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Abstract

We introduce a novel computational framework to enable automated identification of texture and shape features of lesions
on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future
morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional
qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i)
detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients
received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma,
cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm,
neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with
papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer
were included in this analysis. The radiotracer accumulation in patients’ scans was automatically detected and segmented
by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the
proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct
a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a
mean dice similarity coefficient of 85.7561.75%. We found that 28 of 68 extracted imaging features were correlated well
with SUVmax (p,0.05), and some of the textural features (such as entropy and maximum probability) were superior in
predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as
SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction
accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p,2e-16).

Citation: Bagci U, Yao J, Miller-Jaster K, Chen X, Mollura DJ (2013) Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET
Images. PLoS ONE 8(2): e57105. doi:10.1371/journal.pone.0057105

Editor: Chin-Tu Chen, The University of Chicago, United States of America

Received April 12, 2012; Accepted January 22, 2013; Published February 19, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research is supported by the Imaging Sciences Training Program (ISTP), the Center for Infectious Disease Imaging (CIDI), the Intramural Program of
the National Institutes of Allergy and Infectious Diseases, and the Intramural Research Program of the National Institutes of Bio-imaging and Bioengineering at the
National Institutes of Health (NIH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ulas.bagci@nih.gov

Introduction

Positron Emission Tomography (PET) is a non-invasive

functional imaging method that captures the distribution of

biologically targeted radiotracers at the molecular level, with high

sensitivity [1]. Standardized uptake value (SUV) is often used in

clinical PET imaging as a semi-quantitative, functional measure-

ment of radiotracer activity, normalized for dose and body weight

(or lean body mass or body surface area). Recent investigations

have aimed to improve the characterization of radiotracer uptake

patterns in order to analyze lesions [2–5]. These efforts to

characterize patterns of uptake are based on the limitation of SUV

measurements such as inconsistent cut-off values for discriminating

benign and malignant activity, partial volume effects, body

composition, and habitus. Note that SUVs are linearly related to

image intensities through patient and scanner specific parameters

as well as kinetics of the radiotracer. Although parametrically

related, different formulations of SUVs (i.e., SUVmax, SUVmean,

etc) are used to overcome the current limitations of SUV

measurements [3], and comprehensive analyses of local to global

textural and shape characterization of uptake regions remain

unaddressed. Extracting characteristic texture/shape features from

uptake regions require robust, accurate, and reliable medical

image segmentations; however, primarily due to overlap or close

juxtaposition of abnormal signals, with surrounding normal

structures, background radiotracer activity, image reconstruc-

tion-based artifacts, partial volume effects, low resolution, etc., the

PET image segmentation can be a challenging problem. Many

studies using segmentation of PET images are performed using

manual approaches—fixed-, adaptive-, or iterative-thresholding—

and region based methods such as fuzzy c-means (FCM), region

growing, or watershed segmentation methods [6–10]. However, all

these methods have limitations in clinical practice because of the

following restrictions: (i) desired physical accuracy is usually far

beyond the outputs of the methods, particularly for small lesions

and uptakes with non-spherical shapes, and (ii) robustness and

reproducibility of delineations are two unsolved problems in

segmentation of uptake regions from PET images because an

algorithm working in different signal-to-background ratio condi-
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tions—with similar performance and outputting the same/similar

results consistently—is missing.

Our aims in this study are to explore imaging features that may

potentially drive morphological characterization of radiotracer

uptake and reliably predict morphological changes of abnormal

regions. Our investigation produced a robust, accurate, and

efficient image segmentation method, which enables a compre-

hensive texture analysis possible. The relationship of both textural

and shape features to intensity based (i.e., SUV) features were also

analyzed using multivariate and Bayesian statistics. In this paper,

we present the theoretical analysis of textural characterization and

image segmentation methods, in addition to experimentally

demonstrating that the proposed texture based features—extract-

ed from accurately delineated radiotracer uptake regions—can

potentially be used as semi-quantitative tools in analyzing

longitudinal morphological change analysis. The combination of

SUVmax and the proposed textural features are hypothesized to

predict morphological changes of abnormal regions more

efficiently. The proposed methods were used to detect and identify

lung abnormalities, pertaining to patients who had PET-CT scans

and histopathology biopsy. Longitudinal analyses of these patients

were used to evaluate the generalizability and consistency of

the proposed method. Although changes in uptake or SUVs can

be used as a quantitative index for treatment responses, in this

study we confine ourselves into only morphological changes and

prediction of these changes in image space with the aim of

developing a quantitative and reliable computational platform.

Methods

Patients and PET-CT Imaging
With IRB approval, we collected 60 18F-FDG-PET imaging

scans from 30 patients. The study population consisted of 12 males

and 18 females, with a mean age of 48612.6 for female (range:

35–75, median: 45 years), 44614.5 for male (range: 27–64,

median: 47 years), respectively. All the patients presented with

either primary non-metastatic, metastatic disease, or a systemic

viral infection at the time of the first PET scan. The study group

consisted of non-consecutive patients diagnosed with primary lung

cancer (NSCLC and SCLC), diffuse large B-cell lymphoma

(DLBCL), metastatic papillary renal cell carcinoma, cerebellar

hemongioblastoma, neurofibroma, lymphomatoid granulomatosis,

lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass,

nonnecrotizing granulomatous inflammation, renal cell carcinoma

with papillary and cystic features, or metastatic alveolar soft part

sarcoma. All 30 patients underwent an 18F-FDG-PET/CT

protocol, where patients were instructed to fast for a minimum

of 6-hours before scanning. The serum glucose level was measured

to ensure that the value was less than 118 mg/dL (6.5 mmol/l). At

the end of the 6 hour period, 321.9–395.9 MBq (8.7–10.7 mCi,

median 10.2 mCi) of 18F-FDG was administered intravenously to

the patients, followed by a 45–60 minute uptake period, before

image acquisition (mean uptake period = 54.5 mins, minimum

uptake period = 45 mins, maximum uptake period = 60 mins). For

the analysis of longitudinal studies, the deviation of 18F-FDG

uptake periods between the baseline and follow-up scans must be

within +/2 10 minutes [11], and our study had a mean deviation

of less than one minute. The 18F-FDG uptake period deviation

between the baseline and follow-up scans was as follows: 22

patients less than 1 min, 7 patients approximately 2 mins, and

only one patient had a difference of 4 mins; hence, no significant

differences were observed in uptake times between baseline and

follow-up scans. Moreover, mean variation of administrated 18F-

FDG (over all patients) between baseline and follow-up scans was

measured as 1.05 mCi. PET images were acquired with 2–

3 minutes of emission scan per bed for 5–6 bed positions with 3D

acquisition mode. Corresponding non-diagnostic low dose CT was

obtained for attenuation correction and anatomic localization.

PET-CT Images were collected in two different time points

(baseline and follow-up; mean time interval between scans was 267

days, median: 206 days, ranging from 64 to 719 days with multiple

scans). The images were 1506150 pixels resolution, corresponding

to 4 mm64 mm pixel size and 4 mm slice spacing. Each patient’s

baseline and follow-up scan was carefully analyzed, and during the

computational and SUV based analysis, up to five lesions were

taken into account and tracked longitudinally (Table 1). Since not

all patients were having multiple lesions, in order to avoid any bias

towards small/big size or regular/irregular shaped lesions, we

tracked as many lesions as possible from patients for longitudinal

quantification. Follow-up scans of patients were obtained imme-

diately after five chemotherapy cycles to be consistent in the

evaluations, and we used the response evaluation criteria in solid

tumors (RECIST) since it suggested the use of five lesions per

organ (up to maximum 10 lesions) for analysis. Note also that,

patients having secondary severe symptoms and complications

such as kidney failure during these five cycles were not included in

the selection procedure and hence in the study.

Analysis of Uptake Regions Using Textural and Shape
Features

Texture analysis provides quantitative information describing

properties in images such as coarseness and smoothness. The

search for useful textural features and discriminative statistics in

image processing field has significantly progressed throughout the

last three decades [12]. Co-occurrence matrices [13], run-length

statistics [14], local shapes [15], and cliques in Markov random

fields [16], as well as many extensions of these landmark features

are well-established in various disciplines. Parallel to these

developments, in recent publications, textural and shape features

of uptake regions were used to characterize esophageal cancer in

[3], human sarcomas in [15], cervix, head and neck cancers in [4].

In particular, local tissue characteristics provided by PET and

modeled by textural heterogeneity—by computer algorithms—

were explored to understand the biological function of different

tissues. However, in practice, the aforementioned computational

methods used for analyzing functional uptake in PET images do

not provide a general way for reliable inference, due to the highly

possible segmentation errors and difficulties in characterization of

global and local features. Note also that inaccurate delineation of

uptake regions may cause to considerable changes in extracted

features. Last but not least, local variations of feature values were

usually ignored or not taken into account in such studies

[5,13,14,17–19]. However, we postulate that local variations of

feature values might be more effective than the features themselves

in terms of correlation levels. In this study, we addressed all of

these problems in two steps: (i) by proposing a robust, accurate,

and fast segmentation method, as described in next subsection,

and (ii) by broadly and deeply analyzing different textural and

shape features, as well as their local deviations, from accurately

delineated regions. Figure 1 shows feature types and associated

features, extracted from delineated uptake regions from PET

images. Brief descriptions of the features are explained in the

following subsections.

Automated Random Walk (ARW) Image Segmentation
When images are low resolution and include noise, graph based

segmentation algorithms were shown to be more useful than

boundary and thresholding based segmentation methods [20–23].

Automated Delineation and Texture Correlations
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PET images, as a nature of the reconstruction process, are low

resolution images with high contrast and include noise; therefore,

graph based segmentation algorithms are more suited for

radiotracer uptake segmentation. We used an adaptive graph

theoretic segmentation algorithm—automated random walk

(ARW) image segmentation—in order to produce automated,

efficient, and reproducible object delineation results from PET

images. ARW works as follows: first, object and background are

roughly identified by using an automated interesting uptake region

(IUR) algorithm, and then some voxels are labeled as either object

or background region, accordingly. Second, the delineation

algorithm is initiated to efficiently and quickly determine the label

of the remaining unlabeled voxels. The proposed ARW deter-

mines the highest probabilities for assigning labels to voxels, by

measuring the ‘‘betweenness/togetherness,’’ by initiating random

walkers from a labeled voxel, and by reaching to the unlabeled

voxel first by a random walker. The proposed method is different

from the conventional random walk algorithm [24] in the

following ways: (i) the proposed method is fully automated since

it detects interesting uptake regions (IUR) automatically, and (ii)

the proposed algorithm is performed based on the SUVs of voxels,

and prior probability distributions of voxel SUVs were calculated using

Table 1. Patient demographics with gender information; SUVmax values corresponding to lesion numbers (denoted by L#) both
for baseline and follow-up scans are enlisted.

