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Abstract: Over the past few decades, the quest for discovering the brain substrates of the affect to
understand the underlying neural basis of the human’s emotions has resulted in substantial and yet
contrasting results. Whereas some point at distinct and independent brain systems for the Positive
and Negative affects, others propose the presence of flexible brain regions. In this respect, there are
two factors that are common among these previous studies. First, they all focused on the change in
brain activation, thereby neglecting the findings that indicate that the stimuli with equivalent sensory
and behavioral processing demands may not necessarily result in differential brain activation. Second,
they did not take into consideration the brain regional interactivity and the findings that identify that
the signals from individual cortical neurons are shared across multiple areas and thus concurrently
contribute to multiple functional pathways. To address these limitations, we performed Granger
causal analysis on the electroencephalography (EEG) recordings of the human subjects who watched
movie clips that elicited Negative, Neutral, and Positive affects. This allowed us to look beyond
the brain regional activation in isolation to investigate whether the brain regional interactivity can
provide further insights for understanding the neural substrates of the affect. Our results indicated
that the differential affect states emerged from subtle variation in information flow of the brain
cortical regions that were in both hemispheres. They also showed that these regions that were rather
common between affect states than distinct to a specific affect were characterized with both short-
as well as long-range information flow. This provided evidence for the presence of simultaneous
integration and differentiation in the brain functioning that leads to the emergence of different affects.
These results are in line with the findings on the presence of intrinsic large-scale interacting brain
networks that underlie the production of psychological events. These findings can help advance
our understanding of the neural basis of the human’s emotions by identifying the signatures of
differential affect in subtle variation that occurs in the whole-brain cortical flow of information.
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1. Introduction

In psychology, the term “affect” refers to anything that is emotional [1]. It forms the individuals’
basic ability to experience pleasant/unpleasant feelings to express these subjective mental states in
terms of such attributes as positive or negative [2]. This ability is considered to be a fundamental
property of individuals’ emotion [3–5]. It begins from the early days in individuals’ lives [6,7] and
appears to form the unifying and common concept across cultures [8,9].

The quest for discovering the brain substrates of the affect has witnessed a growing surge in
recent decades. These efforts are broadly identified by two mainstream approaches [1]. They are
the locationist and the psychological constructionist approaches. The locationist approach [10,11]
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hypothesizes that a single brain region consistently and specifically activates across instances of a single
emotion category/state (e.g., Positive state). It also argues that such states are biologically basic (i.e.,
they cannot be broken down into more basic psychological components) [12–14]. On the other hand,
the psychological constructionist approach [15–17] states that the same brain areas consistently activate
across the instances of a range of emotion categories. In other words, this viewpoint maintains that no
brain region is specifically dedicated to any particular emotion category [1]. Lindquist et al. [2] further
categorize these approaches under three major hypotheses: the bipolarity hypothesis [18], the bivalent
hypothesis [19–21], and the affective workspace hypothesis [22]. The bipolarity hypothesis [18]
considers the Positive and Negative affect to form the opposite ends of a single dimension [23,24].
On the other hand, the bivalent hypothesis [19–21] emphasizes on the presence of two distinct and
independent brain systems for the Positive and Negative affects [19–21]. Contrary to these two
hypotheses, the affective workspace hypothesis [22] argues that the Positive and Negative affect are
the brain states that are supported by flexible rather than a consistently specific set of brain regions [25].
Such a divide in neural substrates of the affect is further escalated by the results of meta-analyses that
provide contrasting yet compelling evidence for and against these hypotheses [2,26–30]. For instance,
whereas Vytal and Hamann [26] credited the bipolarity hypothesis, Lindquist et al. [2] provided
stronger support for the affective workspace hypothesis.

Our overview of the literature on the brain substrates of the affect identifies two factors that play
pivotal roles in discrepancies among their findings. First, it identifies that these studies primarily
focused on the change in brain activation to call a specific [31–34] or subset [27] of the brain regions
responsible for experiencing an affect. However, this approach neglects the findings that indicate the
brain activation and its information content do not necessarily modulate [35]. It also does not take
into account that the stimuli with equivalent sensory and behavioral processing demands may not
necessarily result in differential brain activation [36]. Second, it indicates that the previous studies
did not consider the crucial role of functional interactivity between the brain regions [37]. As a result,
they did not take into account the fact that signals from individual cortical neurons are shared across
multiple areas and thus concurrently contribute to multiple functional pathways [38].

In this regard, the nonlinear dynamical system analysis [39,40] frames the study of the brain
functioning in terms of the interaction between its regions. Specifically, it treats the brain as
a complex system [41,42] whose dynamics and ongoing activity [43] orchestrates its cognitive
functions [44–47]. In this respect, the Granger causality (G-causality) [48,49] has found widespread
use in neuroscience [50–52]. The G-causality is based on predictability and precedence among
two or more events that occur at the same time. In the language of G-causality, a variable
X is said to G-cause a variable Y if the past of X contains information that helps predict
the future of Y over and above information already in the past of Y. Although the Granger
causality is based on linear vector autoregressive (VAR) [48,49,51] and hence linear in nature,
it approximates [53,54] the transfer entropy [55] i.e., a nonlinear directional measure of mutual
information. An advantage of using Granger causality is that, unlike the transfer entropy’s complicated
estimation [55–57], its well-established mathematical formulation and known statistical properties
allow for straightforward tests of significance [58,59]. Over the past, there has been concern for the
use of Granger causality in the neuroscience [60,61]. However, a number of subsequent analyses have
provided evidence for its utility in such analyses [62–64].

In this article, we utilize the Granger causality to investigate the whole-brain functional
interactivity in terms of information flow between different brain regions in response to different
affects. We achieve this objective by utilizing the Shanghai Jiao Tong University (SJTU) Emotion EEG
Dataset (SEED) [65] that is a collection of human subjects’ sixty-two-channel EEG recordings. EEG is
an electrophysiological monitoring method that records the brain’s spontaneous electrical activity over
a period of time. These electrical activities are due to the voltage fluctuations induced by ionic current
within the neurons [66]. EEG recordings are generally acquired through multiple electrodes. In a SEED
experiment, the sixty-two-channel EEG recordings of the participants took place while they watched
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fifteen movie clips (four minutes in duration) whose contents elicited three distinct affect: Negative,
Neutral, and Positive.

Although previous research aimed at identifying the functional interaction among brain regions,
it mostly framed such an interactivity in terms of statistical association (e.g., correlation) [67]. However,
this approach to the study of brain cortical regional interactivity is problematic since such associations
as correlation can arise in a variety of ways that do not entail causal relation (i.e., directional flow
of information) [67]. As a result, they do not allow for understanding the mapping between such
associations and their underlying neural substrates [67,68]. Addressing these shortcomings can be
facilitated by utilization of such approaches as Granger causality that provide means to establish
directional relations between the brain regions. For instance, it can help verify whether the observed
associations were indeed stemmed from causal (i.e., in its purely statistical term) relations among
these regions. Furthermore, it can enable researchers to investigate the existing theorems and
hypotheses about the brain functioning and its regional interactivity in a more robust way. For example,
G-causality can be adapted for the study of the affect in terms of brain’s regional functional connectivity,
thereby allowing for reconciliation among the contrasting results of the bipolarity [18], bivalent [19–21],
and affective workspace [2,22] hypotheses [2,26–30]. To the best of our knowledge, no previous study
has considered the use of Granger causality for this purpose.

Our contributions are threefold. First, we show that the Negative, Neutral, and Positive affects
emerge from subtle variation in information flow of the brain regions that are in both hemispheres.
Second, we show that these regions are common between these affect states than distinct to a specific
affect. Third, we show that these regions are characterized with both short- as well as long-range
information flow. This provides evidence for the presence of simultaneous integration and differentiation
in the brain functioning that leads to the emergence of different affects. Taken together, our findings
appear to be more in line with the affective workspace hypothesis [2,22] than the bipolarity [18] or the
bivalent hypotheses [19–21]. Our results are also in line with the findings on the presence of intrinsic
large-scale interacting brain networks that underlie the production of psychological events [69–72].
We believe that our study can help advance our understanding of the neural basis of the human’s
emotions by identifying the signatures of differential affect in subtle variation that occurs in the
whole-brain cortical flow of information.

In regards to our study, there is an important point that deserves further clarification. A number
of neuroscientific findings argue that the basic emotions are localized to the firing of subcortical
circuits [13,73]. They also show that the emergence of the affect rather originates from these subcortical
regions [73] where multiple brainstem-derived modulatory neurotransmitters contribute to emotion
and emotional behavior [74–76]. In this respect, it is crucial to note that the present study is not about
the origin of the affect in such subcortical levels. It primarily aims at the higher-level cortical regions
to verify whether these regions are common/distinct to/between the Negative, Neutral, and Positive
affects. Subsequently, it investigates the extent to which the potentially differential flow of information
among these regions can account for neural substrates of the Negative, Neutral, and Positive affects.

