
Vol. 30 ECCB 2014, pages i379–i385
BIOINFORMATICS doi:10.1093/bioinformatics/btu484

Probabilistic single-individual haplotyping
Volodymyr Kuleshov
Department of Computer Science, Stanford University, Stanford, CA 94305, USA

ABSTRACT

Motivation: Accurate haplotyping—determining from which parent

particular portions of the genome are inherited—is still mostly an un-

resolved problem in genomics. This problem has only recently started

to become tractable, thanks to the development of new long read

sequencing technologies. Here, we introduce ProbHap, a haplotyping

algorithm targeted at such technologies. The main algorithmic idea of

ProbHap is a new dynamic programming algorithm that exactly opti-

mizes a likelihood function specified by a probabilistic graphical model

and which generalizes a popular objective called the minimum error

correction. In addition to being accurate, ProbHap also provides con-

fidence scores at phased positions.

Results: On a standard benchmark dataset, ProbHap makes 11%

fewer errors than current state-of-the-art methods. This accuracy

can be further increased by excluding low-confidence positions, at

the cost of a small drop in haplotype completeness.

Availability: Our source code is freely available at: https://github.com/

kuleshov/ProbHap.

Contact: kuleshov@stanford.edu

1 INTRODUCTION

Although modern sequencing technology has led to rapid ad-

vances in genomics over the past decade, it has largely been

unable to resolve an important aspect of human genetics: gen-

omic phase. Each human chromosome comes in two copies: one

inherited from the mother, and one inherited from the father.

Despite the fact that differences between these copies play an

important biological role, until recently, decoding these differ-

ences (a process known as haplotyping or genome phasing) has

been a major technological challenge.

In recent years, however, we have seen an emergence of new

long read technologies (Kaper et al., 2013; Kitzman et al., 2010;

Peter et al., 2012; Voskoboynik et al., 2013) that may one day

enable routine cost-effective haplotyping. Because a long read

comes from a single chromosome copy, it reveals the phase of

all heterozygous genomic positions that it covers. By connecting

long reads at their overlapping heterozygous positions, it is pos-

sible to extend this phase information into haplotype blocks, in a

process referred to as single-individual haplotyping (SIH)

(Browning and Browning, 2011).
Although from the molecular biology side, routine haplotyp-

ing seems close to becoming a reality, dealing with long read data

remains non-trivial computationally. Under most formulations

of the problem, it is NP-hard to recover the optimal haplotypes

from noisy sequencing reads (Gusfield, 2001). This has led to a

vast literature on heuristics for dealing with this problem as ac-

curately as possible.
Here, we propose a new algorithm, PROBHAP, which offers an

11% improvement in accuracy over the current leading method,

REFHAP. Unlike most other algorithms, PROBHAP also provides

confidence scores in addition to genomic phase. These scores can

be used to prune low-accuracy positions and further improve

haplotype quality, at the cost of phasing fewer variants.

The main algorithmic ideas of PROBHAP are a new dynamic

programming algorithm and a probabilistic graphical model.

The dynamic programming algorithm determines the haplotypes

that maximize the likelihood function Pðreadsjtrue haplotypesÞ

specified by the probabilistic model as well as the probability

that these haplotypes are correct. It can be seen as a special

case of the well-known variable elimination algorithm (Koller

and Friedman, 2009).

From a theoretical point of view, the likelihood function spe-

cified by our probabilistic model generalizes a well-known ob-

jective called the minimum error correction (MEC). Previously

proposed exact dynamic programming algorithms for the MEC

can be easily derived as special cases of the general variable elim-

ination algorithm within our model. More interestingly, alterna-

tive formulations of this algorithm (corresponding to different

variable orderings) result in novel exact algorithms that are sig-

nificantly faster than previous ones. Thus, our work generalizes

several previous approaches and provides a systematic way of

deriving new haplotyping algorithms.

