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Abstract

Early detection of relapsed lymphoma improves response and survival. Current tools lack

power for detection of early relapse, while being cumbersome and expensive. We searched

for sensitive biomarkers that precede clinical relapse, and serve for further studies on ther-

apy response and relapse. We recruited 20 healthy adults, 14 diffuse large B-cell lymphoma

(DLBCL) patients and 11 Hodgkin lymphoma (HL) patients at diagnosis. Using small-RNA

sequencing we identified in DLBCL patients increased plasma levels of miR-124 and miR-

532-5p, and decreased levels of miR-425, miR-141, miR-145, miR-197, miR-345, miR-424,

miR-128 and miR-122. In the HL group, we identified miR-25, miR-30a/d, miR-26b, miR-

182, miR-186, miR-140* and miR-125a to be up-regulated, while miR-23a, miR-122, miR-

93 and miR-144 were down-regulated. Pathway analysis of potential mRNAs targets of

these miRNA revealed in the DLBCL group potential up-regulation of STAT3, IL8, p13k/AKT

and TGF-B signaling, and potential down-regulation of the PTEN and p53 pathways; while

in the HL group we have found the cAMP-mediated pathway and p53 pathway to be poten-

tially down-regulated. Survival analyses revealed that plasma levels of miR-20a/b, miR-93

and miR-106a/b were associated with higher mortality. In conclusion, we identified sets of

dysregulated circulating miRNA that might serve as reliable biomarkers for relapsed

lymphoma.

Introduction

Lymphoid neoplasms are the fourth and fifth most common cancer and the sixth leading

cause of cancer death in the United States and Canada [1, 2]. In 2016, lymphoid neoplasms

were newly diagnosed in 136,960 patients in the United States. Hodgkin lymphomas make up

6% of all lymphoid neoplasms, and most are classical Hodgkin lymphomas (mainly nodular

sclerosis subtype). Among the non-Hodgkin lymphoma (NHL) neoplasms, diffuse large B-cell

lymphoma (DLBCL) is the most common subtype comprising about one-quarter of NHL

neoplasms [2]. Diagnosis of lymphoma is based on surgical tumor biopsy and PET-CT is
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considered the standard imaging examination, both for staging and response evaluation. In

the follow-up setting, PET is not considered a good tool due to high incidence of false-positive

results [3]. The false-positive rate with PET scans is greater than 20%, leading to unnecessary

investigations, radiation exposure, biopsies, expense, and patient anxiety. Currently, follow-up

scans are prompted by clinical indications. Better laboratory and clinical markers are needed

for following residual masses and detecting early progression or relapse [4, 5].

MicroRNAs (miRNAs) are endogenous short (~22-nucleotides) non-protein-coding regu-

latory RNA molecules. The biochemical association of miRNA with mRNA regulates gene

expression at the posttranscriptional level by either suppressing stability or translation of the

mRNA, or both of these processes. Single miRNA species can control different target mRNAs

and consequently influence production of multiple proteins. Conversely, multiple miRNAs

can often synchronously target the same mRNA and jointly control expression of the particu-

lar gene product. miRNAs have the potential to regulate multiple functionally related genes

involved in a specific biological pathway. The cooperative miRNA interactions with the target

mRNAs can influence a variety of critical biological programs such as cell division, apoptosis,

differentiation, development, senescence, metabolism, control of hematopoiesis and tumori-

genesis. Numerous miRNAs have become candidates for diagnostic and prognostic biomark-

ers and targets for cancer therapeutic intervention. In light of miRNAs’ potential as diagnostic

markers in cancer [6] there is increasing interest in the possible role for miRNAs as markers

for both B-cell differentiation stage and malignant transformation. It has been shown that

miRNA expression patterns can characterize stages of human B-cell differentiation. A large

number of miRNA signatures characterizing lymphomas were identified, and the role of miR-

NAs in the development, classification and in the regulation of target genes is under intensive

investigation [7–11].