2. Materials and Methods

2.1. The Dataset

SEED [65] corresponds to sixty-two-channel EEG recordings (Figure 1B) of fifteen Chinese subjects
(7 males and 8 females; Mean (M) = 23.27, Standard Deviation (SD) = 2.37). All participants were
right-handed (with self-reported normal or corrected-to-normal vision and normal hearing) and were
students from Shanghai Jiao Tong University. They watched fifteen Chinese movie clips (four minutes in
duration) that elicited Negative, Neutral, and Positive affects. These individuals were selected based on the
Eysenck Personality Questionnaire (EPQ) [77] personality traits. EPQ evaluates the individuals’ personality
along three independent dimensions of temperament: Extraversion/Introversion, Neuroticism/Stability,
and Psychoticism/Socialization. Eysenck et al. [77] reported that it appears that not every individual can
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elicit specific emotions immediately (even in the presence of explicit stimuli). They also reported that the
individuals who are extraverted and have stable moods tend to elicit the right emotions throughout the
emotion-based experiments. Therefore, the authors in SEED adapted the same personality criteria that was
reported by Eysenck et al. [77] to select the fifteen individuals that participated in their experiment.

Figure 1. (A) schematic diagram of an experiment as described in [65]. Each experiment included a
total of fifteen movie clips (i.e., n = 15, audiovisual), per participant. In this setting, each movie
clip was proceeded with a five-second hint to prepare the participants for its start. This was
then followed by a four-minute movie clip. At the end of each movie clip, the participants were
asked to answer three questions that followed the Philippot [78]. These questions were the type of
emotion that the participants actually felt while watching the movie clips, whether they watched
the original movies from which the clips were taken, and whether they understood the content of
those clips. The participants responded to these three questions by scoring them in the scale of 1 to 5;
(B) arrangement of the EEG electrodes in this experiment. The sixty-two EEG channels were: FP1, FPZ,
FP2, AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8, T7, C5,
C3, C1, CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6,
P8, PO7, PO5, PO3, POZ, PO4, PO6, PO8, CB1, O1, OZ, O2, CB2.

Prior to a SEED experiment, the authors asked twenty volunteers to assess a pool of movie clips
in a five-point scale. Based on the result of this assessment, they selected the fifteen movie clips (i.e.,
five clips per Negative, Neutral, and Positive affects) whose average score were ≥ 3 and ranked in
the top 5 in each affect category. They further verified that the selected movie clips indeed elicited the
targeted affect in a follow-up study [79] that included nine separate individuals who were different
from the twenty volunteers that originally involved in rating and selection process of fifteen movie
clips. The authors then used these movie clips in SEED experiment.

In SEED, each experiment included (Figure 1A) a total of fifteen movie clips per participant. In this
setting, each movie clip was proceeded with a five-second hint to prepare the participants for its start.
This was then followed by a four-minute movie clip. At the end of each movie clip, the participants
were asked to answer three questions that followed the Philippot [78]. These questions were the type
of emotion that the participants actually felt while watching the movie clips, whether they previously
watched the original movies from which the clips were taken, and whether they understood the content
of those clips. The participants responded to these three questions by scoring them in the scale of 1 to
5. The participants were then instructed to take a fifteen-second rest before the next movie clip in the
experiment started. Each individual participated in three experiments with an interval of about one
week between them. The same set of fifteen movie clips were used in all of these three experiments.
Every participant watched the same set of fifteen movie clips in the same order of their presentations.
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The movie clips within each experiment were ordered in such a way that two clips with the
same emotional content (e.g., both targeting Negative affect) were not presented consecutively to the
participants. Additionally, these clips were selected based on the criteria that their lengths were not too
long to induce fatigue on the subjects while watching them that their contents were easy to understand
by the participants without any explicit explanation, and that each clip elicited a single desired target
affect (e.g., Negative or Positive).

SEED comes with its preprocessed EEG recordings which we used in the present study.
Its preprocessing steps consist of downsampling the EEG recordings to 200 Hz followed by bandpass
filtering the signals within 0–75 Hz. These steps were applied on the extracted EEG segments that
corresponded to the duration of each movie clip. Further details on SEED experiment, EEG channels’
arrangement, movie clips’ selection criteria, data acquisition, and preprocessing, labeling the emotional
states associated with each movie clip, etc. can be found in reference [65] and the following link
(http://bcmi.sjtu.edu.cn/~seed/seed.html).

2.2. Data Selection and Validation

In our study, we considered only the first experiment of every participant (i.e., out of their three
times participating) and included all of its corresponding fifteen movie clips trails (Figure 1A). We also
considered all sixty-two channels of EEG recordings of these individuals. Prior to any further analyses,
we validated the selected data through the following steps.

In our study, we considered only one session of every participant (per affect) out of their three
times participations [65]. This resulted in a total of 15 participants × 3 affect states. We considered all
sixty-two channels of EEG recordings of these individuals. Prior to any further analysis, we validated
the selected data through the following steps.

First, we ensured that all EEG recordings that were included in our study were sufficiently
long (Mean (M) = 45,286.71, Standard Deviation (SD) = 2776.61, CI95% = [44,565.70 46,007.73],
minimum = 37,001, maximum Length = 47,601) where CI95% refers to the 95% confidence interval.
We then trimmed all participants’ EEGs to have equal lengths of 37,000 data points (i.e., the minimum
length of EEG recording observed in the participants’ data).

Next, and prior to any further data validation, we performed two necessary preprocessing steps on
all participants’ EEG data: detrending (i.e., subtracting the best fitting line) and z-standardization (i.e.,
subtracting the ensemble mean and dividing by ensemble standard deviation from each time series to
obtain data with zero-mean and unit standard deviation) [80]. These steps help remove nonstationarity
in the mean and the standard deviation (i.e., nonstationarity that is reflected in variance over time of
the time series mean and standard deviation).

We then performed Augmented Dickey Fuller (ADF) [81] and Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) [82] tests on all EEG channels (per participant, per affect) to ensure that they were
covariance stationary and subsequently marked those participants’ data whose EEG channel(s) did
not pass these tests. During these tests, we noticed that all three sessions of one of the participant
did not satisfy the requirement for covariance stationarity (i.e., trend–stationarity that implies mean
and variance do not change over time). Therefore, we did not include this participant in the further
analyses. We also observed that two of the participants’ EEG recordings from their first sessions did
not pass these tests on two of their EEG channels. Therefore, we replaced these participants’ first
session EEG with their corresponding second and third sessions, respectively, that passed these tests
on all of their EEG channels.

2.3. Causal Density and Causal Flow Computations

In this study, we adapted time-domain Granger causality, given its known statistical properties
that allows for straightforward tests of significance [58,59]. A crucial choice of parameter in G-causality
analysis is its model order i.e., the number of previous observations to consider while estimating the
autoregressive model [59]. Given the fact that different model orders may lead to different results,
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we used Akaike and Bayesian information criteria (AIC and BIC, respectively) to determine the model
order for the participants’ EEG time series. Whereas BIC showed inconsistencies in the choice of model
order for different EEG time series (M = 5.71, SD = 0.83, CI95.0% = [5.32 6.11]), we found that AIC
considered the model order = 12 for all the participants’ validated time series. Therefore, we used
model order = 12 in the subsequent steps.

We utilized the Granger causality toolbox by Barnett and Seth [58] to compute (per participant,
per affect) unit (i.e., per EEG channel) causal density and unit causal flow. Causal density (cd) expresses
the overall degree of causal interactivity [59]. It is defined as the mean of all pairwise G-causalities
between system elements, conditioned on the remainder of the system. The causal density of a system
X (e.g., all the EEG channels in our case) is computed as (Seth [59], p. 268):

cd(X) =
1

n(n− 1) ∑
i 6=j

FXi→Xj |X[ij]
(1)

and X[ij] denotes the subsystem of X, where elements Xi and Xj are excluded. The unit causal density
(ucd) of any Xi ∈ X (e.g., a single EEG channel) is then the summed causal interactions that involves
Xi, normalized by ‖X‖ i.e., number of elements of X (ibid). This, in turn, results in n ucd values for
‖X‖ = n (in our case, 62 ucd values for 62 EEG channels, per participant, per affect).

On the other hand, the unit causal flow (ucf) of an element Xi ∈ X is defined as the difference
between its in-degree and out-degree [59]. In other words, ucf of Xi ∈ X (e.g., ith EEG channel,
1 ≤ i ≤ 62, in our case) expresses the extent to which Xi is influenced by (i.e., in-degree) or influences
(i.e., out-degree) the remainder of the elements Xj ∈ X, j 6= i, 1 ≤ i, j ≤ 62 (e.g., all the other EEG
channels in our case).

The causal density [58] is the measure of a system (i.e., whole-brain in our case) dynamical
complexity. A high causal density reflects simultaneous integration and differentiation in network
dynamics. Precisely, it indicates that the elements within a system (i.e., each EEG channel in our
case) are both globally coordinated in their activity (in order to be useful for predicting each other’s
activity) while being dynamically distinct (so that different elements contribute in different ways to
these predictions) [83,84]. In this respect, the unit causal density then refers to contribution of each of
the system’s element (i.e., each EEG channel in our case) to this overall causal density. In the same vein,
the unit causal flow of a system’s element (i.e., each EEG channel in our case) identifies its distinctive
causal effects: an element with highly positive causal flow exerts a strong causal influence on the
system as a whole [59].