Patient Info. SUVmax (baseline) SUVmax (follow-up)

ID/Disease Gender L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

1/lung neoplasm M 2.2 2.5 2.6 2.9

2/Renal cell carcinoma with
papillary and cystic features

M 2.5 3.3 2.1 3.3

3/SCLC M 5.4 2.1 2.1 8.9 4.1 2.3

4/Soft tissue thoracic mass F 8.2 7.9 3.5 1.5 1.2 3.8 3.7 1.6 1.0 1.8

5/SCLC F 1.0 5.4 4.9 2.0

6/cerebellar hemongioblastoma M 3.5 3.5 9.0 2.4 4.5 3.2 14.1 3.5

7/DLBCL F 5.2 3.0 4.2 6.2 6.7 7.0 3.0 4.2 6.2 4.5

8/nonnecrotizing granulomatous
inflammation

F 4.2 14.2 5.0 4.3 10.5 1.0

9/Soft tissue thoracic mass F 8.3 5.0

10/NSCLC and squamous cell
carcinoma

M 2.5 8.1 1.1 2.6 8.3 1.5

11/lymphomatoid
granulomatosis

F 4.3 5.5 10 1.6 7.7 1.7

12/lymphomatoid
granulomatosis

M 1.8 2.5 2.7 1.0 1.0 1.1

13/metastatic alveolar soft part
sarcoma

M 4.3 1.3 4.3 1.1

14/neurofibroma M 8.6 1.9

15/NSCLC F 7.5 7.5 5.8 4.0 2.9 9.5 9.1 5.7 4.4 1.0

16/NSCLC M 5.5 11.2 2.0 6.0 1.1 7.5 3.3 5.6

17/lymphomatoid
granulomatosis

F 14.1 4.7 10.3 2.5

18/NSCLC F 11.2 7.5 7.0 1.7 10.8 5.6 1.9 4.9

19/Soft tissue thoracic mass F 3.4 1.6

20/SCLC F 7.5 9.3 9.5 10.4 5.0 8.7 8.9 11.7

21/NSCLC M 5.1 5.0 4.8 11.5 12.0 1.2 1.1 1.0 4.1 4.5

22/SCLC F 1.1 1.9 2.4 2.1 3.1 2.5 2.5 2.5 3.5 3.0

23/NSCLC F 7.5 5.5 3.5 5.1 2.2 1.0

24/metastatic papillary renal cell
carcinoma

F 1.7 7.4 5.2 3.6 9.1 6.6

25/DLBCL M 3.5 8.7 3.3 7.5

26/neuroendocrine tumor F 3.7 2.2 3.5 1.7 2.7 2.3 1.0 1.1

27/SCLC F 4.6 4.0 4.1 3.7 1.2 5.0 4.1 4.1 3.5 1.0

28/SCLC F 2.5 14.0 6.7 6.5 6.9 7.0 8.0 8.3 6.7 6.7

29/NSCLC M 7.5 2.2 1.0 7.4 4.3 4.1

30/neuroendocrine tumor F 9.0 6.6 5.7 8.5 7.0 1.0

Number of lesions is subject to change from patient to patient.
doi:10.1371/journal.pone.0057105.t001

Automated Delineation and Texture Correlations
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a robust kernel density estimation method [25] instead of using

simple Gaussian assumptions. For (i), we automatically localized

the seeds for object and background separation, based on the high

contrast difference of PET images. We accomplished this

identification step by defining an encoder function c (see equation

1.1), which is a threshold interval for PET images:

c(g)~
1g[

SUVmax

N
,SUVmax

� �
0otherwise,

8<
: ð1:1Þ

where N[R and Nw1. Regions identified by the encoding

function were considered as IURs. Once IURs were identified for

each IUR, the voxels with the SUVmax of that particular IUR were

marked as foreground seeds (i.e., SUVIUR
max). Then, we explored

its neighborhood through 8-connectivity graph labeling algorithm

[26] to find voxels with values less than and equal to the SUVmax/

N, where N is pre-defined value greater than 1. Those voxels were

marked as background seeds. Once foreground and background

seeds were localized (i.e., automatic detection step), random walk

image segmentation was initiated by these inputs. In all

experiments, N was set to 2.5 as equal to the conventional clinical

usage (i.e., 40% of SUVmax is usually selected as thresholding

value) [2]. For (ii), instead of using the pure intensity values of

voxels, we adapted SUVs of voxels in ARW algorithm. In

addition, during the computation of prior probability distributions

of labeled (i.e., localized seeds) voxels, we used an adaptive kernel

estimation method [25] to accurately compute the priors even

though the number of labeled voxels were small. In the proposed

detection approach, it is important to emphasize that the

foreground seeds are localized based on the highest intensity

values (i.e., SUVmax), whereas background seeds are localized with

respect to the foreground seeds through a search algorithm. Since

random walk segmentation only needs a few cues for foreground

and background, and it is quite robust to a leaking problem—

commonly seen in graph cut algorithms—a ‘‘rough’’ identification

of the parameter N is sufficient to finalize the seeding process. Note

also that segmentation as a whole can be considered as consisting

of two related tasks: recognition and delineation. Recognition is

the process of determining roughly ‘‘where’’ the objects are, and it

distinguishes them from other object-like entities in the image,

Figure 1. Average intensity (AVGint), standard deviation of intensities (SDint), median value of intensities (MEDIANint), maximum
absolute deviation of intensities (MADint), interquartile of intensity histogram (IRQint), Autocorrelation (ACorr), contrast shade
(Cshade), homogeneity (Homog), difference of entropy (DiffEntropy), maximum probability (MAX-PR), summation of square of
intensity values (SUM-SQR), summation of average of intensity values (SUM-AVG), summation of variation of intensity values
(SUM-VAR), short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLN), run length non-uniformity (RLN),
run percentage (RP), low gray level run emphasis (LGRE), high gray level run emphasis (HGRE), short run low gray level emphasis
(SRLE), short run high gray level emphasis (SRHGE), long run low gray level emphasis (LRLGE), long run high gray level emphasis
(LRHGE).
doi:10.1371/journal.pone.0057105.g001
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while delineation is the final step for defining the spatial extent of

the object region/boundary in the image. This recognition task

coincides well in our detection algorithm, which roughly identifies

IURs and feeds this information to random walk delineation to

make it fully automated. Additional information and experimental

validations on automatic detection of IURs can be found in

Appendix S1.