Recently, miRNAs have been identified outside the cells in a range of body fluids. In the cir-

culation they are commonly found enclosed in extracellular vesicles (EVs), bound to lipopro-

teins, or complexed with Argonaute proteins [12]. Chim et al and Williams et al identified the

expression of placental miRNAs in the circulation of pregnant women [13, 14]. Lawrie et al

reported the augmented level of different miRNAs analyzed by qRT-PCR such as miR-21,

miR-210, and miR-155 in serum of B cell lymphoma patients [15]. Several studies presented

circulating miRNAs as potent, non-invasive diagnostic markers for different diseases includ-

ing cancers, such as different types of lymphomas. Fang et al compared the level of 7 miRNA

in serum of DLBCL patients to healthy controls using qRT-PCR showing 4 of them (miR-

15a, miR-16, miR-29c and miR-155) to be significantly increased while one (miR-34a) was

decreased [16]. Yuan et al correlated miRNA expression levels between serum and FFPE tissue,

and analyzed the expression levels of eight miRNAs in DLBCL patients prior to treatment,

showing a significant association of these miRNA between serum and matching tumor biopsy

samples [17]. Jones et al performed microarray profiling of human miRNAs in 14 cHL primary

tissues and 8 healthy lymph nodes and revealed a number of new disease node—associated

miRNAs, including miR-494 and miR-1973. Using quantitative real-time PCR (qRT-PCR),

they tested the utility of plasma miR-494, miR-1973, miR-155, miR-21 and miR-16 as disease

response biomarkers in an independent prospective cohort of 42 patients with cHL and 20

healthy participants. Levels of miR-494, miR-1973 and miR-21 were higher in patients’ plasma

compared to controls’ plasma, returning to normal at remission [18]. Van Eijndhoven et al

claimed that tumoral miRNA are shed into the plasma via EVs and thus evaluated miRNA

expression profile in plasma isolated EV showing enriched levels of miR-24, miR-127, miR-21,

miR155 and let-7a in HL patients compared to healthy subjects [19].

In search for sensitive biomarkers that could precede obvious clinical relapse, we aimed

to identify a wider range of plasma miRNA that could distinguish between control and
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lymphoma patients and serve for further studies on therapy response and early relapse. Since

we did not detect major differences in miRNA content between healthy subjects’ whole plasma

and EV fraction, we analyzed our patients’ plasma without further fractionation.

Materials and methods

Subjects

All experiments were conducted with approval of the local Helsinki ethical Committee of the

Hadassah Medical Center (No.: HMO-0043-11) and a written informed consent was obtained

from all the subjects, no identifying information or images were used. All experiments were

performed in accordance with relevant guidelines and regulations. We recruited 20 healthy

adult volunteers, 14 DLBCL patients and 11 Hodgkin lymphoma patients at disease or relapse

diagnosis. Blood was drawn from each patient once, at screening, either when first diagnosed

with lymphoma (de novo disease) or at diagnosis of relapse. Aiming for a high signal from

patients’ plasma, inclusion criteria required high LDH at diagnosis or a tumor mass above 5

cm. Clinical parameters were prospectively recorded. International Prognostic Index (age

>60, ECOG performance status over 2, stage III-IV, extranodal site, LDH above the upper

normal limit) was calculated for all DLBCL patients, who were accordingly sub-divided into

four risk groups (low, low-intermediate, high-intermediate and high). HL patients were

defined as early-stage disease according to the Southwest Oncology Group (SWOG) and Can-

cer and Leukemia Group B (CALGB) previously published definition (Ann Arbor stages I or

II without any B symptoms, infra diaphragmatic presentations, or mediastinal masses greater

than one-third the maximum thoracic diameter); the rest were defined as advanced disease.

Plasma isolation

Ten mL of blood were obtained by venipuncture using a 21G needle and collected in EDTA

containing tubes. Blood was immediately processed by centrifugation at 1,000g for 5 min at

room temperature to separate plasma. The isolated plasma was transferred to 1.5 ml Eppen-

dorf tubes and centrifuged at 12,000g for 45 min at 4˚C. Supernatant was transferred to a

0.22 μm membrane pore size centrifuge filter (Corning1 Costar1 Spin-X1 centrifuge tube fil-

ters) and spun at 15,000g for 2 minutes. Specimens were then aliquoted into 1.5 ml Eppendorf

tubes, 500 μl in each tube, and frozen at -80˚C until further analysis.

For isolation of plasma exosomes, samples were thawed and subjected to two sequential

ultracentrifugations at 100,000g. The second centrifugation pellet was resuspended in 50 μl of

saline for RNA extraction.