While computing the EEG channels’ unit causal density and causal flow, per participant, per affect,
we applied the Durbin–Watson test [85] to ensure that the model’s residuals were uncorrelated.
We verified this by observing that all adjusted r-squared were above their empirical limit of > 0.3 [59,85]
(M = 0.90, SD = 0.06, CI = [0.88 0.91]). We also applied the consistency test [80] and observed that it
was above its empirically accepted limit of > 0.80 [59,80] (M = 85.29, SD = 6.89, CI = [80.91 89.68]).

2.4. Statistical Analysis

The EEG time series that were considered in this study had a relatively large sampling rate
(i.e., 200 Hz after downsampling) and corresponded to a four-minute experimental setting. As a result,
they were long enough to allow for the choice of such dynamical analysis as Granger causality, given the
sensitivity of such techniques to the length of time series. In addition, EEG has a higher temporal
resolution (i.e., in comparison with other neuroimaging techniques such as fMRI and fNIRS) and therefore
poses itself as a better choice for the study of causal connectivity (i.e., in a pure statistical than anatomical
sense). Detailed discussion on such issues and considerations can be found in [50,51,58,59,62,63].

To establish the level of significance for unit causal densities, we first combined the unit causal
densities of all EEG channels of all participants in Negative, Neutral, and Positive affects states and
performed a one-sample test of significance (10,000 simulation runs) at a 95.0% confidence interval on
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them (M = 0.69, SD = 0.30, CI95.0% = [0.68 0.70]). Subsequently, we only considered the values that were
>0.70 i.e., unit causal densities that were above the upper bound of the bootstrap test of significance at
a 95.0% confidence interval.

We carried out three different analyses. They were (1) Spearman correlation to verify whether
there was a correspondence between the unit causal densities associated with Negative, Neutral,
and Positive affects; (2) test of significance to determine whether unit causal densities and unit causal
flows (i.e., all EEG channels) differed significantly between these affect states; and (3) determination
of the importance of each EEG channel’s unit causal density for differentiating between Negative,
Neutral, and Positive affects. In what follows, we elaborate on these steps.

2.4.1. Correlation

We computed the Spearman correlations between the whole-brain unit causal density (ucd
hereafter) values of every pair of affect states (i.e., Positive versus Neutral, Positive versus Negative,
and Negative versus Neutral). We followed this by computing their 95.0% bootstrap (10,000 simulation
runs) confidence intervals. For the bootstrap test, we considered the null hypothesis

Hypothesis 1 (H1). there was no correlation between every pair of affect states’ whole-brain ucd values.

Subsequently, we tested Hypothesis 1 against the following alternative Hypothesis.

Hypothesis 2 (H2). The whole-brain ucd values of every pair of affect states correlated significantly.

We reported the mean, standard deviation, and the 95.0% confidence interval for these tests.
We also computed the p-value of these tests as the fraction of the distribution that was more extreme
than the actually observed correlation values. For this purpose, we performed a two-tailed test in which
we used the absolute values so that both the positive and the negative correlations were accounted for.

We reported the results of Spearman correlations on unit causal densities that were corrected
based on one-sample bootstrap test of significance (10,000 simulation runs) at 95.0% confidence interval
in the main manuscript. We provided these results prior to the application of the bootstrap test in
Appendix A.

2.4.2. Test of Significance

First, we applied the Kruskal–Wallis test on individuals’ whole-brain (i.e., all EEG channels) ucd
values, per affect, which was followed by post-hoc Wilcoxon rank sum tests between every pair of
affect (i.e., Positive versus Neutral, Positive versus Negative, and Negative versus Neutral). We further
verified these results through application of paired two-sample bootstrap test of significance (10,000
simulation runs) at 95.0% (i.e., p < 0.05) confidence interval. For the bootstrap test, we considered the
null hypothesis

Hypothesis 3 (H3). The difference between individuals’ whole-brain ucd values in two different affects was
non-significant.

We then tested Hypothesis 3 against the following alternative hypothesis.

Hypothesis 4 (H4). The individuals’ whole-brain ucd values significantly differed in two different affect states.

We reported the mean, standard deviation, and 95.0% confidence interval for these tests.
Next, we performed a channel-wise (e.g., F6 in each affect state) Wilcoxon rank sum test on a unit

causal flow of each pair of affect (i.e., Positive versus Neutral, Positive versus Negative, and Negative
versus Neutral) to determine whether the information flow from each of EEG channels to the remainder
of the channels differed significantly among these affect states. We further verified these results through
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application of paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0% (i.e.,
p < 0.05) confidence interval. For the bootstrap test, we considered the null hypothesis

Hypothesis 5 (H5). The difference in causal flow from each of EEG channels to the remainder of the channels
in three affect states was non-significant.

We tested Hypothesis 5 against the following alternative hypothesis.

Hypothesis 6 (H6). The flow of information from EEG channels to the remainder of the channels differed
significantly among Negative, Neutral, and Positive affects.

We reported the mean, standard deviation, and 95.0% confidence interval for these tests.

2.4.3. Importance of Channels’ Unit Causal Densities

We used an AdaBoost [86] meta-estimator to determine the utility of EEG channels’ ucd values
for quantification of the Negative, Neutral, and Positive affects. This algorithm learns the underlying
association among instances of different classes (i.e., Negative versus Neutral versus Positive affect
states) in two steps. In the first step, it fits a classifier to the input (a decision tree with depth 1 in our
case). In the second step, it fits additional copies of the original classifier to the same input that focuses
on misclassified cases, thereby improving its accuracy through readjusting the weights of these more
difficult cases. The Adaboost algorithm generates a “feature importance” numeric vector whose values
(within [0, . . . , 1] interval) specify the critical role of each of the elements of the input data vector (i.e.,
ucd values in our case) for identification of its corresponding class (e.g., Negative affect). Therefore,
we used this algorithm’s “feature importance” vector to determine the utility of EEG channels’ ucd
values for quantification of the Negative, Neutral, and Positive affects.

We used individuals’ whole-brain ucd values and formed input feature vectors that were of
length sixty-two (i.e., one ucd per channel), per participant, per affect. We then adapted the 1-holdout
setting in which we considered data associated with the Negative, Neutral, and Positive affects of a
single participant as a test set and used the remaining participants’ data for training the Adaboost
meta-estimator. We then tested the model’s performance on the holdout data. We repeated this
procedure for every participant. This resulted in fourteen different test cases in which we used to
compute the model’s accuracy, precision, recall, and confusion matrix.

Next, we applied a one-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
confidence interval on the Adaboost’s calculated feature importance. We then trimmed the individuals’
ucd vectors (i.e., input data to Adaboost) to only include ucd values whose calculated feature
importance by Adaboost were within or above feature importance’s 95.0% confidence interval.
We followed the same training and testing strategy as in the case of whole-brain ucd values and
reported the model’s accuracy, precision, recall, and confusion matrix. Given the three-affect setting
in which every participant had an equal number of Negative, Neutral, and Positive affects data,
the chance-level accuracy was ≈33.33%.

Finally, we used the Adaboost’s accuracies in the case of whole-brain ucd values versus ucd
values whose importance were within or above feature importance’s 95.0% confidence interval and
applied the Wilcoxon rank sum test on them to determine whether utilization of the whole-brain causal
information bore a significant difference in quantification of Negative, Neutral, and Positive affects
states. We further verified these results through application of paired two-sample bootstrap test of
significance (10,000 simulation runs) at 95.0% (i.e., p < 0.05) confidence interval. For the bootstrap test,
we considered the null hypothesis

Hypothesis 7 (H7). The significance of the use of whole-brain ucd values for classification of different affect
states was non-significant.



the Journal of Brain Sciences 2020, 10, 8 9 of 32

We tested Hypothesis 7 against the following alternative hypothesis.

Hypothesis 8 (H8). The use of whole-brain ucd values had a significant effect on classification of different
affect states.

We reported the mean, standard deviation, and 95.0% confidence interval for these tests.

For the Kruskal–Wallis test, we reported the effect size r =
√

χ2

N [87] with N denoting the sample
size and χ2 is the respective test-statistics. In the case of Wilcoxon tests, we used r = W√

N
[88] as

effect size with W denoting the Wilcoxon statistics and N is the sample size. All results reported were
Bonferroni corrected. All analyses were carried out in Matlab 2016a (The MathWorks, Inc., Natick,
Massachusetts, USA) and Python 2.7 (Python Software Foundation. Python Language Reference,
version 2.7., available at the following link (http://www.python.org). For classification of the affect
states and determination of ucd values’ importance, we used Python’s scikit-learn [89] multi-class
implementation of Adaboost algorithm (referred to as AdaBoost-SAMME [90]) that utilizes a decision
tree with depth 1 as its base classifier.