Random Walks for Image Segmentation. Lets represent

an image as a weighted undirected graph (G~(V ,E), v[V and

e[E), with its nodes/vertices (vi) as voxels and edges (ej), defined as

voxel adjacency with cost values assigned to edges (wij). We used

the un-normalized Gaussian weighting function to define edge

weights as wij~exp({(gi{gj)
2), where gi represents the SUV of

voxel i. By the convention of detected IURs, some of the vertices of

the graph were known (denoted by VM), and some were not

known (denoted by VU), such that VM|VU~V and

VM\VU~1. The segmentation problem was reduced to finding

labels of unlabeled vertices (nodes). A combinatorial formulation of

this situation could be written as a Dirichlet integral as:

D½x�~ 1

2
(Ax)T C(Ax)~

1

2
xT Lx~

1

2

X
eij

wij(xi{xj)
2, ð1:2Þ

where C was the diagonal matrix with the weights of each edge

along the diagonal, and A and L( = ATCA) were incidence and

Laplacian matrices indicating combinatorial gradients, and

defined as

Aeijvk
~

1 if i~k

{1 if j~k

0 otherwise:

8><
>: ð1:3Þ

The solution of the combinatorial Dirichlet problem may be

determined by finding the critical points of the systems.

Differentiating D[x] with respect to x and solving the system of

linear equations with |VU| unknowns yielded a set of labels for

unlabeled vertices. Figure 2 (a and b) revealed a general view of

our proposed software, where any selected slice of PET scan

(Figure 2a) automatic detection of IURs was completed prior to

delineation, and delineated regions (Figure 2b) were fused into

original gray scale image (Figure 2c). Details of this process are

exemplified in Figure 2 (c,d,e). A few voxels belonging to

radiotracer uptake regions and background (Figure 2c) were

detected automatically in the first step, and resultant ARW

delineations are shown in Figure 2d. Texture and shape

information were extracted from those automatically delineated

regions (see extraction of features part in Figure 2b). Some

delineation examples from ARW methods (Figure 3b, blue

boundary) and inter-and intra-observer variations (Figure 3a and

Figure 3c, red boundary), respectively, were overlaid in a two-

dimensional form for comparison. In addition, Figure 4 a and b

show surface information of delineated object both in object

rendering and parametric surface modes.

Feature Extraction
Descriptive Statistics and Histogram Based

Features. Descriptive statistics measure the likelihood of

observing a gray value at a chosen location in the image. The

average, maximum, minimum, standard deviation (SD), median

and range intensity values are some of the examples for descriptive

statistics. All of these statistics can be derived from the histogram of

voxel intensities in the images. Further characterization of the data

variability can also be handled by incorporating higher-order

statistics into the histogram analysis. For example, some of the

histogram based features such as skewness, kurtosis, median

absolute deviation (MAD), and interquartile range (IRQ) provide a

natural bridge between images and a probabilistic description;

however, estimation of a density profile from experimental data

points is a challenging issue, especially because the number of data

points is limited. Considering the studies that used histogram-

based features for textural characterization of radiotracer uptake

regions, accurate estimation of histogram features is often not

possible. Therefore, we derived a histogram based on global

features of textural regions, through kernel density estimation with

diffusion approach [25]. This approach is an accurate and reliable

non-parametric method, and it is able to deal with a small number

of data points. Another important contribution that we have made

was to capture local variations of global features. Since it is a well-

known fact that a region in an image has a constant texture—if a

set of local statistics or other local properties of the picture function

are constant—slowly varying, or approximately periodic [19], it

was thus of interest to provide global statistics in a local sense in

order to discriminate and characterize textures of region of

interest. To achieve this, we extracted descriptive statistics and

histogram based features from local patches (see Figure 2e), which

we obtained after dividing automatically delineated radiotracer

uptake regions into certain size non-overlapping blocks (i.e., 363,

565, 767, 969, and 11611 pixels size blocks were used, and the

best block size was found to be 767 pixels and non-overlapping).

We extracted all features from 2D sections of segmented 3D

objects slice-by-slice and concatenated them (i.e., pseudo-3D) in a

feature extraction order to avoid an additional slice sampling load

and possible partial volume effects. The best window size was

selected based on the highest value of the summation of mutual

information (i.e., maximum mutual information: MMI) values

over all local windows. Thus, we extracted global features in a

local sense, and we computed the variations of these features over

all the local regions (i.e., we had additional feature sets derived by

computing standard deviation of computed global features such as

SD of average intensities, SD of MAD, SD of IRQ, SD of kurtosis,

etc.).