Total RNA extraction and quantification

RNA was extracted from 425 μl of plasma or from exosomes extracted from the same volume

of plasma. Samples were first incubated with proteinase K. Organic extraction was then pre-

formed to remove hydrophobic peptide fragments, using a homemade reagent containing gua-

nidinium isothiocyanate (GITC), phenol, citric acid, NaOH and sarcosyl [20]. Following

chloroform extraction, isopropanol was added to the aqueous phase. To purify the RNA from

the aqueous-isopropanol mixture we bound to commercial RNeasy MinElute columns. The

columns then underwent repeated washes under vacuum, followed by elution with double dis-

tilled water. Total RNA was quantified using Qubit 2.0 (Thermo Fisher Scientific Inc.).
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Small RNA sequencing

Total RNA was subjected to in-house multiplexed small RNA cDNA library preparation,

which entailed ligation of barcoded 30 adapters to 20 different samples, pooling of samples,

ligation of a 50 adapter, reverse transcription and polymerase chain reaction (PCR), as previ-

ously described [13], with modifications allowing multiplexing of several 20-sample libraries

on a single HiSeq lane, namely, 40–100 small RNA samples per lane [21]. Libraries were

sequenced on an Illumina HiSeq sequencer, and the information obtained was analyzed by an

automated computer pipeline to decode and annotate small RNA reads [22]. Of all known

human miRNA, 159 unique miRNA were detected with at least 1 read in at least 25% of

samples.

Statistical analysis

Statistical procedures on count data were based on the ‘DESeq2’ R/Bioconductor package

for analysis of differential expression in RNA sequencing experiments [23], as previously

described [24], and complemented by parallel calculations with ‘edgeR’ [25] and ‘limma’ [26].

We used ‘cancerclass’, a machine learning R/Bioconductor package, for development and vali-

dation of classification tests from the high-dimensional molecular data. The protocol of can-

cerclass uses simple classification methods, and includes validation and visualization of

classification results. The protocol starts with feature selection by a filtering step. Then, a pre-

dictor is constructed using the nearest centroid method. The accuracy of the predictor is evalu-

ated using training and test set validation [27], leave-one-out cross-validation or in a multiple

random validation protocol. Survival analyses were conducted using ‘samr’ [28] (SAMseq

command) and ‘survival’ [29] R packages. Plots were generated with ‘ggplot2’.

Target prediction and pathway analysis

Ingenuity pathway analysis (IPA) software (Ingenuity Systems, Redwood City, CA) was

applied to analyze the canonical pathways networks, and biological functions of the differen-

tially expressed miRNA in the DLBCL and HL patients group, while filtering for high confi-

dence prediction and experimental targets. The IPA software is based on computational

algorithms of the connectivity from information obtained within the IPA (IPA, Qiagen, http://

www.ingenuity.com). In order to predict the activation state of canonical pathways that were

found to be enriched in these two datasets, an artificial fold change value was assigned to the

targets, a positive one if the microRNA is down-regulated and an identical negative one, if the

microRNA is upregulated. The two datasets were subjected to IPA core analysis. These assign-

ments follow the assumption that microRNAs and their targets have opposite directions of

expression, i.e. that an up-regulation of a microRNA causes the inhibition of its downstream

targets and that the down-regulation of a microRNA causes the activation of downstream tar-

gets. This procedure uses the fact that the z-score that is calculated in IPA core analysis to pre-

dict the activation state of canonical pathways, only takes the direction of expression (i.e. up/

down-regulation) into account, but not the intensities.

Results

Study participants’ characteristics

Twenty healthy volunteers at a median age of 37 years participated in the control arm (11 men

and 9 women). Patients were enrolled before starting therapy. Fourteen DLBCL patients were

studied, all of them with de novo disease. Median age was 63.5 years; 9 men and 5 women. IPI

score was low, low intermediate, high-intermediate and high in 4, 3, 3, 4 patients respectively.
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All DLBCL patients had a tumor mass larger than 5 cm and 9 had higher than normal serum

LDH levels. Eleven classical HL (cHL) patients were recruited, of them 10 with de novo disease

and 1 with relapsed disease. Median age was 27 years; 8 men and 3 women. Two were defined

as having early stage disease and 9 had advanced disease. All cHL patients had a tumor mass

larger than 5 cm and 2 had LDH levels higher than normal (Table 1).

miRNA profiles in healthy volunteers

Small RNA libraries prepared from whole plasma or plasma exosome preparations were

enriched with miRNA, which composed 22.3% of the sequenced reads (25th-75th percentiles

15.0%-35.8%). Other frequently detected small RNAs were mRNA (median 10.6%, 6.6%-

13.1%), rRNA (8.2%, 5.9%-11.9%), tRNA (1.4%, 1.0%-2.2%) and non-annotated RNA

(36.3%, 27.8%-52.6%). The distribution of small RNA categories did not differ between

whole plasma and exosome preparations (Fig A in S1 File and Table A in S2 File). miRNA

profiling in healthy volunteers revealed that the top 10 whole plasma miRNA are miR-451,

miR-486, miR-21, miR-92a, let-7a, miR-22, let-7b, miR-16, miR-24 and let-7f. Exosomal

miRNA content was not significantly different for any single miRNA when compared with

whole plasma (Fig 1, Fig A in S1 File and Table A in S2 File). Further analyses were thus

based on unfractionated plasma specimens. Individual miRNA counts in all study samples,

after aggregation of technical repeats and batch corrections, are provided in Table A in