With regard to our analyses, there are two points that are worth further clarification. They are
the choice of non-parametric tests and the follow-up bootstrap test of significance. Prior to our
analyses, we checked the participants’ unit causal density and the unit causal flow in each of the
Negative, Neutral, and Positive affects states (separately as well as combined, with respect to the both
individuals and the EEG channels for each of the affect). We found that they did not follow normal
distribution. Therefore, we opted for non-parametric analyses. In the case of bootstrap, on the other
hand, we realized that our analyses were performed based on a small sample of participants (i.e.,
fourteen individuals). We also observed that our analyses of the participants’ unit causal flow yielded
small effect sizes. Therefore, it was crucial to ensure that any significant results that we observed in
our analyses were not due to a subsample of individuals (i.e., distorted data and hence lack of central
tendency). This concern was further strengthened by the result of the non-normality of the participants’
unit causal density and the unit causal flow. Therefore, we decided to also apply the bootstrap test
(i.e., random sampling with replacement) that was carried out for 10,000 simulation runs (therefore
allowing for potential outliers to be repeated with higher probability and more frequently) at 95%
confidence interval (i.e., p < 0.05 significance level), thereby enabling us to further verify our results.

2.5. Ethics Statement

This study was carried out in accordance with the recommendations of the ethical committee of
the Advanced Telecommunications Research Institute International (ATR). The protocol was approved
by the ATR ethical committee (approval code: 17-601-4).

3. Results

3.1. Correlation

We found a significant correlation between Positive and Negative (Figure 2A, left column, r = 0.58,
p < 0.00001), Positive and Neutral (Figure 2B, left column, r = 0.58, p < 0.00001), and Negative and
Neutral (Figure 2C, left column, r = 0.53, p < 0.00001). These correlations that were also verified by the
results of their corresponding bootstrap test of significance (10,000 simulation runs) at 95.0% confidence
interval (Figure 2A–C, right column) were stronger between Positive and Negative as well as Positive
and Neutral than Negative and Neutral. Table 1 summarizes the results of these bootstrap test of
significance (for the results prior to the application of the bootstrap test to determine the ucd values’
significant level, see Appendix A).

http://www.python.org
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Figure 2. Paired Spearman correlation between participants’ unit causal density (ucd) values
(A) Positive versus Negative; (B) Positive versus Neutral; (C) Negative versus Neutral. The subplots
on the right column correspond to the bootstrap correlation test (10,000 simulation runs) at 95.0%
confidence interval. In these subplots, the zeros correspond to the ucd values that were below the
significant level of 0.7 i.e., the upper bound of the one-sample test of significance (10,000 simulation
runs) at 95.0% confidence interval (Mean (M) = 0.69, Standard Deviation (SD) = 0.30, Confidence Interval
(CI)95.0% = [0.68 0.70]). For results prior to the application of the bootstrap test to determine the ucd
values’ significant level, see Appendix A.

Table 1. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between Negative, Neutral, and Positive affects.

Conditions r p (Two-Tailed) CI95%

Positive vs. Negative 0.58 0.00001 [0.53 0.63]

ine Positive vs. Neutral 0.58 0.00001 [0.53 0.63]

ine Negative vs. Neutral 0.53 0.00001 [0.47 0.59]

3.2. Unit Causal Density

Figure 3A illustrates the grand averages of the spatial map of ucd values in Negative, Neutral,
and Positive states. These subplots indicate an incremental pattern of ucd values from the Negative
to Positive affect that is distributed over the whole-brain EEG recordings. Arrangement of the EEG
channels associated with these ucd values is shown in Figure 3B.

Figure 3. (A) grand averages of the spatial map of unit causal density (ucd) in Negative, Neutral,
and Positive affects states. Incremental pattern of ucd values from Negative to Positive affect
is evident in these subplots; (B) EEG channels’ arrangement associated with distribution of ucd
values; (C) descriptive statistics of the ucd values in Negative, Neutral, and Positive affects states.
Asterisks mark the significant differences between these values.
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A Kruskal–Wallis test indicated a significant difference between the whole-brain unit causal
densities associated with Negative, Neutral, and Positive affects states (p < 0.001, H(2, 2603) = 16.15,
r = 0.09). A post-hoc Wilcoxon test (Figure 3C) further identified that, whereas a Positive affect was
associated with a higher whole-brain unit causal densities than the Negative (p < 0.001, W(1734) = 3.84,
r = 0.10, MPositive = 0.49, SDPositive = 0.49, MNegative = 0.40, SDNegative = 0.50) and Neutral (p < 0.01,
W(1734) = 2.86, r = 0.07, MNeutral = 0.42, SDNeutral = 0.49), such a difference was non-significant between
the Negative and Neutral affect states (p = 0.31, W(1734) = 1.00, r = 0.02).

Figure 4 shows the results of the paired two-sample bootstrap test (10,000 simulation runs) at
95.0% confidence interval (CI). This figure confirms that the participants’ whole-brain ucd values in
the Positive state was significantly higher than their Neutral (Figure 4A) and Negative (Figure 4B)
states. It also indicates that the difference between the whole-brain ucd values in Negative and Neutral
states was non-significant (Figure 4C). Table 2 summarizes these results.

Figure 4. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
(i.e., p < 0.05) confidence interval (CI) associated with the participants’ whole-brain unit causal
densities (ucd). Compared pairs of affect are (A) Positive versus Neutral; (B) Positive versus Negative;
and (C) Negative versus Neutral. In these subplots, the x-axis shows µi − µj, i 6= j where i and j refer
to one of the Negative, Neutral, or Positive affect states. The blue line marks the null hypothesis H0
i.e., non-significant difference between the two states’ ucd values. The red lines are the boundaries
of the 95.0% confidence interval. The yellow line shows the location of the average µi − µj, i 6= j for
10,000 simulation runs.

Table 2. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
confidence interval (CI) associated with the participants’ whole-brain unit causal density (ucd) values.
Compared pairs of affect are: Positive versus Neutral, Positive versus Negative, and Negative versus
Neutral. M and SD refer to the mean difference and the standard deviation of such a difference between
the two compared states. CI shows the 95% confidence interval of their difference. Bold entry rows
indicate the significant difference.

Conditions Mdi f f erence SDdi f f erence 95.0% CIdi f f erence

Positive versus Neutral 0.07 0.02 [0.02 0.11]

ine Positive versus Negative 0.09 0.02 [0.04 0.14]

ine Negative versus Neutral −0.02 0.02 [−0.07 0.02]

3.3. Unit Causal Flow

Figures 5–7 visualize the unit causal flow in Negative, Neutral, and Positive affects states whose
values are scaled within [0, . . . , 1] for better comparison. In these figures, each subplot depicts the flow
of information from a given EEG channel (e.g., F3) to the remainder of channels. These figures verify
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that the flow of information was associated with both hemispheres. They also identify a number of
channels that exhibited short- as well as long-range information flow. This indicated the presence
of cross-hemispheric whole-brain information flow and communication that was independent of
the affect.

Figure 5. Negative affect’s channel-wise information flow. These subplots identify a bi-hemispheric
brain activity in response to Negative affect. They also show that a number of channels are associated
with higher short- as well as long-range information (e.g., F5, FC5, FT7, FC6, F8, F6, CZ’, CPZ, CB2).
Although these channels appear to have higher local influence in the form of information flow, their
corresponding flow of information extend beyond their designated hemispheres, thereby indicating
the presence of cross-hemispheric whole-brain information flow and communication. The values in
these subplots are scaled within [0, . . . , 1] for better comparison.
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In the case of Negative affect (Figure 5), F5’s and FC5’s (i.e., left-hemispheric channels) information
flow extended to the right parietal and occipital regions. Similarly, FT7 appeared to influence the entire
left hemisphere. Other examples in the case of Negative affect included the information flow from FC6
to the right-hemisphere central, parietal, and occipital regions, F8’s information flow to the left frontal
region, F6’s information flow to the left parietal and occipital regions, CZ’s bi-hemispheric frontal flow
of information, CPZ’s bi-hemispheric parietal and occipital influence, and the CB2’s information flow
that extended bi-hemispherically to the frontal, central, and parietal regions.

Similarly, in the Neutral affect (Figure 6), we observed the extent of F6’s information flow
to the parietal and occipital regions. We also observed that F8’s information flow extended
bi-hemispherically to frontotemporal and FC5’s flow of information to the right hemisphere’s temporal
and occipital. The information flow from FC6 appeared to extend to the right-hemisphere central,
parietal, and occipital regions. Moreover, CZ exhibited a bi-hemispheric frontal information flow
and CP5’s information flow was extended to the right-hemispheric frontal, central, and parietal.
T8’s information flow appeared to reach to the left-hemispheric temporal region. Finally, CB2’s
information flow extended bi-hemispherically to the frontal, central, and parietal regions.

Considering the Positive affect (i.e., Figure 7), F8, FT7, FC5, FC6, FC8, C5, CZ, C6, CP5, and CB2 are
the channels that exhibited such bi-hemispheric, short- and long-range information flow. Specifically,
we observed the F8’s influence on a left frontal area, FT7’s information flow to the entire left-hemisphere,
and FC6’s information flow to the left parietal and occipital regions. Additionally, CZ’s information
showed influence on bi-hemispheric frontal, parietal, and occipital areas, and CB2 exhibited a
bi-hemispheric information flow to the frontal, central, and parietal regions.