Gray Level Co-occurrence Matrix (GLCM) Based

Features. Descriptive statistics and histogram features depend

on individual voxel values and not on the interaction or co-

occurrence of neighboring voxel values; therefore, they suffer from

the inability to encode spatial image variation. Since GLCM based

features, in this sense, are second order statistics—estimating the

spatial distribution of gray levels—GLCM based feature extraction

methods have become one of the most well-known and widely

used textural feature extraction methods for various different aims

[13]. Some of the GLCM features used in our system included

entropy, correlation, contrast, etc. The full list of features are listed

in Figure 1. Entropy feature, for example, measures the amount of

uncertainty (disorder) in the image. On the other hand, the

maximum probability feature (MAX.PR) measures summation of the

likelihood of voxels having the most common value for a given

region. GLCM features help extract complex image properties by

considering spatial variations of voxels pertaining to particular

regions of interest. However, in most of the literature about

radiotracer uptake characterization, not only the local deviations

of these features were ignored, but also the optimal window size

for extracting local and global features was not investigated. To

tackle this problem, we divided the uptake regions into local

regions, as explained in the previous subsection, and then we

found the best window size for local and global analysis, by

Automated Delineation and Texture Correlations
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conducting correlation analysis of local regions inside the uptake

regions (i.e., for different pre-defined window sizes, highest

correlation value obtained among local regions was used to select

the best window size). We then incorporated the local standard

deviations of the extracted features into our proposed system for

further characterization of the uptake regions. In the results

section, we demonstrated that some of the textural features have

lower correlations with SUVmax than their variations.

Run-Length Features. Run-length method is an effective

texture analysis approach which examines the coarseness of a

texture in a specific direction (i.e., number of runs with voxels of a

particular gray level) [18]. Various texture features are derived

from this information such as short run emphasis (SRE) or long

run emphasis (LRE), etc. Basically, run length features are

determined for the segmented image regions by taking into

consideration the heterogeneity of these regions. The statistical

properties of the run of a particular gray level in an image are

significantly influenced by the size of the segmented regions;

therefore, unlike the other studies reported in the literature

[2,3,12,18], we adaptively selected the window size for analysis of

the runs by examining the highest autocorrelation between

different size of the local windows and probability distribution of

Figure 2. An example view from our proposed framework/software is shown. (a) Automatically detected uptake regions (first), its
segmented version (second), and fusion of segmented region into original image (third) are shown. After detection, the details of object (blue) and
background (red) seeding and conducted segmentation are shown in (c) and (d), respectively. Segmented region (e) is divided into local windows
and for each local window pre-defined textural and shape features are extracted (f). Tools to control extraction of textural features, segmentation,
SUV analysis, and the immediate results are shown in (b).
doi:10.1371/journal.pone.0057105.g002

Automated Delineation and Texture Correlations
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each gray level’s run-length feature. Figure 1 shows the complete

list of run-length features used in our broad analysis. Note that it

has been shown here and in the literature [18] that run length

features possess as much discriminatory information as conven-

tional texture features such as GLCM features. Please see [4,18]

for technical details and further explanations on run-length

features.

Gaussian Markov Random Field (GMRF) Features. Most

medical images are Markov Random Field (MRF) images, that is,

the statistics of a voxel in the medical image that are related to the

statistics of voxels in its neighborhood [27,28]. A challenging

problem in extracting suitable features from images is to extract

robust features that are invariant to rotation and scaling. For

instance, although multiple tumors with the same pathological

findings may have different size and location within the image,

extracted textural features are desired to have similar values that

are independent of their size and location if characterization by

texture is aimed. MRF, in this case, may offer a solution to this

problem by providing a powerful tool to model the probability of

spatial interactions in an image. By incorporating Gaussianity

assumption to the MRF framework, we were able to extract

rotation and scale invariant textural features from segmented

uptake regions [17]. GMRF model was defined by the following

equation [17,27]:

p(IxyDIkl ,(k,l)[Zxy)~

1ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp {

1

2s2
Ixy{

Xn

z~1

azSxy;z

 ! !
ð1:4Þ

where the equation denotes the probability of a voxel (x,y) having

a specific gray value Ixy given the values of its neighbors, n (n = 6 in

this particular study) is the total number of pixels in the

neighborhood Zxy and Sxy;zdenotes the summation of two

symmetric pixels. We estimated the GMRF parameters (i.e.,

a1,a2,:::,a6 and s2) by using a least square error estimation method,

similar to the study in [17].

Shape Features. The local relationship between fuzzy/solid

objects and the intensity distributions—pertaining to those

objects—is obtained through shape (geometric) features. There

have been some techniques explored in [5,15] for evaluation of
18F-FDG-PET utilization characteristics in human sarcomas such

that a measure of heterogeneity incorporating tumor shape
information was shown to be superior, compared to a measure

of heterogeneity alone. Similarly, we encoded the 2D/3D

boundaries of segmented regions and computed the ‘‘circularity/

sphericity’’ of those regions, as well as fractal geometry and volume

information of those regions. These features were extracted from

the 3D segmented radiotracer uptake regions. Extracted features

were used to explore the correlation between functional informa-

tion and the anatomical boundary of functional uptake. While

volume (V) was computed by multiplying the voxel size with the

number of voxels occupied in the uptake region, circularity (or

sphericity in other words) is calculated as p
1=3(6V )

2=3=A, where A

denotes the surface area of the segmented region (i.e., voxels

interior to the segmented objects are not counted in surface area

computation). Sphericity measures disparity between the shape of

an object and a perfect sphere (i.e., roundness). In addition, we

also extracted fractal geometry of 3D segmented regions, where

the fractal was defined as an object with the self-similarity

property, i.e., it appears the same at different magnifications.

Fractal measures are frequently used to understand underlying

phenomena in different biomedical applications, including the

cancer diagnosis. It provides information on the regularity and

complexity of an object by quantifying its self-similarity level. We

measured the fractal properties of the segmented objects by the

box-counting method, as described previously in [17,29].