S2 File.

miRNA in HL and DLBCL patients’ plasma compared to healthy

volunteers

miRNA that were differentially expressed in patients’ plasma compared to controls are dis-

played in Table B in S2 File (sheets 1–6). Principal component analysis based on the expres-

sion levels of all miRNA showed substantial separation of patients from controls (Fig 2A).

miRNA that were significantly altered, according to at least 2 of 3 statistical approaches are

shown in Fig 2 (panels B and C) and Fig B in S1 File. Among the most up-regulated miRNA

were miR-124 and miR-532-5p in DLBCL patients and miR-182 and miR-140� in HL patients.

Among the most down-regulated miRNA were miR-425 and miR-145 in DLBCL patients and

miR-144 and miR-143 in HL patients. There was a significant correlation between the dysregu-

lation noted in HL patients vs. controls and the dysregulation found in DLBCL patients vs.

controls (Fig B in S1 File).

Table 1. Clinical characteristics of study participants.

DLBCL cHL Healthy

Sex, F:M 5:9 3:8 9:11

Age, median (range) 64 (34–85) 27 (18–43) 37 (26–63)

Phase (de novo/relapse) 14:0 10:1 n/a

Mass >5 cm 100% 100% n/a

IPI score (L:LI:HI:H) 4:3:3:4 n/a n/a

HL staging, E:A n/a 2:9 n/a

DLBCL, diffuse large B-cell lymphoma; cHL, classic-type Hodgkin lymphoma; IPI, international prognostic

index; E:A, early:late.

https://doi.org/10.1371/journal.pone.0187722.t001
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Discrimination of patients from controls based on individual plasma

miRNA

Individual plasma miRNA provided variable power to discriminate patients from controls

(Table C in S2 File, Fig C in S1 File). For example, the area under the ROC curve of miR-182

in HL vs. control subjects was 0.927 (adjusted p-value = 0.001, Fig 3A), while miR-223’s area

under the curve in DLBCL vs. control was 0.800 (adjusted p-value = 0.021, Fig 3B).

Discrimination of patients from controls based on multiple miRNA

Composite scores based on all significantly up-regulated or down-regulated miRNA (depicted

in Fig 2 and Table B in S2 File, sheets 1 and 2) were different across the groups of study partici-

pants (Table 2). However, when all differentially expressed miRNA (both up- and down-regu-

lated) were included in the score, discrimination was greatest (Fig 4, and Fig D in S1 File).

Prediction and validation with machine learning

We used the ‘cancerclass’ R/Bioconductor package for classifier development and validation

based on the miRNA profile data. The algorithm was applied separately for DLBCL vs. controls

Fig 1. Box plots showing levels of top 10 miRNA in healthy controls’ plasma and corresponding

levels in paired exosome preparations. Statistically differences between plasma and exosomes are not

significant, as inferred from a DESeq2 analysis presented in Table A in S2 File.

https://doi.org/10.1371/journal.pone.0187722.g001
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Fig 2. miRNA profiles in patients vs. controls. (A) Principal component (PC) analysis plots based on miRNA profiles;

left panel—PC2 vs. PC1, right panel—PC2 vs. PC4. (B&C) Differentially expressed miRNA in DLBCL patients (B) or HL

patients (C) compared to healthy controls according to three independent statistical approaches. Red shades represent

upregulated miRNA while green shades represent downregulated miRNA. Row annotations (left to right) represent the

overall abundance of each miRNA and the statistical significance according to limma, edgeR and DESeq2 approaches.

https://doi.org/10.1371/journal.pone.0187722.g002

Plasma miRNA in lymphoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0187722 November 13, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0187722.g002
https://doi.org/10.1371/journal.pone.0187722


Fig 3. Receiver operating characteristics (ROC) curves describing discrimination of HL patients (A) or DLBCL patients (B)

from controls with transformed levels of selected up-regulated and down-regulated miRNA.

https://doi.org/10.1371/journal.pone.0187722.g003
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and HL vs. controls. Fig E in S1 File plots the importance of each miRNA in a multiple random

validation protocol. The most influential miRNA are also listed in Table 3. Misclassification

rate was dependent on the number of miRNA included in the predictor, with plateau at ~10%

in both assessments (Fig E in S1 File).