In the case of Positive versus Neutral, a channel-wise paired Wilcoxon rank sum test (Appendix B,
Table A2) identified that F5, F4, F6, FC3, C2, C4, CPZ, CP6, and TP8 had significantly higher information
flow in the Neutral than Positive states (i.e., Appendix B, Table A2, entries Neutral > Positive). On the
other hand, FT7, FT8, TP7, CP3, P5, P1, P4, P6, P8, PO5, POZ, PO6, OZ, and O2 were the channels in
the case of Positive affect that had higher flow of information (i.e., Appendix B, Table A2, Positive >

Neutral entries). For Positive versus Negative affect states (i.e., Appendix B, Table A3), information
flow was higher in the case of Negative than Positive (i.e., Negative > Positive entries) in channels F5,
F3, F6, FT7, FC3, FC2, C3, CP3, CPZ, CP6, and O2. On the other hand, Positive affect was associated
with higher information flow than the Negative affect (i.e., Appendix B, Table A3, Positive > Negative
entries) in channels FP1, FPZ, F7, F1, F2, F4, C4, T8, TP7, CP2, CP4, P7, P5, P3, P1, P2, P4, PO5,
PO8, and OZ. With respect to Negative versus Neutral (Appendix B, Table A4), we observed that
Neutral affect showed significantly higher information flow than Negative affect in channels FPZ,
F1, F2, F4, FCZ, C4, T8, and CP2 (Appendix B, Table A4, entries Neutral > Negative). Similarly,
the Negative affect was characterized with significantly higher information flow in (Appendix B,
Table A4, entries Negative > Neutral) F3, FZ, FT7, FT8, CP3, P5, P4, P6, PO5, PO3, POZ, PO4, PO6,
CB1, and O2. Further details on channel-wise comparison of the information flow in Negative, Neutral,
and Positive affects are presented in Appendix C.
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Figure 6. Neutral affect’s channel-wise information flow. These subplots identify a bi-hemispheric
brain activity in response to Neutral affect. They also show that a number of channels are
associated with higher short- as well as long-range information (e.g., F6, F8, FC5, FC6, CZ,
CP5, T8, CB2). Although these channels appear to have higher local influence in the form of
information flow, their corresponding flow of information extend beyond their designated hemispheres,
thereby indicating the presence of cross-hemispheric whole-brain information flow and communication.
The values in these subplots are scaled within [0, . . . , 1] for better comparison.
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Figure 7. Positive affect’s channel-wise information flow. These subplots identify a bi-hemispheric
brain activity in response to a Positive affect. They also show that a number of channels are
associated with higher short- as well as long-range information (e.g., F8, FT7, FC5, FC6, FC8, C5,
CZ, C6, CP5, CB2). Although these channels appear to have higher local influence in the form of
information flow, their corresponding flow of information extend beyond their designated hemispheres,
thereby indicating the presence of cross-hemispheric whole-brain information flow and communication.
The values in these subplots are scaled within [0, . . . , 1] for better comparison.
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3.4. Importance of Channels’ Unit Causal Densities

Figure 8A shows the spatial map of the Adaboost’s feature importance associated with sixty-two
EEG channels’ ucd values. This subplot identifies that the ucd values associated with higher feature
importance to distinguish between Negative, Neutral, and Positive affects were distributed in multiple
brain regions that included the frontal, central, parietal, and occipital area. The EEG channels’
arrangement associated with these feature importance values are shown in Figure 8A, right subplot.

Figure 8. (A) spatial map of feature importance by Adaboost meta-estimator pertinent to the
trained Adaboost meta-estimator on the ucd values associated with Negative, Neutral, and Positive
affects (one-sample bootstrap test of significance at 95% confidence interval: M = 0.13, SD = 0.03,
CI = [0.08 0.21]). The right subplot shows the EEG channels’ arrangement; (B) Adaboost prediction
accuracy in Negative, Neutral, and Positive affects in 1-holdout setting using whole-brain ucd values;
(C) Adaboost prediction accuracy in Negative, Neutral, and Positive affects in 1-holdout setting using
subset of channels with their importance within or above the one-sample bootstrap test of significance
(10,000 simulation runs) at 95.0% confidence interval on these feature importance values. In (B,C),
the correct predictions, per affect, are the diagonal entries of these tables and the off-diagonal entries
show the percentage of each of the affects that was misclassified (e.g., Positive affect misclassified as
Negative affect).

Figure 8B shows the affect-wise confusion matrix of the Adaboost classifier for predicting the
Negative, Neutral, and Positive affects states using all EEG channels’ ucd values. The one-sample
bootstrap test of significance (10,000 simulation runs) at 95.0% confidence interval indicated that
the overall model performance on individuals’ data (i.e., 66.67%) was significantly above the chance
level (Maccuracy = 57.17, SDaccuracy = 4.04, CIaccuracy = [50.0 64.29], chance level ≈ 33.33%). We also
observed that the model’s predictions were substantially higher for Negative (accuracy = 78.57%,
precision = 0.79, recall = 0.58) and Positive (accuracy = 71.43%, precision = 0.71, recall = 0.91) than the
Neutral affect (accuracy = 50.00%, precision = 0.50, recall = 0.58). In addition, Figure 8B indicates that
the Neutral affect was mostly misclassified as a Negative rather than a Positive affect.
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We next considered the EEG channels whose ucd values’ corresponding feature importance were
within or above 95.0% confidence interval of the result of the one-sample bootstrap test of significance
(10,000 simulation runs) on these feature importances (M = 0.13, SD = 0.03, CI95.0% = [0.08 0.21]).
This allowed us to determine whether the use of whole-brain information flow bore a substantial effect
on the accuracy of the classifier. Figure 8C shows the affect-wise confusion matrix of the Adaboost
classifier for predicting the Negative, Neutral, and Positive affects states when only the EEG channels’
ucd values with their feature importance ≥ 0.08 were considered for model training. A comparison
between Figure 8B,C verifies the substantial reduction of the model’s accuracy when all EEG channels’
unit causal densities were not included (Wilcoxon rank sum: p < 0.03, W(26) = 2.43, r = 0.46). We also
verified this result through the use of two-sample bootstrap test of significance (10,000 simulation runs)
at 95.0% confidence interval (Mdi f f erence = 22.78, SDdi f f erence = 8.21, CIdi f f erence = [6.10 39.43]).

4. Discussion

In this article, we considered the possibility of the emergence of the affect from variation in
the whole-brain cortical flow of information. Our study was motivated by the recent results from
affective neuroscience that (despite their compelling findings) pointed at contrasting viewpoints on
the neural substrates of the affect. Whereas some considered distinct and independent brain systems
for the Positive and Negative affects [10,11,18–21], others proposed the presence of flexible brain
regions [15–17,22]. We further attributed such a discrepancy in their findings to two primary reasons:
(1) their focus on the change in brain activation to identify a specific [31–34] or subset [27] of the
brain regions as sources of different affects. We claimed that this approach could be limited since it
neglects the findings that indicate the brain activation and its information content do not necessarily
modulate [35]. We also argued that the sole focus on the change in brain activation to realize the
neural substrates of the affect is insufficient since the stimuli with equivalent sensory and behavioral
processing demands may not necessarily result in differential brain activation [36], (2) their lack of
consideration for crucial role of functional interactivity between the brain regions [37]. As a result,
they did not take into account the findings that identify the signals from individual cortical neurons
are shared across multiple areas and thus concurrently contribute to multiple functional pathways [38].

Subsequently, we utilized the Granger causality [48–52] to analyze the human subjects’
sixty-two-channel EEG recordings [65] who watched movie clips that elicited Negative, Neutral,
and Positive affects. We justified our interpretation of Granger causal analysis of the whole-brain in
terms of information flow between its regions by observing that Granger causality is an approximation
to transfer entropy [55] which itself is nothing but the directional mutual information [53].
An advantage of using Granger causality over transfer entropy is that, unlike the latter’s complicated
estimation [55–57], the known statistical properties of the Granger causality allows for straightforward
tests of significance [58,59]. In this regard, an important consideration that deserves restating [91] is
that the Granger causality is a statistical formulation of causality and, as such, a significant interaction
measured by this model does not by itself imply the presence of a corresponding physical interaction.

We found that the different affect states were associated with the flow of information that was
present in the both hemispheres. These results were in line with the findings that identified the brain
bilateral activation during story comprehension [92,93] as well as watching movies [94,95]. They also
further complemented these findings by identifying the presence of a corresponding bilateral flow
of information associated with the change in the brain activation in response to Negative, Neutral,
and Positive affects states. Previous research [96] also identified the activation of a distributed network
of the brain areas in response to basic emotions, thereby suggesting that the distributed emotion-specific
activation patterns may provide maps of internal states that correspond to specific subjectively
experienced, discrete emotions [97]. Our results extended these findings by presenting evidence
that identified the varying degree of information flow among the elements of such a distributed brain
network may explain the emergence of different affects.
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Our findings appeared to be more in line with the affective workspace hypothesis [2,22] than the
bipolarity [18] or the bivalent hypotheses [19–21]. For instance, the bipolarity hypothesis [18] attributes
the Positive and Negative affects to the opposing ends of a single dimension [23,24]. As a result, it is
plausible to expect anti-correlations between these affect states’ flow of information. Contrary to
this expectation, we observed positive correlations among them. On the other hand, the bivalent
hypothesis [19–21] emphasizes the presence of two distinct and independent brain systems for the
Positive and Negative affects [19–21]. This makes it plausible to expect that the information flow
associated with these affect states to form non-overlapping and distinct patterns. Although our
analyses identified a number of brain regions whose unit causal flows significantly differed between
Negative, Neutral, and Positive affects (see Appendix C), we also observed that these regions were
common between these affects. Additionally, the observed flow of information among distributed brain
regions that were common between the Negative, Neutral, and Positive affects was also in accordance
with the affective workspace hypothesis that expresses that the differential affects are the brain states
that are supported by flexible than consistently specific set of brain regions [25]. From a broader
perspective, our results resonated with the findings that emphasize the importance of the functional
connectivity between distributed brain regions that include pre/frontal, parietal, premotor and sensory,
and occipitotemporal regions [98] and the implication of such large-scale and distributed networks in
the brain functions [99–101].