Results

Evaluation of Segmentations
The dice similarity coefficient (DSC) [30] and Hausdorff

distance (HD) [31] were used to evaluate segmentation accuracy,

with respect to ground truth (i.e., surragate truth) provided by

expert’s manual delineations. Note that we use the term ground

truth and surrogate truth interchangeably. Also, since our analysis

includes only PET images, lesion volume should be regarded as

functional volume only (functional volume is not necessarily

equivalent to the tumor volume). Indeed, true tumor volume can

only be validated with histopathology. While DSC is a measure-

ment of spatial overlap (in percentage) between segmented object

(lesion) and surragate truth (manually delineated lesion by experts),

HD is a shape dissimilarity metric measuring the most mismatched

boundary points between the segmented object and ground truth.

High DSC and low HD values indicate goodness of the image

segmentation method. Furthermore, we also analyzed inter-and

intra-observer variations by DSC overlap ratios, since simple

Figure 3. First row: an example inter-observer variation was
demonstrated in fused PET-CT image (user 1: yellow, user 2:
blue drawings). Second row: an example intra-observer variation was
demonstrated (user 1 time 1: blue, user 1 time 2: red drawings). Third
row: Users drawing (blue) and automatically found (white) boundaries
of uptake regions were demonstrated.
doi:10.1371/journal.pone.0057105.g003

Automated Delineation and Texture Correlations

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e57105



Pearson correlations can be misleading [32] (i.e., segmented

volumes may have the same values although volumes may not

overlap or overlap very little). Two expert radiologists delineated

radiotracer uptake regions in three different time points (one week

between each drawings, and blinded to each other’s drawings).

Each expert’s drawings—in different time points—were used to

compute intra-observer agreement ratios. Table 2 summarizes the

evaluation of segmentation results for the proposed method

compared to mean and individual delineation definitions of

experts, as well as inter- and intra-observer agreements. Evalua-

tion metrics (DSC and HD) are formulated and described in detail

in the Appendix S1.

Exploring Connections among Extracted Features
We integrated all extracted texture, shape, and SUVmax features

into an unsupervised hierarchical clustering algorithm [33]. Our

aim was to explore similarities and dissimilarities of features and to

clarify hidden connections among features that can be integrated

together in order to more accurately predict radiotracer uptake

region morphological properties (without conducting any claim

about clinical utility of these features) such as change in volume

and shape (i.e., morphological characterization). The presence of

clusters in a data set is frequently due to the existence of certain

relationships between measured variables. Moreover, true group

(class) membership is unknown to these variables. We conducted

unsupervised clustering of the measured variables in order to

explore true (or surrogate true) memberships. Euclidean distance

dissimilarity measure with complete leakage method [34] were

used to find highly correlated features and to contain them in

similar clusters. Figure 5 demonstrates correlation analysis of all

feature sets through a correlation matrix (whose column and rows

shows the features), and dendogram graphics (i.e., hierarchical tree

structures) for each feature were integrated into columns and rows

of the correlation matrix. Similarly, we extracted the hierarchical

tree structures only for features that have statistically significant

correlation values with SUVmax values. The resulting clustering

scheme is illustrated in Figure 6. We repeated the same step for

each type of feature separately (run-length, GLCM, etc., as shown

in Figure 5 and 6) to clarify if the features were coming from

significantly different class (membership) or not (from R = 21

(white) to R = 1 (dark blue), Figure 6). In particular, since SUVmax

is the current standard in quantification of uptake regions, we

computed the Pearson correlations of all features with SUVmax,

and we reported only significantly correlating features in Table 3;

however, one may introduce different quantification features to

repeat this task. Among all features having significant correlations

with SUVmax, it is interesting that none of the features share the

Figure 4. An example surface pair obtained from segmented uptake regions (i.e., non-specific mass from lung regions of a
particular patient) is shown. We parameterize the surface (a) of lesion using Euler angles of boundary points, and we colorized the surface points
with respect to those angles in radians (b). This shape information (i.e., circularity) was used in longitudinal assessment of uptake changes.
doi:10.1371/journal.pone.0057105.g004

Table 2. Evaluation of the proposed segmentation methods
(via DSC and HD) and observer agreement ratios are given.

Evaluation Criteria Values

Computer & Observer 1 DSC (%) 84.5063.21

Computer & Observer 2 DSC (%) 87.0160.32

Mean DSC (%) 85.7561.76

Computer & Observer 1 HD (mm) 4.9060.47

Computer & Observer 2 HD (mm) 5.4560.52

Mean HD (mm) 5.1860.50

Inter-observer agreement DSC (%) 77.7366.49

Inter-observer HD(mm) 10.5061.30

Intra-observer agreement DSC (%) 89.8664.23

Intra-observer HD(mm) 3.9061.50

doi:10.1371/journal.pone.0057105.t002
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same cluster that SUVmax occupies, that is, those features are

found to be informative in a semi-quantitative sense like SUVmax

itself. Another potentially important finding, observed in Table 3

and Figure 5, was that the standard deviation (SD) of some

features—most of the GLCM features and some of the run-length

features (i.e., LGRE.SD, GLN.SD, HGRE.SD, etc.)—were

outperforming the features in correlation measurements. Note

that some SD based features are coming from the local approach

that we follow in the feature extraction. In Table 3, compared to

the local approach, we also demonstrated the performance of

global approach for textural analysis where, features were

extracted from the segmented regions, without taking into account

the local variations of the features within the scene. It is evident

with this finding that not only do global heterogeneity of spatial

features provide better associations among features, but local

heterogeneity (SD) of both spatial and shape features also provide

better correlations, as agreed with our initial assumption.