Lastly, we trained the cancerclass protocol 1000 times on random 50% subsets of the sam-

ples and subsequently the classifier was tested on the rest of the samples (validation). Median

misclassification rate of validation samples in DLBCL vs. controls was 11.8%, interquartile

Table 2. Discrimination value of up and down regulated plasma miRNA.

AUC (c-statistic) P-value

DLBCL vs. control, up-regulated miRNA 0.875 9.83e-05

DLBCL vs. control, down-regulated miRNA 0.957 3.91e-07

DLBCL vs. control, all dysregulated miRNA 0.979 4.31e-08

HL vs. control, up-regulated miRNA 0.891 0.000152

HL vs. control, down-regulated miRNA 0.959 2.29e-06

HL vs. control, all dysregulated miRNA 0.991 9.45e-08

The composite score was calculated for each patient by standardizing miRNA levels (namely, scaling the

average level of each miRNA to 0 and standard deviation of 1) and summing the respective miRNA.

Upregulated miRNA were added to the score sum, while downregulated miRNA were subtracted.

https://doi.org/10.1371/journal.pone.0187722.t002

Fig 4. Box plots showing the distribution of composite scores based on the levels of differentially expressed miRNA between DLBCL patients

and healthy volunteers (A-C) or between HL patients and healthy volunteers (D-F). Scores are composed of up-regulated miRNA (A and D), down-

regulated miRNA (B and E) or all dysregulated miRNA (C and F) in the respective pairwise analysis; however, all 3 groups of patients are shown in all

plots. The composite scores were calculated for each patient by standardizing miRNA levels (namely, scaling the average level of each miRNA to 0 and

standard deviation of 1) and summing the respective miRNA. Upregulated miRNAs were added to the score sum, while downregulated miRNA were

subtracted.

https://doi.org/10.1371/journal.pone.0187722.g004
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range (IQR) 5.9%-17.6% (Fig 5A). In HL vs. control validations, median misclassification rate

was 12.5%, IQR 6.3%-18.8% (Fig 5B).

Signaling pathway analysis

Ingenuity Pathway Analysis (IPA) was used to identify mRNAs targeted by the differentially

expressed miRNA in the DLBCL and HL patients group and the biological processes in which

they are involved. Looking at the most differentially abundant miRNA in each group we have

created two datasets of the mRNA targets of miR-124 and miR-532-5p, miR-141, miR-145,

miR-197, miR-345, miR-424, miR-128 and miR-122 for the DLBCL patient group and miR-

25, miR-30a/d, miR-26b, miR-182, miR-186, miR-140� and miR-125a for the HL patient

group. Using the high confidence experimental and predicted IPA database, in the DLBCL

patient group mainly STAT3, IL-8, p13k/AKT and TGF-B signaling pathways were identified

to be potentially up regulated, while PTEN and p53 pathways to be potentially down-regulated

(Fig F in S1 File). In the HL patients group we identified mainly cAMP mediated pathway and

p53 pathway to be potentially down-regulated (Fig F in S1 File).

Survival analysis with miRNA

We evaluated the relationships of baseline plasma miRNA profiles with outcome, all-cause

mortality, in lymphoma patients. Of 25 lymphoma patients, six died during a median follow-

up of 4.2 years, range 0.9–5.3 (Fig G in S1 File). Age, sex and disease group (DLBCL vs. HL)

did not significantly predict mortality (not shown). The potential of miRNA to predict mortal-

ity was explored by survival analysis with miRNA counts as predictors using ‘samr’. The Q-Q

plot shown in Fig G in S1 File depicts the existence of miRNA that associate with all-cause

mortality beyond chance associations expected due to multiple testing. Lastly, we evaluated the

leading miRNA in the samr analysis individually using cox proportional hazards models; most

were indeed significantly associated with mortality (Fig G in S1 File). Specifically, plasma levels

above the median were associated with the following hazards ratios for mortality: miR-20b,

1.73 (p-value 0.0022); miR-1, 1.50 (p-value 0.0021); miR-93, 1.45 (p-value 0.0286); miR-20a,

1.40 (p-value 0.0246); miR-128, 1.38 (p-value 0.0345); miR-106b, 1.31 (p-value 0.0469); miR-

106a, 1.25 (p-value 0.0401) and miR-200c, 0.66 (p-value 0.0274).

Table 3. Top 10 influential miRNA for classification; inclusion rate in 200 iterations, each retaining 80

miRNAs.