Further evidence in support of this view came from the classification results of these affect states
in which a simple linear model was sufficient to significantly distinguish between them. These results
were in line with our correlation analyses in that they implied that any change in the information flow
in one affect can be explained in terms of a linear change in the corresponding flow of information
in the other affect state that was in the same direction as of the first one. We also observed that
a linear model that only utilized the regions with a significantly different flow of information, yielded a
significantly poorer performance in comparison with the setting in which the whole-brain cortical
information flow was considered. Additionally, the mere use of these regions appeared to cause the
linear model to treat all three affects as Neutral. This interpretation can be verified by observing the
sudden and substantial increase in linear model’s correct classification of the Neutral affect that was
accompanied by its significantly reduced accuracy in the case of both Positive and Negative affect
states. In fact, the recurrence of some of these regions in such domains as social cognition and theory
of mind [102], story comprehension [92,93], autobiographical memory [103], decision-making [104],
working memory [105], and self-referential processing [106], along with the reduced accuracy of
the linear model in our study further implied that [1] these regions may not be specific to the
affect but may constitute to other cognitive and perceptual events, thereby forming domain-general
networks [107,108]. Considering these observations, our findings indicated that the whole-brain flow
of information that was manifested in distributed cortical regions were not only shared among the
Negative, Neutral, and Positive affects states but also was able to best distinguish between them.

The dynamical system analysis [39,40] of the brain ongoing activity [43,47] considers its neural
dynamics and the functional connectivity that accompanies these neural activities as two aspects of
the brain’s information processing. It holds that the more complex neural activity is characterized
with an increased functional connectivity [109]. In this view, such an increase may represent the
short- and long-range information processing across the brain regions [45,109–112]. These factors
that underline [113] the presence of “differentiation” (i.e., the presence of subsets of a system that are
dynamically distinct) and “integration” (i.e., the presence of coherence in such a system as a whole)
appear to constitute the cognitive and behavioral flexibility of a system to respond specifically and
selectively to a broad range of stimuli [114,115]. Our results extended these findings to the case of
neural substrates of different affects. Specifically, they identified the emergence of different affects
from subtle variation in the flow of information between various brain regions that exhibited both
short-range (i.e., local) interaction with their neighboring brain areas and long-range (i.e., distributed)
communication with the brain regions that were in both hemispheres. This is due to the observation



the Journal of Brain Sciences 2020, 10, 8 19 of 32

that the causal density [58] reflects simultaneous integration and differentiation in which elements
within a system are both globally coordinated in their activity (in order to be useful for predicting each
other’s activity) while being dynamically distinct (so that different elements contribute in different
ways to these predictions) [83,84]. Therefore, the unit causal density of each of these elements quantifies
their respective contribution to the information flow in the system as a whole [59]. Our results also
provided further supporting evidence for the thesis [18,116,117] that point at the emerging nature of
different affects. This viewpoint explicitly assumes that emotions cannot be merely redefined as their
ingredients [118]. It subsequently relates their emergence to causal association among their underlying
neural activity [11].

Although we noticed that a subset of channels contributed more to such distributed patterns,
the classification results of the Negative, Neutral, and Positive affects indicated that it was the
whole-brain information flow that yielded a significantly higher prediction power for distinguishing
between these states. Our results that complemented the fMRI findings based on a brain activation
pattern [96] revealed that the variational pattern of EEG-based flow of information among anatomically
distributed brain regions contained the most accurate neural signature of individuals’ mental states
that underlined their discrete affect. They were also in accordance with Farroni et al. [7] and Watson
and Tellegen [3] that showed that the joint activity from multiple regions discriminated best between
different emotions. In this respect, our results hinted at observations that the large-scale cortical
networks are crucially involved in representing such high-level mental states that form the foundations
for describing the distinctively elicited emotions [2,4]. They also indicated that features from these
cortical regions may contribute differentially during the concepts’ categorization [119].

In this article, we provided evidence for the possibility of the emergence of the affect from
the variation in the information flow among distributed brain regions that were located in both
hemispheres. We showed that these regions were not distinct to a specific affect and that they
were characterized with both short- as well as long-range information flow and communication.
This provided evidence for the presence of simultaneous integration and differentiation in the brain
functioning that leads to the emergence of different affects. These results were in line with the findings
on the presence of intrinsic large-scale interacting brain networks that underlie the production of
psychological events [69–72]. They can help advance our understanding of the neural basis of the
human’s emotions by identifying the signatures of differential affect in subtle variation that occurs in
the whole-brain cortical flow of information.

5. Conclusions

In this article, we provided evidence for the possibility of the emergence of the affect from
the variation in the information flow among distributed brain regions that were located in both
hemispheres. We supported this viewpoint by showing three results: (1) the whole-brain cortical flow
of information was positively correlated between these affect states; (2) although these distributed
regions were shared among the Negative, Neutral, and Positive affects, they appeared to share
information differentially in response to these affect; (3) a simple linear model was able to distinguish
between these affect states with a significantly above average accuracy when it used the whole-brain
cortical flow of information. For instance, whereas we observed a non-significant difference between
the channels’ causal densities in the case of Negative and Neutral affect, we found a considerable
number of channels’ whose causal flows differed significantly in response to these two affect states.
These results hinted at the possibility of interpreting the cortical responses to these affect in terms of the
variation in the flow of information that differed significantly among these channels. In other words,
the observed differences suggested that although these channels were common between the Negative
and the Neutral affect and that their causal densities (i.e., the overall degree of causal interactivity)
were non-significant, their causal flows (i.e., the extent of their influence on/by the other channels)
were significantly varying in response to these differential affect.
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On the other hand, a puzzling observation with regards to the linear classifier was the higher
percentage of misclassification between the Neutral and the Negative affect. We noticed that this
could not readily be attributed to the sample size since we used a balanced dataset in our analyses
(i.e., equal number of samples for each of the Negative, Neutral, and Positive affects, per participant).
Another possible reason behind the observed effect could have been the difference in the shared
information between these affect. However, the results of the correlation analyses (i.e., linear measure
of mutual information [120]) did not provide any further insight on this matter. For instance,
these results could not explain the higher misclassification of the Neutral as the Negative than the
Positive affect, despite the fact that the Neutral affect appeared to share slightly higher information (i.e.,
comparably higher correlation) with the Positive than the Negative affect. Furthermore, the observed
correlations between Positive and the other two affect states were equivalent. As a result, if the
higher shared information was to blame, then it should have caused a comparable misclassification
between the Positive and the Negative, which evidently was not the case. Conversely, the lower
shared information also was not sufficient to account for the observed higher misclassification of the
Neutral affect as the Negative than the Positive affect. This is due to the observation that the high
rate of misclassification between the Neutral and Negative should have in principle been the lowest,
given their lowest correlation among the three pairwise comparisons.

The implications of these observations were threefold. First, although the Negative, Neutral,
and Positive affects appeared to share a common distributed neural correlates, the underlying dynamics
of such a whole-brain cortical information flow might be shared differentially among them. Second,
such a dynamics might have more in common between the Negative and the Neutral affect states than
the Neutral and the Positive or the Negative and the Positive affect. Third, this potential dynamics
that governed the cortical responses to these affect might not primarily be explained through a linear
modeling of such a common and distributed neural activity. Therefore, future research that takes
into account the nonlinear dynamics of neural activity [55,121] in response to Negative, Neutral,
and Positive affects is necessary to further extend our understanding of the potential causes of the
observed dis/similarities between these affect states.

Many neuroscientific studies are based on a small number of participants [122–125]. For instance,
the recent comprehensive meta-analysis by Lindquist [2] that reported on an extensive coverage of 914
experimental contrasts in affect-related studies accounted for 6827 participants (i.e., 6827/914 ≈ 7.47
participants on average). Furthermore, most of the individuals that are included in these studies
share the same geographical and/or cultural background (but also see [95] for a small deviation).
Neuropsychological findings indicate that the individuals’ ability to experience pleasant/unpleasant
feelings to express these subjective mental states in terms of such attributes as positive or negative
to be the unifying and common concept across cultures [8,9]. However, future research that includes
a larger human sample as well as different age groups and more cultural diversity is necessary for
drawing a more informed conclusion on the findings that were presented in this article.