Correlation of Textural, Shape, and SUVmax Features and
Impact on Morphological Change Predictability

In longitudinal measurements of uptake regions, we tested the

prediction power of each extracted texture feature for estimating

morphological changes, including volume and circularity. Since

morphological changes such as volume and shape may represent

Figure 5. Hierarchical clustering is used based on the correlation of all data at hand. A correlation matrix together with clustering (i.e.,
Pearson uncentered) of the feature points is presented from R = 21 negative correlation (white) to R = 1 positive correlation (blue).
doi:10.1371/journal.pone.0057105.g005
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disease severity [5,15], our proposed technique may also be used

in clinical tasks for predicting those morphologic factors using

texture features combined with SUV. However, this requires a

large spectrum of clinical data as well as ground truth from biopsy

samples. In addition, we believe that associations of the image

based features should be revealed before testing the proposed

methodlogy for clinically more involved tasks. Therefore, we

confine ourselves in this section to evaluate image based features

and their prediction power analysis to build (near-) optimal

associations among image features. We used shape features (i.e.,

circularity in particular) as our ground truth to test individual

image features, without entirely relying on SUVmax. In addition,

we also added the feature ‘‘change in volume of radiotracer uptake

regions’’ into our analysis to explore if there was a correlation with

suggested informative features. Table 4 reports the results of an

analysis in which textural and SUVmax features were jointly and

individually considered for possible relation to shape and volume

changes longitudinally. We concluded from the results from

Table 4 that volume change information does not have significant

correlation with SUVmax; however, textural features correlate well

with volume change information. Furthermore, combined SUV-

max and textural features lead to an increase in the correlation

ratios, compared to textural features or SUVmax alone. Textural

features showed superior correlation ratios to SUVmax in all cases.

Figure 7 shows histograms, pair-wise Spearman correlations and

box-plots of selected five best features having the highest

predictability values in patient outcome or changes in uptake

region characteristics (i.e., SUVmax, SD of contrast shade

(CSHADE.SD), entropy, maximum probability (Max.PR), and

SRE). For multiple variable selection and to use them in

Figure 6. Correlation matrix is obtained using only the features, which have strong correlation with SUVmax features. The resultant
correlation values are used in hierarchical clustering algorithm to show the detail relationships of the feature sets. Again correlation values are
running from R = 21 negative correlation (white) to R = 1 positive correlation (blue).
doi:10.1371/journal.pone.0057105.g006
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morphological change prediction, a simple logit transformation

[32] was used so that parameters of the logit transformation were

obtained through maximum likelihood estimation method. In

order to validate both parameters of logit regression and

prediction ability of the combined model, we used a leave one

out cross validation (LOOCV) sampling technique. Circularity

and volume, on the other hand, were combined through a simple

multiplication operation, where lesions having the same volume/

circularity information were differed from each other with circularity/

volume information, respectively. In addition, we found that there is

no significant volume and circularity differences between ground

truth and segmentated lesions as indicated by DSC rates in

Table 2. As earlier mentioned, volume correlation of ground truth

and segmented sets are only meaningful when they are presented

with corresponding DSC rates. Since DSC rates are given in

Table 2, then we conducted a t-test and Pearson correlation test to

find the correlation between volume and circularity measurements

of ground truth and computer based calculation. A high Pearson

correlation value of R = 0.971, p,0.001 and R = 0.955, p,0.001,

for volume and circularity measurements was obtained. Finally, we

also determined that the likelihood of these selected features follow

normal distribution by using the Shapiro-Wilk test [35]. As a result

of this test, entropy and Max.PR features were found to follow a

normal distribution, and the rest did not, as summarized in

Table 5. To show that Max.PR and entropy follows normal

distributions but have significantly different variation, we con-

ducted an F-test [36] between Max.PR and entropy features

(F = 0.3042, 95% Confidence interval = [0.1855 0.4987],

p = 3.98e-6). Note that conclusions about the utility of features

were arrived after LOOCV was conducted for all data as usual in

supervised machine learning techniques. Once the conclusions

were derived with the help of proposed method, for any unseen

baseline features, follow-up morphological changes can be

predicted.

Discussion

18F-FDG-PET imaging demonstrates increased metabolism

with high contrast, but localization of the radiotracer uptake is

limited by low spatial resolution of PET images. Even though the

high contrast between tumor and normal tissue on PET images

could diminish the variability in tumor regions, observer variability

Table 3. Correlation ratios, 95% confidence intervals, and p-values of significantly correlating textural features with SUVmax are
summarized.