DLBCL vs. control HL vs. control

miRNA Inclusion rate miRNA Inclusion rate

miR-425 100% miR-144 100%

miR-141 100% miR-143 100%

miR-197 100% miR-129-5p 98%

miR-145 100% miR-182 96%

miR-345 100% miR-411 96%

miR-200c 97% miR-126-3p 93%

miR-324-5p 94% miR-433 91%

let-7i* 94% miR-23a 90%

miR-424 91% miR-24 84%

miR-222 90% miR-423-5p 82%

https://doi.org/10.1371/journal.pone.0187722.t003
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Fig 5. Distributions of misclassification rates within 1000 iterations of training and validation using

’cancerclass’, performed on DLBCL patients’ and healthy controls’ miRNA profiles (A) or HL patients’

and healthy controls’ profiles (B).

https://doi.org/10.1371/journal.pone.0187722.g005
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Discussion

Early detection and treatment of relapsed lymphoma can improve response and survival. Cur-

rent tools lack sensitivity and specificity for detection of early relapsed disease, while being

cumbersome and expensive [30]. For this reason, sensitive, non-invasive disease biomarkers

are needed. Many studies of circulating miRNAs in cancer demonstrated a non-invasive accu-

rate detective or prognostic potential using a combination of miRNA expression levels, and

the diagnosis of cancer even at early stages. These short RNA species are robust, survive harsh

treatment and prolonged storage conditions and may be extracted from blood [31]. Matsuzaki

and Ochiya identified over 200 high quality published studies that provide strong evidence

that circulating miRNAs and EV-associated components are promising biomarkers for cancer

diagnosis and prognosis. Nevertheless, endogenous controls to normalize circulating miRNA

levels have not been standardized, which leads to conflicting results across studies [32]. Micro-

RNA profiling via microarrays or NGS offers high-throughput with respect to assaying the

expression levels of hundreds to thousands of miRNAs or miRNA variants in a single experi-

ment, which is especially useful in early biomarker discovery efforts. NGS further enables

detection of novel miRNAs and the precise identification of miRNA sequences increasing the

amount of sequence output per run, with improved computational accuracy compared to tra-

ditional sequencing methods. In miRNA sequencing (miRNA-seq), the number of reads

obtained per miRNA directly correlates with the abundance of the miRNA in the sample,

which is linked to its relative expression level [33]. Serum biomarkers of lymphoma activity for

diagnosis, prognosis, and therapy monitoring are of great clinical interest in the last decade.

There are opportunities to evaluate levels of natural serum constituents, tumor produced

enzymes, or even nucleic acids released from tumors that may represent dysregulated tumor

drivers. While the initial diagnosis requires tissue sampling for clinical monitoring, robust bio-

markers can help diagnosis, determination of clinical remission with greater sensitivity for

residual disease than manual palpation or other clinical evaluations, or detection of disease

progression prior to clinically detectable evidence of that event. In search for sensitive robust

biomarkers that could precede obvious clinical relapse, we aimed to identify a wider range of

plasma miRNA that could distinguish between control and lymphoma patients and serve for

further studies on therapy response and early relapse. Unlike prior works, we did not restrict

our assessment to tumor-associated miRNA, but aimed to look at the entire miRNA profile of

lymphoma patients compared to healthy volunteers.

miRNA profiling in our healthy volunteers revealed that the top 10 whole plasma miRNAs

are miR-451, miR-486, miR-21, miR-92a, let-7a, miR-22, let-7f, miR-16, miR-24 and let-7b.

This is in agreement with previous reports [12, 14, 34]. The two most abundant miRNA were:

miR-451, a Dicer independent miRNA comprising *50% of the miRNA content in red blood

cells; and miR-486, transcribed from an intron in the ankyrin1gene (ANK1) expressed in

endothelial cells, erythrocyte precursors and skeletal muscle[14].

We identified in DLBCL patients increased plasma levels of miR-124 and miR-532-5p,

while miR-425, miR-141, miR-145, miR-197, miR-345, miR-424, miR-128 and miR-122 were

down-regulated. Discrepancy between our results and those published by qRT-PCR analysis is

in part due to the latter examining tumor overexpressed miRNA while we investigated the

entire plasma mirnome, thus allowing many other possibly significant miRNA to be discov-

ered [16, 17]. Ingenuity Pathway Analysis (IPA) was used to identify mRNAs targeted by these

miRNAs and the biological processes in which they are involved. We have found potential up-

regulation of the STAT3, IL8, p13k/AKT and TGF-B signaling pathways, while potential

down-regulation of the PTEN and p53 pathways. PTEN is a ubiquitous tumor suppressor

phosphatase known to inhibit pi3k/AKT which plays an important role in normal and
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malignant B cell biology affecting BCR signaling and downstream pathways affecting prolifera-

tion, differentiation and survival; pi3k/AKT serves as an attractive target in lymphoma therapy

[35]. Serum IL-8 was found to be higher in DLBCL patients than in control subjects. While ele-

vated levels of IL-8 correlated with more adverse disease features, lower response to therapy

but did not affect overall survival [36].