2 RELATED WORK

Most phasing algorithms solve a formally defined computational

problem called SIH, in which the goal is to minimize an objective

called the MEC (see Section 5). This objective is NP-hard

(Gusfield, 2001); therefore, most early work on the SIH problem

involved simple greedy methods (Geraci, 2010). More recently,

these methods have been superseded by more sophisticated heur-

istics such as RefHap (Duitama et al., 2012) or HapCut (Bansal

and Bafna, 2008) that involve solving a Max-Cut problem as a

subroutine. There is also an exact dynamic programming solu-

tion to the SIH problem; its running time is exponential in the

length of the longest read (He et al., 2010).
Several probabilistic approaches have also been previously

proposed, including HASH (Bansal et al., 2008), MixSIH

(Matsumoto and Kiryu, 2013) and an algorithm used for recon-

structing the diploid genome of Ciona intestinalis (Kim et al.,

2007). These methods optimize an objective function similar to

that of PROBHAP using heuristics based on Markov chain Monte

Carlo (MCMC). They differ in the way in which they implement

MCMC. In addition, MixSIH (Matsumoto and Kiryu, 2013) is

to our knowledge the only package that also provides confidence

scores at phased positions.

Probabilistic graphical models are widely used in the statistical

phasing literature to determine haplotypes from a panel of indi-

viduals using linkage disequilibrium patterns. However, the vast

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://github.com/kuleshov/ProbHap
https://github.com/kuleshov/ProbHap
mailto:kuleshov@stanford.edu
[
13, 19, 20, 11]
,
Since
which
[3]
[8]
[14]
[8]
[7]
[6]
[1]
 has been discovered
[9]
[2]
[17]
,
[12]
[17]
XPath error Undefined namespace prefix

majority of statistical methods do not use the partial phase in-
formation provided by long reads, and are not applicable to our
setting. A notable exception is a recent method called Hap-Seq

(He et al., 2012); without its statistical component it reduces to
the well-known exact exponential-time algorithm mentioned
above (He et al., 2010).

Also, there exists an extensive literature on the SIH problem
from the perspective of combinatorial optimization (Lippert

et al., 2002). Research in this field is aimed at optimizing com-
binatorial objectives such as minimum fragment removal, min-
imum SNP removal or MEC. This research is of a more

theoretical nature and aims at providing a rigorous theoretical
understanding of the SIH problem (Lippert et al., 2002).

3 RESULTS

3.1 Overview of PROBHAP

PROBHAP is based on a new exact dynamic programming solu-
tion for the SIH problem, which makes it more accurate than
many existing methods. Its main drawback is a higher computa-

tional cost: its worst-case running time increases exponentially
with the read coverage. Fortunately, modern long read technol-
ogies cover the genome at a relatively low depth (Duitama et al.,

2012; Kitzman et al., 2010), making it possible to apply our al-
gorithm to such data. In cases when the coverage is extremely

high, PROBHAP also uses a preprocessing heuristic to merge simi-
lar reads (see Section 4). In our experience, PROBHAP handles
long read coverages of up to 20�; however, it is not appropriate

for higher coverage short read datasets.
The output of PROBHAP is a set of haplotype blocks in the

format of RefHap and HapCut. In addition, PROBHAP also pro-

duces at each position three confidence scores that can be used to
identify locations where the phasing results are less accurate. The

posterior score represents the probability of correctly determining
the phase of a SNP with respect to the first SNP in the block. The
transition score represents the probability of correctly determin-

ing the phase of a SNP with respect to the previous one. Finally,
the emission score is often helpful in finding sequencing errors

and other issues with the underlying data.
Whenever the transition score is too low, we suggest breaking

the haplotype block at a position. Whenever the posterior or the

emission scores are low, we suggest leaving that position
unphased.

3.2 Comparison methodology

We compared PROBHAP to three state-of-the art algorithms—

RefHap (Duitama et al., 2010), FastHare (Panconesi and
Sozio, 2004) and DGS (Panconesi and Sozio, 2004) as well as
to HapCut (Bansal and Bafna, 2008), a historically important

phasing package, and to MixSIH (Matsumoto and Kiryu, 2013),
the only method that we know that produces confidence scores.

Previous studies (Duitama et al., 2012; Geraci, 2010) have iden-
tified the above methods as being the current state-of-the-art in
single-individual haplotype phasing.