Features
Correlation Ratio
(R)– Local Approach

95% Confidence
Interval (CI) [Min and Max] p-value ,0.05

Correlation Ratio
(R)-Global Approach

SRE 20.342 20.540 20.100 0.005 20.146

LRE 20.293 20.500 20.046 0.015 20.125

SRLE 20.292 20.499 20.044 0.016 20.125

LRHGE 0.307 0.067 0.522 0.016 0.131

LRE.SD 20.235 20.452 0.016 0.049 --

GLN.SD 20.282 20.491 20.033 0.019 --

LGRE.SD 20.238 20.454 0.013 0.048 --

HGRE.SD 20.284 20.492 20.035 0.019 --

CIRCULARITY 0.254 0.010 0.479 0.049 20.127

GMRFa1 20.299 20.505 20.052 0.013 20.299

DNS.MAD 20.288 20.496 20.040 0.017 20.288

ACORR 0.323 0.084 0.535 0.011 20.235

CHSADE 0.341 0.104 0.550 0.007 20.247

MAX.PR 20.363 20.556 20.124 0.003 0.264

ENTROPY 0.388*** 0.158 0.588 0.002 20.283

SUM.SQR 0.351 0.115 0.558 0.006 20.255

SUM.AVG 0.324 0.085 0.536 0.011 20.236

SUM.VAR 20.328 20.528 20.084 0.007 20.240

ENERGY 0.358 0.123 0.563 0.005 20.265

ACORR.SD 0.344 0.107 0.552 0.007 --

CSHADE.SD 0.364 0.130 0.568 0.004 --

HOMOG.SD 0.295 0.053 0.512 0.021 --

DiffENTROPY.SD 0.303 0.063 0.519 0.018 --

MAX.PR.SD 0.345 0.109 0.553 0.007 --

ENTROPY.SD 0.360 0.126 0.565 0.005 --

SUM.SQR.SD 0.318 0.079 0.531 0.013 --

SUM.AVG.SD 0.334 0.096 0.544 0.009 --

SUM.VAR.SD 20.319 20.521 20.074 0.008 --

***denotes the highest correlation ratio. Correlation ratios with conventional global approach are also shown in the last column as a comparison to local approach.
doi:10.1371/journal.pone.0057105.t003
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in delineation of tumor is still high with the qualitative use of PET

images. Changing the window level could significantly alter the

apparent volume and tumor shape; therefore, the qualitative

definition of the target volume and well-defined tumor boundaries

using PET images is not straightforward and highly dependent on

the image interpreter.

Figure 7. The selected five best informative features, and their histograms, box-plots with mean and median (diagonal), one-to-one
regression curves in matrix row-column format (in lower panel), and spearman correlation values (in upper panel) are given.
doi:10.1371/journal.pone.0057105.g007

Table 4. Longitudinal assessment of morphological changes of uptake regions through SUVmax, texture, and combined SUVmax

and texture features are given with corresponding spearman coefficients and p-values.

CIRCULARITY Feature Spearman Coefficients p -value

SUVmax 0.2713 0.031

Texture 20.8395 ,2.0e-16

SUVmax & Texture 20.8420 ,2.0e-16

VOLUME SUVmax 20.0587 0.70 (ns)

Texture 0.8652 ,2.0e-16

SUVmax & Texture 0.8715 ,2.0e-16

VOLUME & CIRCULARITY SUVmax 20.0533 0.68 (ns)

Texture 0.8650 ,2.0e-16

SUVmax & Texture 0.8719 ,2.0e-16

Circularity, volume, and combined circularity and volume are used as surrogate truth for morphological change. Prediction abilities of features are summarized with
Spearman rank coefficients. ns indicates non-significant correlation, minus sign indicates reverse relationship.
doi:10.1371/journal.pone.0057105.t004
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Most of the automated abnormal radiotracer uptake delineation

methods—in the tissues—have relied exclusively on thresholding

an absolute PET intensity value. Both inconsistency in radiotracer

uptake among patients and variability of radiotracer uptake in

normal and abnormal tissue, within individual patients, influence

the performance of these automated methods. Furthermore, these

thresholding methods also disregard the ‘‘texture’’ information

obtainable on PET images.

One important aspect of our work is that all of the

segmentation, feature extraction, and statistical inference methods

were based purely on functional PET images. We used this as a

hard constraint to maximize the extracted information, and to use

this information as a base for the possible incorporation of

different information.

Another strong aspect of our feature extraction method is to use

adaptive (in discrete sense) window size. A very similar approach

for data exploration was recently published by Reshef et al [37];

however, there is also a limitation in this strong adaptive feature

extraction method that we proposed here, and similarly in the

study of Reshef et al [37]. That is, there is no guaranteed optimal

window size for feature selection procedure due to resolution

limitation and discreet (and therefore fuzzy) nature of the

images—since we are only able to give near-optimal solution for

window size selection. This is important due to extracting

statistically accurate features from uptake regions, and also

because of the finding that variability among local windows often

carries more valuable information than the extracted feature

themselves. This issue is totally new and subject to further

investigations under different conditions; for example, different

imaging modalities (i.e., MRI and CT) and a variation of SUV

measurements.

In this work, we have not discussed the incorporation of

anatomical information into the PET functional domain, but

rather presented the broad analysis of morphological character-

ization, both in shape and in spatial space. As an extension of this

study, we aim to adapt our feature extraction method to a subject

and modality specific framework, where feature extraction

methods optimally find the subject specific functional and

anatomical information from abnormal regions (i.e., from CT or

MRI scans) and corresponding uptake regions (i.e., from PET

scans) simultaneously.

Conclusions

We presented a framework where we automatically segmented

radiotracer uptake regions in high accuracy. Our findings show

that extracted shape and texture features, as well as SUV

measurements from segmented regions, provide broad analysis

of morphological characterization of functional information. Our

approach produced a unique estimation of morphological features

that can be used alone or together with SUV measurements to

predict longitudinal changes in volume and shape of uptake

regions. We concluded from our experimental results that some of

the textural features such as entropy, maximum probability and

contrast shading information of local spatial regions, short run

emphasis, and variability of these features over different local

windows potentially carry the most valuable, and their predict-

ability of morphological change in uptake regions’ shape and

volume were reported as superior to single intensity based

measurements. Integrating the extracted features with SUV

measurements may improve our ability to understand the

morphological changes of uptake regions over time. We also

highlighted how the accurate segmentation expanded our

understanding of shape information—extracted from uptake

regions—and how well it agreed with the results of landmark

studies [5,15].
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