We have shown that NGS of plasma miRNA may identify a set of miRNA that can serve as

biological markers for relapsed lymphoma. Using next generation small RNA sequencing of

patients’ plasma, we have detected miRNA that were significantly altered between patients and

controls. This is to our knowledge the first publication on deep sequencing of miRNA in

plasma of DLBCL patients. Lawrie et al reported on levels of 3 different miRNAs analyzed by

qRT-PCR [15] while Fang et al compared the levels of 7 miRNA in serum of DLBCL patients

to healthy controls using qRT-PCR [16]. Yuan et al correlated qRT-PCR miRNA expression

levels between serum and FFPE tissue, and analyzed the expression levels of eight miRNAs in

DLBCL patients prior to treatment.

In our HL group, we identified plasma miR-25, miR-30d, miR-26b, miR-182, miR-186,

miR-140�, miR-30a and miR-125a to be up regulated compared to controls, while miR-23a,

miR-122, miR-93 and miR-144 were down-regulated. Our results cannot be directly compared

to those in the literature since others have looked either at specific HL miRNA expression or at

expression profiles of plasma sub-fractions (e.g. protein-bound, EVs isolated with size-exclu-

sion chromatography) [11, 16, 18]. Using again IPA to identify mRNAs targeted by these

miRNA, we have found mainly the cAMP mediated pathway and p53 pathway to be potentially

down regulated. It has been shown that p53 inactivation/dysfunction alters the immune land-

scape of the tumor microenvironment (TME) towards pro-tumor inflammation [37], while

cAMP is a potent negative regulator of T cell receptor-mediated activation of effector T cells

[38].

Evaluation of the relationships between baseline plasma miRNA profiles and outcome of

our lymphoma patients reveled plasma levels of miR-20a, 20b, 93 and 106a 106b to be associ-

ated with a higher hazard ratio for mortality. The miR-17–92 cluster and its paralogs miR-

106a-and miR-106b encode for 13 miRNAs that act as oncogenes [39, 40]. The miR-17–92

cluster has been shown to be over-expressed in systemic lymphomas [41–44] and clinical

translational studies have demonstrated the association between the overexpression of miR-

17–92 and shorter survival in nodal diffuse large B-cell lymphoma (DLBCL), primary cutane-

ous B cell lymphoma and mantle cell lymphoma [45–47]. MiR-93, which belongs to the miR-

106b-25 cluster, is an oncomiR in many types of human cancers. The aberrant expression and

dysfunction of miR-93 have been associated with tumor progression, metastasis, and poor

prognosis in hepatocellular carcinoma, lung cancer, breast cancer, gastric and nasopharyngeal

carcinoma [48]. All of these miRNAs have been shown to down regulate PTEN expression and

upregulate the pi3k/AKT pathway [40, 48, 49].

Since it was speculated that miRNA in the circulation are commonly found enclosed in EVs

protecting them from degradation by RNases, we compared healthy controls’ plasma miRNA

to plasma-derived EV miRNA content. We have found that our fractionated EV miRNA con-

tent was not significantly different for any single miRNA when compared with whole plasma.

Unlike Van Eijndhoven et al who reported that Hodgkin lymphoma tissues secrete a mixed

population of tumor-derived EVs that bring lymphoma-associated miRNAs into the circula-

tion (where they are protected from degradation), we did not aim at evaluating specific tumor

secreted miRNA but rather at any highly expressed miRNA [19]. We have chosen to evaluate

whole plasma content, but farther evaluation of fractionated EV miRNA content in patients’

plasma compared to unfractionated samples is warranted. Another limitation of our study is
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our relatively small cohort of patients. A larger external cohort is needed to validate our

results.

To date, biomarker discovery has many limitations, one of which is the lack of optimal nor-

malization method for analysis of plasma RNAseq data. Like others, we used an equal plasma

volume input allowing the comparison of miRNA expression level between patient and control

samples [18, 19]. In conclusion, using NGS of circulating miRNA we have been able to identify

a different set of overexpressed circulating miRNA that might serve as detectable biomarkers

for relapsed lymphoma. Our results need to be validated by an external cohort of patient sam-

ples processed by our laboratory using next generation sequencing or by performing qRT-PCR

of the specific up-regulated/down-regulated miRNA expression levels and by sequential sam-

pling of circulating miRNA at diagnosis and relapse settings. These are parts of our future

research plans.