Finally, it would also be interesting to extend the results in the present study to the case in which
the cortical activities are simultaneously acquired alongside the brain subcortical responses to the
affect. [13,73]. Such studies can shed light on the underlying mechanisms that lead to the observed
distributed variation in the whole-brain cortical information flow, thereby allowing for the better
understanding of the correspondence between these cortical information sharing and their underpinning
neuromodulatory mechanisms and dynamics [74–76].
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Appendix A. Correlations Prior to One-Sample Bootstrap Test Correction of Unit Causal Densities

We found significant correlation between the Positive and Negative (Figure A1A, left column,
r = 0.66, p < 0.00001), Positive and Neutral (Figure A1B, left column, r = 0.69, p < 0.00001), and Negative
and Neutral (Figure A1C, left column, r = 0.60, p < 0.00001). These correlations that were also verified
by the results of their corresponding bootstrap test of significance (10,000 simulation runs) at 95.0%
confidence interval (Figure A1A–C, right column) were stronger between the Positive and Negative as
well as the Positive and Neutral than the Negative and Neutral. Table A1 summarizes the results of
these bootstrap test of significance.

Figure A1. Paired Spearman correlation between participants’ ucd values and prior to considering the
ucd values above the upper bound of their 95.0% confidence interval. (A) Positive versus Negative;
(B) Positive versus Neutral; (C) Negative versus Neutral. The subplots on the right column correspond
to the bootstrap correlation test (10,000 simulation runs) at 95.0% confidence interval. Values associated
with the right-column subplots are given in Table A1.

Table A1. Bootstrap (10,000 simulation runs) 95.0% confidence intervals (CI) associated with the
Spearman correlation between Negative, Neutral, and Positive affects. These correlations were
calculated prior to considering the ucd values above the upper bound of their 95.0% confidence interval.

Conditions r p (Two-Tailed) CI95%

Positive vs. Negative 0.66 0.00001 [0.61 0.71]

ine Positive vs. Neutral 0.69 0.00001 [0.65 0.73]

ine Negative vs. Neutral 0.60 0.00001 [0.55 0.65]

Appendix B. Channel-Wise Wilcoxon Test of Significant Difference between the Information
Flow in Negative, Neutral, and Positive Affects

Tables A2–A4 summarize the channel-wise paired Wilcoxon rank sum tests on the information
flow in the Negative, Neutral, and Positive affects. They are related to Figures 5–7, Section 3.3.
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Table A2. Positive versus Neutral channel-wise paired Wilcoxon rank sum test. Columns p, W(122),
and r correspond to the Wilcoxon’s p-values, test-statistics, and effect size. Mean and standard deviation
of each of these affect states are their respective M and SD columns. Neutral > Positive and Positive >
Neutral refer to the cases in which channels’ information flow in Neutral/Positive were higher than
Positive/Neutral. This table corresponds to Figure 5 in Section 3.3.

Condition Channel p < Effect Size W(122) MPositive SDPositive MNeutral SDNeutral

F5 0.01 3.04 0.27 0.03 0.04 0.03 0.05
F4 0.05 2.00 0.18 0.007 0.01 0.009 0.01
F6 0.001 3.54 0.32 0.02 0.03 0.03 0.05

FC3 0.03 2.71 0.24 0.02 0.02 0.02 0.02
Neutral > C2 0.05 2.13 0.19 0.09 0.08 0.01 0.01
Positive C4 0.03 2.59 0.23 0.01 0.01 0.02 0.02

CPZ 0.001 3.52 0.32 0.03 0.02 0.05 0.03
CP6 0.03 2.58 0.23 0.01 0.02 0.02 0.02
TP8 0.05 2.05 0.18 0.03 0.04 0.04 0.05

FT7 0.0001 4.17 0.37 0.05 0.07 0.02 0.02
FT8 0.05 2.09 0.19 0.05 0.08 0.03 0.03
TP7 0.03 2.55 0.23 0.03 0.03 0.02 0.03
CP3 0.03 2.22 0.20 0.08 0.01 0.08 0.01
P5 0.00001 6.82 0.61 0.02 0.02 0.004 0.01
P1 0.001 3.70 0.33 0.08 0.01 0.004 0.005

Positive > P4 0.00001 4.58 0.41 0.01 0.01 0.002 0.003
Neutral P6 0.00001 5.40 0.48 0.02 0.03 0.01 0.01

P8 0.03 2.29 0.21 0.03 0.05 0.02 0.03
PO5 0.00001 8.47 0.76 0.003 0.003 0.001 0.001
POZ 0.00001 8.00 0.72 0.01 0.01 0.001 0.002
PO6 0.05 2.00 0.18 0.001 0.002 0.0004 0.001
OZ 0.0001 4.10 0.37 0.02 0.03 0.01 0.012
O2 0.01 2.94 0.26 0.01 0.01 0.01 0.01

Table A3. Positive versus Negative channel-wise paired Wilcoxon rank sum test. Columns p, W(122),
and r correspond to the Wilcoxon’s p-values, test-statistics, and effect size. Mean and standard deviation
of each of these affect states are their respective M and SD columns. Negative > Positive and Positive
> Negative refer to the cases in which channels’ information flow in Negative/Positive were higher
than Positive/Negative. This table corresponds to Figure 6 in Section 3.3.

Condition Channel p < Effect Size W(122) MPositive SDPositive MNeutral SDNeutral

F5 0.01 2.72 0.24 0.03 0.04 0.03 0.05
F3 0.001 4.03 0.36 0.002 0.003 0.01 0.01
F6 0.00001 4.76 0.43 0.02 0.03 0.03 0.05

FT7 0.03 2.50 0.22 0.05 0.07 0.07 0.09
FC3 0.03 2.63 0.24 0.018 0.02 0.024 0.02
FC2 0.03 2.56 0.23 0.005 0.01 0.007 0.01
C3 0.05 2.15 0.19 0.02 0.02 0.02 0.02

Negative CP3 0.05 2.03 0.18 0.007 0.01 0.008 0.01
> Positive CPZ 0.05 2.12 0.19 0.03 0.02 0.04 0.02

CP6 0.01 2.94 0.26 0.01 0.019 0.021 0.02
O2 0.01 2.75 0.25 0.009 0.012 0.012 0.01
FP1 0.03 2.50 0.22 0.02 00.02 0.01 0.01
FPZ 0.05 2.19 0.20 0.013 0.02 0.007 0.014
F7 0.01 3.34 0.30 0.014 0.01 0.009 0.01
F1 0.001 3.50 0.31 0.01 0.01 0.003 0.01
F2 0.0001 4.15 0.37 0.002 0.003 0.001 0.001
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Table A3. Cont.

Condition Channel p < Effect Size W(122) MPositive SDPositive MNeutral SDNeutral

F4 0.03 2.63 0.24 0.007 0.01 0.004 0.01
C4 0.03 2.72 0.24 0.014 0.01 0.010 0.01
T8 0.01 3.12 0.28 0.06 0.08 0.03 0.03

TP7 0.01 2.76 0.25 0.029 0.03 0.018 0.02
CP2 0.03 2.47 0.22 0.005 0.005 0.003 0.003
CP4 0.03 2.26 0.20 0.007 0.01 0.005 0.01

Positive P7 0.03 2.51 0.23 0.04 0.04 0.03 0.04
> P5 0.01 2.59 0.23 0.02 0.02 0.01 0.01

Negative P3 0.01 2.66 0.24 0.007 0.01 0.003 0.004
P1 0.001 4.05 0.36 0.007 0.01 0.003 0.004
P2 0.03 3.21 0.29 0.007 0.01 0.003 0.004
P4 0.05 2.14 0.19 0.008 0.01 0.004 0.005

PO5 0.03 2.23 0.20 0.003 0.003 0.003 0.002
PO8 0.01 2.67 0.24 0.019 0.03 0.009 0.01
OZ 0.01 3.21 0.29 0.02 0.03 0.01 0.01

Table A4. Negative versus Neutral channel-wise paired Wilcoxon rank sum test. Columns p, W(122),
and r correspond to the Wilcoxon’s p-values, test-statistics, and effect size. Mean and standard
deviation of each of these affect states are their respective M and SD columns. Neutral > Negative and
Negative > Neutral refer to the cases in which channels’ information flow in Neutral/Negative were
higher than Negative/Neutral. This table corresponds to Figure 7 in Section 3.3.

