was converted into 3as
in excellent 93% yield and 8.2:1 d.r., opening up the possibility
for further derivatization. The substitution at the double bond
of the dehydroalanine core required however longer reaction
times (72 h) and gave the products 3fa and 3ga in significantly
lower yields (33% and 8%), while the Karady−Beckwith alkene
was converted to 3ha in good 81% yield and moderate
diastereoselectivity (4:1 d.r.). Finally, the reaction with more
complex, nature derived products was carried out. Thus, the
menthol ester derivative gave rise to 3ia in high yield (81%) as

Scheme 1. (a) Cyclobutane Amino Acids (CBAAs), (b)
Previous Photocatalytic Functionalization of Dehydroamino
Acids (DhAAs), and (c) This Work on Visible Light
Mediated Photocatalyzed Energy Transfer [2+2]-
Cycloaddition toward CBAAs

Table 1. Optimization of the Reaction Conditions with 1aa

entry PC (mol %) solvent 3aa/3aa’ d.r. 3 yield (%)b

1 no cat. or light CH3CN
2 [Ir] (2) CH3CN 8:1c 82
3 [Ir] (4) CH3CN 8:1d 83
4 [Ru] (5) CH3CN
5 thioxanthone (10) CH3CN 3:1d 54
6 4Cz-IPN (5) CH3CN 7:1d 70e

7 [Ir] (2) DMF n.d. 60
8 [Ir] (2) CDCl3 7:1d 75
9 [Ir] (2) DMSO n.d. 73
10 [Ir] (2) acetone 6:1d 56
11 [Ir] (2) CH3CN

f 7:1d 68
12 [Ir] (2) CH3CN

g 6:1d 78
aConditions: catalyst (x mol %), 1a (0.2 mmol, 1.0 equiv), and 2a
(1.5 equiv) in degassed solvent [0.2 M] were irradiated in a
photoreactor with a blue LED [λmax 415 nm]. bIsolated yield.
cDetermined by crude NMR. dDetermined from the isolated
products. e72 h reaction time. fUse of 0.1 M concentration. gUse of
0.4 M concentration. [Ir] = [Ir(dFCF3ppy)2dtbpy]PF6; [Ru] =
[Ru(bpy)3](PF6)2. n.d. = not determined.
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a mixture of diastereoisomers (2:2:1:1 d.r.) with a 2:1 ratio of
cis- (3ia) and trans-(3ia’) NHAc/pTol arrangement in the
cyclobutane, respectively (see the SI for details).48,49

Furthermore, more challenging dipeptide-containing dehy-
droamino acids were subjected to the reaction and gave the
corresponding products 3ja (α-CBAA-Val) and 3ka (α-CBAA-
Lys) in 61% and 47% yield, respectively.
To demonstrate the robustness and synthetic utility of the

method, a 25-fold upscaling of the reaction was performed in
batch without adjusting the conditions using side irradiation
with three single blue LEDs (3 W, 415 nm) (Scheme 3a),
providing 3aa/3aa’ with unchanged selectivity of 8:1 d.r. and
in a moderate 44% yield after a prolonged reaction time. This
result could be significantly improved by conducting the

reaction in continuous flow in a custom-built photoreactor (30
× 3 W LED, 415 nm, 6 mL/min flow rate and 18 °C; see the
SI for more details). Hence, the desired product was obtained
in 71% yield and the same selectivity after 52 h (>900 mg)
(Scheme 3b).
Next, the introduction of other protecting groups that allow

for orthogonal cleavage such as OtBu esters was conducted
(Scheme 4a). Hence, the OtBu substituted CBAA 3la and 3ma
presenting a NBoc and NFmoc group were prepared following
the standard cycloaddition reaction in 75% (8:1 d.r.) and 77%
(7.5:1 d.r.), respectively. While the double deprotection in 3lm
of the Boc and OtBu groups under acidic conditions using
trifluoroacetic acid (TFA) provided the free amino acid 4 as
TFA salt in good 86% yield and 9:1 d.r., the free amino

Scheme 2. Scope of the [2+2]-Cycloaddition by Visible Light Photocatalysis

a7 days reaction time. b72 h reaction time. cOnly two isomers could be detected in the crude NMR. dEach isolated fraction 3ia (major) and 3ia’
(minor) contains a ∼1:1 mixture of diastereoisomers. Ellipsoid contours given at the 30% probability level for 3aa and 3fa, and 40% for 3ac.
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derivative 5 was obtained in 56% yield by selective cleavage of
the Fmoc unit using piperidine. Moreover, the possibility of
preparing the free α-amino acids from the products bearing the
methyl ester and acetamide units was depicted by the
hydrolysis of both protecting groups of 3ia with a 6 M HCl
solution at 120 °C for 24 h (Scheme 4b). The free CBAAs cis-
4 was then obtained as its HCl salt in 73% yield.
Finally, to elucidate the underlying mechanism, Stern−

Volmer quenching experiments were performed (see the SI),
showing a strong quenching of the excited photocatalyst with
4-methylstyrene (2a). Additionally, a notable weaker inter-
action with 1a could also be observed. However, the
homocoupling control experiments showed no productive
pathway from excited 1a (see SI, Table S3). Moreover,
comparing the excited state oxidation potential of [Ir-
(dFCF3ppy2)dtbpy]PF6 (E*ox = +1.21 V vs SCE)50 with the
oxidation potentials of 2-acetamidoacrylate (1a) (E1/2 = +2.43
V vs SCE) and 4-methylstyrene (2a) (E1/2 = +1.38 V vs
SCE),51 this [Ir]-species does not possess an excited state
oxidation potential sufficient to generate the radical cations of
1a or 2a. Therefore, a single electron transfer oxidation
pathway seems improbable. Instead, the catalyst [Ir-
(dFCF3ppy2)dtbpy]PF6 is known to be a potent triplet
sensitizer with an excited state triplet energy (ET) of

61.8 kcal mol−1, while styrenes generally present ET of
approximately 60 kcal mol−1.51 This suggests that energy
transfer from the excited photocatalyst to the styrene derivative
is most likely to occur. This assumption is consistent with our
findings that using [Ru(bpy)3](PF6)2 (ET = 49.0 kcal mol−1),52

with an ET significantly lower than 2a, did not yield the desired
product, while other known energy transfer catalysts (see
Table 1, entries 5 and 6) also built the cyclobutanes 3.

■ CONCLUSION
In conclusion, we reported herein a photocatalytic approach
for the fast construction of unnatural 2-substituted cyclobutane
α-amino acids from readily accessible dehydroamino acids and
styrenes as reaction partners. An iridium photosensitizer with
appropriate excited state triplet energy is used to activate a
variety of styrenes by energy transfer, giving rise to the targeted
α-CBAAs in generally good yields, 1,2-regioselectivity, and
diastereoselectivities up to 20:1 d.r. The applicability and
robustness of the method were also demonstrated by efficiently
employing natural product-like derivatives such as menthol
ester or dipeptide substrates as well as by orthogonal
deprotections and conducting a gram scale reaction, in which
the use of continuous flow provided the best results. Hence,
this method provides unprecedented, selective, simple, and
direct access to a new series of functionalized α-CBAAs under
mild photocatalytic conditions.
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