Supporting information

S1 File. Fig A. (A) Box plots depicting the levels of different small RNA categories in plasma

and exosome preparations in control subjects and DLBCL patients. (B) Box plots showing lev-

els of top 10 miRNA (as determined in healthy controls’ plasma) in DLBCL patients’ plasma

and corresponding levels in the paired exosome preparations. Fig B. Levels of differentially

expressed miRNA (according to at least two statistical approaches) in DLBCL patients vs.

healthy controls (A) or HL patients vs. healthy controls (B). (C) The log2 fold-change values in

the HL vs. control comparison were plotted against the log2 fold-change values in the DLBCL

vs. control comparison. Fig C. Empirical cumulative distribution function (eCDF) plots of

area under the ROC curve values discriminating HL patients (left) or DLBCL patients (right)

from controls applying 3 different count transformations; logCPM (edgeR), voom (limma)

and vst (DESeq2). Fig D. Conditional density plots are illustrating the conditional distribution

of the group variable (control, DLBCL, HL) over the values of the miRNA scores. miRNA

scores were derived from differential expression analyses comparing HL patients to controls

(left 2 panels) or DLBCL vs. controls (right 2 panels), as in Fig 4 and Table 2. Scores are

comprised of upregulated miRNA (top panel), downregulated miRNA (middle panel) or all

dysregulated miRNA (bottom panel). Fig E. The ‘cancerclass’ package was applied upon our

miRNA profile data to obtain DLBCL vs. control classifiers (A&B) and HL vs. controls classifi-

ers (C&D). Misclassification rate was dependent on the number of miRNA included in the

predictor (panels A and C). The classification importance of each miRNA is depicted in panels

B and D, as the percentage of repetitions in which the miRNA was included in the classifier.

Fig F. Canonical pathways that are found to be enriched (FDR< = 0.05) in the datasets of

mRNA targets of increased plasma miRNAs in DLBCL (A) and HL (B) patients: Each column

represents an enriched IPA canonical pathway. The height of the column shows the negative

log (Benjamini-Hochberg corrected p-value) of the canonical pathway. The orange line repre-

sents the ratio between the number of genes in our datasets and the total number of genes that

are known to participate in that canonical pathway. Each column is colored according to its

IPA z-score value, orange/blue for positive/negative z-score (predicting up/down-regulation of

the canonical pathway). Gray columns represent a z-score that cannot be calculated due to a

lack of knowledge. Fig G. (A) Kaplan-Meier plot showing 5-year survival of ~75% among all

lymphoma patients. The dashed lines denote 95% confidence intervals. (B) A Q-Q plot based

on survival-type ‘samr’ results, that shows expected vs. observed association scores of miRNA

with mortality. Circles in upper-right represent plasma miRNA associated with increased

mortality, while lower-left miRNA are linked with reduced mortality. Red circles represent

miRNA with low q-values, namely significance withstanding adjustment for multiple testing.
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(C) Survival plots with individual miRNA as predictors of mortality. miRNA were chosen

based on the samr analysis (A), and were used as predictors in Kaplan-Meier plots as categori-

cal variables with cutoffs at the median levels.

(PDF)

S2 File. Table A. (A) DESeq2 results displaying differential abundance of small RNA

categories in exosome preparations compared to matched healthy controls’ plasma samples.

(B) DESeq2 results displaying differential abundance of miRNAs in exosome preparations

compared to matched healthy controls’ plasma samples. (C) Batch-corrected individual

miRNA counts in all study samples (technical repeats aggregated). Table available at https://

goo.gl/5G8lco. Table B. DESeq2 (sheets 1 and 2), voom/limma (sheets 3 and 4) and edgeR

(sheets 5 and 6) results displaying differential abundance of miRNA in DLBCL patients’

plasma compared to healthy controls’ plasma (sheets 1, 3, 5) and HL patients’ plasma com-

pared to healthy controls’ plasma (sheets 2, 4, 6). Table available at https://goo.gl/5G8lco.

Table C. Area under the receiver operating characteristics (ROC) curves for discrimination of

DLBCL patients (A) or HL patients (B) from controls according to voom-transformed plasma

miRNA counts. Table available at https://goo.gl/5G8lco.

(DOCX)
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