Condition Channel p < Effect Size (r) W(122) MPositive SDPositive MNeutral SDNeutral

FPZ 0.05 2.06 0.19 0.007 0.01 0.009 0.01
F1 0.0001 4.23 0.38 0.003 0.01 0.006 0.01
F2 0.01 2.90 0.26 0.0007 0.001 0.0013 0.002

Neutral > F4 0.0001 4.36 0.39 0.004 0.005 0.009 0.01
Negative FCZ 0.01 2.92 0.26 0.005 0.01 0.010 0.01

C4 0.0001 4.24 0.38 0.01 0.01 0.02 0.02
T8 0.01 2.62 0.24 0.03 0.03 0.04 0.06

CP2 0.01 3.04 0.28 0.003 0.003 0.006 0.005

F3 0.01 2.65 0.24 0.005 0.01 0.003 0.004
FZ 0.03 2.38 0.21 0.006 0.01 0.003 0.01
FT7 0.00001 5.62 0.50 0.07 0.09 0.02 0.02
FT8 0.001 3.54 0.32 0.05 0.06 0.03 0.03
CP3 0.001 3.42 0.31 0.008 0.01 0.007 0.01
P5 0.000001 4.92 0.44 0.01 0.01 0.004 0.01

Negative > P4 0.01 2.58 0.23 0.004 0.005 0.002 0.003
Neutral P6 0.00001 4.57 0.41 0.01 0.01 0.01 0.01

PO5 0.000001 7.59 0.68 0.002 0.002 0.0001 0.001
PO3 0.03 2.45 0.22 0.01 0.01 0.006 0.01
POZ 0.000001 7.65 0.69 0.007 0.01 0.001 0.002
PO4 0.03 2.20 0.20 0.007 0.01 0.005 0.01
PO6 0.001 3.54 0.32 0.002 0.003 0.0005 0.001
CB1 0.03 2.23 0.20 0.013 0.02 0.011 0.02
O2 0.00001 4.64 0.42 0.01 0.01 0.006 0.01

Appendix C. Channel-Wise Bootstrap Test of Significant Difference between the Information
Flow in Negative, Neutral, and Positive Affects

Only some of the observed significant differences based on channel-wise paired Wilcoxon rank
sum test passed the post-hoc two-sample bootstrap test of significance (10,000 simulation runs) at
95.0% confidence interval. In the case of Positive versus Neutral (Figure A2 and Table A5) whereas this
test identified CPZ with the higher information flow in Neutral than Positive, it indicated FT7, FT8, P5,
P1, P4, P6, PO5, POZ, PO6, and OZ to have higher flow of information in Positive than the Neutral.
In the case of Positive versus Negative (Figure A3 and Table A6), we observed that, whereas Negative
affect was associated with higher information flow in F3, Positive affect showed significantly higher
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information flow than Negative affect in FP1, F7, F2, T8, CP2, P3, P1, P2, P4, PO5, PO8, and OZ. Finally,
for Negative versus Neutral (Figure A4 and Table A7), the Neutral affect was associated with the
higher information flow than Negative in the case of F1, F4, FCZ, C4, and CP2, while the Negative
affect had higher flow of information than Neutral in F3, FT7, FT8, P5, P4, P6, PO5, POZ, PO6, and O2.

Taken together, the two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
confidence interval identified the relation Positive > Negative > Neutral in channels P4 and PO5 and
the relation Positive & Negative > Neutral in channels FT7, FT8, P5, P4, P6, PO5, POZ, and PO6.

Figure A2. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
(i.e., p < 0.05) confidence interval (CI) between Positive and Neutral Information Flow. In these
subplots, the blue line marks the null hypothesis H0 i.e., non-significant difference between the two
states’ ucd values. The red lines are the boundaries of the 95.0% confidence interval. The yellow line
shows the location of the average mean difference between two affect states for 10,000 simulation runs.

Figure A3. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
(i.e., p < 0.05) confidence interval (CI) between Positive and Negative Information Flow. In these
subplots, the blue line marks the null hypothesis H0 i.e., non-significant difference between the two
states’ ucd values. The red lines are the boundaries of the 95.0% confidence interval. The yellow line
shows the location of the average mean difference between two affect states for 10,000 simulation runs.
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Figure A4. Paired two-sample bootstrap test of significance (10,000 simulation runs) at 95.0%
(i.e., p < 0.05) confidence interval (CI) between Negative and Neutral Information Flow. In these
subplots, the blue line marks the null hypothesis H0 i.e., non-significant difference between the two
states’ ucd values. The red lines are the boundaries of the 95.0% confidence interval. The yellow line
shows the location of the average mean difference between two affect states for 10,000 simulation runs.

Table A5. Positive versus Neutral channel-wise paired two-sample bootstrap test (10,000 simulation
runs) at 95.0% confidence interval (CI) applied on the directional information flow. M and SD refer
to the mean difference and the standard deviation of such a difference between the two compared
states. CI shows the 95% confidence interval of their difference. Bold entry rows indicates the
significant difference.

Conditions Mdi f f erence SDdi f f erence 95.0% CIdi f f erence

F5 −0.004 0.01 [−0.02 0.01]
F4 −0.002 0.002 [−0.005 0.002]
F6 −0.01 0.01 [−0.03 0.003]

FC3 −0.005 0.004 [−0.01 0.002]
C2 −0.003 0.002 [−0.006 0.0001]
C4 −0.01 0.003 [−0.01 0.0]

CPZ −0.02 0.004 [−0.02 −0.008]
CP6 −0.006 0.004 [−0.013 0.0013]
TP8 −0.01 0.008 [−0.02 0.005]
FT7 0.03 0.01 [0.01 0.05]
FT8 0.02 0.01 [0.003 0.05]
TP7 0.008 0.006 [−0.003 0.02]
CP3 0.0005 0.002 [−0.004 0.005]
P5 0.01 0.002 [0.007 0.02]
P1 0.003 0.001 [0.001 0.006]
P4 0.006 0.001 [0.004 0.01]
P6 0.02 0.003 [0.01 0.02]
P8 0.01 0.01 [−0.001 0.03]

PO5 0.003 0.0004 [0.002 0.004]
POZ 0.01 0.002 [0.007 0.014]
PO6 0.001 0.0002 [0.0002 0.001]
OZ 0.012 0.004 [0.005 0.02]
O2 0.003 0.002 [−0.001 0.01]
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Table A6. Positive versus Negative channel-wise paired two-sample bootstrap test (10,000 simulation
runs) at 95.0% confidence interval (CI) applied on the directional information flow. M and SD refer
to the mean difference and the standard deviation of such a difference between the two compared
states. CI shows the 95% confidence interval of their difference. Bold entry rows indicates the
significant difference.

Conditions Mdi f f erence SDdi f f erence 95.0% CIdi f f erence

F5 −0.06 0.01 [−0.02 0.01]
F3 −0.003 0.001 [−0.004 −0.001]
F6 −0.01 0.01 [−0.03 −0.001]

FC3 −0.01 0.004 [−0.01 0.002]
FT7 −0.02 0.01 [−0.04 0.01]
FC2 −0.002 0.001 [−0.004 0.0003]
C3 −0.003 0.003 [−0.01 0.003]

CP3 −0.001 0.002 [−0.005 0.003]
CPZ −0.009 0.004 [−0.02 −0.001]
CP6 −0.008 0.004 [−0.02 −0.001]
O2 −0.003 0.002 [−0.01 0.001]
FP1 0.01 0.003 [0.002 0.02]
FPZ 0.01 0.003 [−0.0004 0.012]
F7 0.004 0.002 [0.001 0.008]
F1 0.002 0.001 [0.0 0.004]
F2 0.001 0.0004 [0.001 0.002]
F4 0.003 0.001 [0.001 0.01]
C4 0.004 0.002 [0.0 0.01]
T8 0.03 0.01 [0.01 0.05]

TP7 0.01 0.01 [0.001 0.02]
CP2 0.002 0.001 [0.001 0.004]
CP4 0.001 0.001 [−0.002 0.004]
P7 0.01 0.01 [−0.01 0.02]
P5 0.006 0.003 [0.001 0.011]
P3 0.003 0.001 [0.001 0.01]
P1 0.004 0.001 [0.002 0.01]
P2 0.003 0.001 [0.001 0.005]
P4 0.004 0.002 [0.001 0.01]

PO5 0.001 0.0004 [0.0004 0.002]
PO8 0.011 0.004 [0.003 0.02]
OZ 0.011 0.004 [0.003 0.02]

Table A7. Negative versus Neutral channel-wise paired two-sample bootstrap test (10,000 simulation
runs) at 95.0% confidence interval (CI) applied on the directional information flow. M and SD refer
to the mean difference and the standard deviation of such a difference between the two compared
states. CI shows the 95% confidence interval of their difference. Bold entry rows indicates the
significant difference.

Conditions Mdi f f erence SDdi f f erence 95.0% CIdi f f erence

FPZ −0.002 0.002 [−0.007 0.002]
F1 −0.003 0.001 [−0.005 −0.001]
F2 −0.001 0.0002 [−0.001 0.0]
F4 −0.005 0.001 [−0.008 −0.002]

FCZ −0.004 0.001 [−0.007 −0.002]
C4 −0.01 0.003 [−0.02 −0.004]
T8 −0.02 0.01 [−0.04 0.0]

CP2 −0.003 0.001 [−0.004 −0.001]
F3 0.002 0.001 [0.0 0.004]
FZ 0.003 0.001 [0.0 0.01]

FT7 0.05 0.01 [0.03 0.07]
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Table A7. Cont.

Conditions Mdi f f erence SDdi f f erence 95.0% CIdi f f erence

FT8 0.02 0.01 [0.01 0.04]
CP3 0.001 0.002 [−0.003 0.005]
P5 0.01 0.002 [0.003 0.01]
P4 0.002 0.001 [0.001 0.003]
P6 0.01 0.002 [0.005 0.012]

PO5 0.002 0.0002 [0.0015 0.0023]
PO3 0.003 0.002 [0.0 0.01]
POZ 0.01 0.001 [0.004 0.007]
PO4 0.002 0.001 [0.0 0.005]
PO6 0.001 0.0004 [0.0 0.002]
CB1 0.002 0.003 [−0.004 0.01]
O2 0.01 0.002 [0.002 0.009]
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