Note that we do not compare our method to HapSeq (He
et al., 2012) because this package additionally uses population-
based statistical phasing techniques to improve accuracy. We

also do not consider previously proposed exact dynamic

programming methods (He et al., 2010), as they do not scale

to long reads: their running time increases exponentially in the

number of variants in a read, and some of the reads in our

datasets have450 variants.
The heuristics we consider work as follows. In brief, FastHare

sorts the input reads, and then traverses this ordering once,

greedily assigning each read to its most probable chromosome

given what has been seen so far. The DGS method is equally

simple: it iterates until convergence between assigning each frag-

ment to its closest chromosome, and recomputing a set of

consensus haplotypes. The RefHap and Hapcut algorithms con-

struct a graph based where each vertex is either associated with a

position (HapCut) or with a sequencing read (RefHap); then, the

algorithms approximately solve a MaxCut problem on this

graph.
We test the above methods on a long read dataset from

HapMap sample NA12878 that was produced using a fosmid-

based technology (Duitama et al., 2012). The long reads have an

average length of �40kb and cover the genome at a depth of

�3�. This dataset is a standard benchmark for SIH algorithms

(Duitama et al., 2012; Matsumoto and Kiryu, 2013) in part

because HapMap sample NA12878 has also been phased mul-

tiple times based on the genomes of its parents. In this work, we

take the trio-phased variant calls from the GATK resource

bundle (DePristo et al., 2011); these provide accurate phase at

1 342 091 heterozygous variants that are also present in the long

read dataset.

We measure performance using the concept of a switch error

(Browning and Browning, 2011). A switch error is said to occur

when the true parental provenance of SNPs on a haplotype

changes with respect to the previous position. For example, if

the true SNP origins of a phased block can be written as MMFF,

then we say there is a switch error at the third position. In this

analysis, we differentiate between two types of switches: a long

switch corresponds to an inversion that lasts for more than one

position (e.g. MMFF); a short switch, on the other hand, affects

only a single position (e.g. MMFM). Switch accuracy is defined

as the number of positions without switch errors, divided by the

number of positions at which such errors could be measured.

Long switch accuracy is defined accordingly in terms of long

switch errors. We also measure accuracy in terms of switches

per megabase (Sw./Mb).
Finally, a block N50 length of x signifies that at least 50% of

all phased SNPs were placed within blocks containing x SNPs or

more. The percentage of SNPs phased was defined as the number

of SNPs in blocks of length two or more, divided by the total

number of SNPs.

3.3 Results

Given comparable phasing rates and N50 block lengths,

PROBHAP produced haplotype blocks with more accurate long-

range phase: the long-range switch error of PROBHAP was 11%

lower than that of the second best algorithm, RefHap (Table 1).

In addition, PROBHAP also produced 6% fewer short switch

errors than RefHap.

Note that long switch accuracy is substantially more import-

ant than short switch accuracy, as it drastically changes the

global structure of haplotypes. Short switch errors, on the

i380

V.Kuleshov

[10]
[9]
[16]
 (MFR)
 (MSR)
,
minimum error correction (
)
[16]
single-individual haplotyping
[13, 6]
-
Methods
X
 —
[5]
[18]
,
[15]
 —
—
[
1]
[17]
[7, 6]
[10]
[
9]
since
more than
[6]
reads
about
p
about
X
single-individual haplotyping
[6, 17]
[
4]
[3]
p

other hand, introduce relatively small amounts of noise in the

data.

3.4 Evaluating confidence scores

In addition to being more accurate, PROBHAP is also one of the

few algorithms which can provide estimates of their accuracy in

the form of confidence scores. As an example of how such scores

might be used, we pruned phased positions that were deemed by

PROBHAP to be uncertain and measured the resulting accuracy.

More specifically, we defined thresholds for each of the three

confidence scores reported by PROBHAP. Whenever the posterior

or emission scores were lower than a threshold, we treated that

position as unphased. Whenever the transition probability was

below a threshold, we split the phased block into two parts at

that position.

Figure 1 shows that after pruning, one obtains phased blocks

that are 30–40% more accurate than the unpruned blocks (recall

that we describe them in Table 1); the price to pay is a drop of

10–25% in N50 and phasing rate. The particular numbers shown

in Figure 1 were achieved by fixing the posterior and transition

cutoffs to 0.6 and 10�5, respectively, and setting the emission

cutoff to 10�5; 10�4; 10�3; 10�2, 0.05, 0.1, 0.4 and 0.99.

Next, we compared the pruned regions from PROBHAP to those

of MixSIH, the only other package that allows the user to ex-

clude low-confidence positions. We chose thresholds so as to

keep either the N50 or the phasing rate constant across both

algorithms, and measured how accuracy varied with the remain-

ing non-fixed parameter. We present the results of our experi-

ment in Figure 2.

Overall, we see that given the same level of haplotype com-

pleteness, the pruned blocks of PROBHAP contain 20–30% fewer

switching errors than those from MixSIH.

3.5 Running time

We measured the running times of the algorithms on a laptop

computer (Table 2). We did not include HapCut in this compari-

son, as it is several orders of magnitude slower that the other

methods (Duitama et al., 2012). Although the three heuristics ran

faster than PROBHAP and MixSIH, a major reason for their speed

was due to not having to compute confidence scores. In fact,

PROBHAP spends roughly two-thirds of its running time

Fig. 2. Comparison of the accuracy/completeness trade-off of PROBHAP

and MixSIH. The top panel compares the trade-off between the N50 and

the phasing accuracy; the phasing rate was the same for both algorithms

at each point. Similarly, the bottom panel examines the phasing rate

trade-off

Fig. 1. Accuracy/completeness trade-off for PROBHAP

Table 1. Comparison of algorithm performance

Algorithm Long sw./Mb Short sw./Mb % phased N50

PROBHAP 1.07 3.70 91.83 227

Refhap 1.20 3.91 91.75 226

FastHare 1.32 4.03 91.76 227

DGS 1.48 4.18 91.66 227

HapCut 1.61 4.93 91.61 227

MixSIH 1.41 5.43 92.64 229

Table 2. Running time of each algorithm on chromosome 22

Refhap FastHare DGS MixSIH PROBHAP

Running time 3.65 s 1.85 s 1.99 s 274.82 s 58.53 s

i381

Probabilistic single-individual haplotyping

one of
s
-
-
,
,
-
[6]

computing such scores. Nonetheless, it phases chromosome 22 in

just under a minute; the total time for phasing a human genome

was under 30 minutes.

4 METHODS

4.1 Notation

Formally, an instance of the SIH problem is defined by a pair of n�m

matrices M, Q, whose columns correspond to heterozygous positions

(indexed by j=1; . . . ;m), and whose rows correspond to reads (indexed

by i=1; . . . ; n). We refer to M as the phasing matrix; its entries take

values in the set f0; 1;�g. These values indicate the allele carried by a

read at a given position: for example, Mij=0 signifies that read i covers

position j and carries allele 0 at j. A value of – indicates that read i did not

cover position j. See Table 3 for an example of a 2� 4 phasing matrix.

The n�m matrix Q 2 ½0; 1�n�m is referred to as the q-score matrix; it

encodes the probability of observing a sequencing error at a given pos-

ition in a read. Such scores are available on virtually all sequencing

platforms.

A solution to an instance of the SIH problem consists of a pair of

vectors h 2 f0; 1gm and r 2 f0; 1gn. The former determines the subject’s

haplotypes: at each genomic position j, it specifies an allele hj 2 f0; 1g. We

consider only one haplotype, as the second is always the complement h of

the first. The second vector r 2 f0; 1gn indicates the true provenance

ri 2 f0; 1g of each read i (i.e. whether i was obtained from the ‘maternal’

or the ‘paternal’ copy; because we do not have information to deter-

mine which copy comes from which parent, we refer to them as 0, 1).

We also use

hjðriÞ=
hj if ri=0

hj if ri=1

(

to denote alleles on the haplotype from which read i originated.

Next, let PoðiÞ=fjjMij 6¼ �g denote the set of positions covered by

read i. Let also Hi=fhjjmin PoðiÞ � j � max PoðiÞg be the set of haplo-

type variables spanned by read i and let Rj=frijmin PoðiÞ �

j � max PoðiÞg be the set of read provenance variables spanning a pos-

ition j. We will use this notation to simplify several expressions through-

out the article. In particular, if position j is spanned by, say, reads 2, 3,

then we will use the notation maxRj
fðRjÞ=maxr2;r3 fðr2; r3Þ andP

Rj
fðRjÞ=

P
r2;r3

fðr2; r3Þ.

4.2 Probabilistic model

We define the probability Pðr; h; oÞ over haplotypes h 2 f0; 1gm, assign-

ments of reads r 2 f0; 1gn and observed data o 2 f0; 1;�gn�m to be a

product of factors

Pðr; h; oÞ=
Yn
i=1

Y
j:j2PoðiÞ

Pðoijjri; hjÞ
Yn
i=1

PðriÞ
Ym
j=1

PðhjÞ;

where

Pðoijjri; hjÞ=
Qij if oij 6¼ hjðriÞ

1�Qij if oij=hjðriÞ

(

is the probability of observing the allele on the j-th position in read i, and

the factors PðriÞ and PðhjÞ are priors that we leave as uniform, except for

Pðh1=0Þ=1. This last choice eliminates the ambiguity stemming from

the fact that a solution h can be always replaced with its complement h; it

resolves this ambiguity by always choosing the solution with h1=0.

Finally, note that the r and h variables are hidden, while the o variables

are observed; the observed values are defined by the matrix M.

The dependency structure of P can be represented in terms of a

Bayesian network whose topology mirrors the two-dimensional structure

of the matrix M. See Figure 3 for the Bayesian network associated with

the phasing matrix in Table 3, which we gave earlier as an example.

4.3 Maximum likelihood haplotypes

We determine maximum-likelihood haplotypes h�=arg maxh log Pðo=

MjhÞ using the belief propagation algorithm, also known as max-sum

message passing over a junction tree (Koller and Friedman, 2009). In

brief, this algorithm involves groups of variables passing each other in-

formation about their most likely assignment; a well-known special case

of this method is the Viterbi algorithm for hidden Markov models

(HMMs).

4.3.1 Definition of max-sum message passing We start by briefly

defining the max-sum message passing algorithm for graphical models.

Readers familiar with the subject may skip this subsection.

DEFINITION 1. Let P be a probability over a set of variables

X=fx1; . . . ; xng that is a product of k factors P=
Yk

i=1
�iðXiÞ, with

each factor �i being defined over a subset of variables Xi � X. A junction

tree T over P is a tree whose set of nodes is a family of subsets

C=fC1; . . . ;Cmg, with Cj � X and that satisfies the following properties:

(1) For each factor �i, there is a cluster c(i) such that Xi � CcðiÞ.

(2) (Running intersection) If x 2 Ci and x 2 Cj, then x 2 Ck for all Ck

on the unique path from Ci to Cj in T.

Given this definition, we now define max-sum message passing. We

restrict our definition to the case when the junction tree T is a path, which

is going to be the case for our model.

DEFINITION 2. Let P be a probability distribution as in Definition 1. Let T

be a junction tree over clusters Cj for j=1; . . . ;m connected into a path and

ordered by j, with Cm serving as the root. The max-sum message from Cj to

Cj+1 is a function Mj defined over the variables in Cj \ Cj+1 as

MjðCj \ Cj+1Þ= max
CjnCj+1

X
i:cðiÞ=j

log �iðXiÞ+Mj�1ðCj�1 \ CjÞ

 !
;

with the additional definition that M0 	 0.

The max-sum message passing algorithm recursively computes the

above messages and determines that max XPðXÞ is

max
Cm

X
i:cðiÞ=m

log �iðXiÞ+Mm�1ðCm�1 \ CmÞ

 !
:

The actual assignment that maximizes P can be found by storing the

variable assignments that maximize each Mj. Unfortunately, proving

the correctness of this algorithm is beyond the scope of this article. For

a complete discussion that holds for arbitrary junction trees, we refer the

reader to a textbook on graphical models (Koller and Friedman, 2009).

Table 3. Example of a 2� 4 phasing matrix M, in which two reads cover

three positions each

1 2 3 4

Read 1 0 1 0 –

Read 2 – 1 0 0

i382

V.Kuleshov

``
''
``
''
since
'
paper
[14]
Definition 2.
paper
[14]

4.3.2 Applying max-sum message passing to the PROBHAP

model We now define how the max-sum message passing algorithm

is applied to the graphical model we defined in Section 4.2.

DEFINITION 3. Let T be a junction tree for P defined by clusters

Cj=fri; hj; oijjmin PoðiÞ � j � max PoðiÞg

for j=1; . . . ;m connected into a path ordered by j, with Cm serving as the

root.

Each cluster Cj contains hj and all the oij and ri variables associated

with reads that span across position j. For an example of one such cluster,

see Figure 3.

LEMMA 1. The tree T in Definition 3 is a valid junction tree for the distri-

bution P defined in Section 4.2.

PROOF. It is easy to check that the scope of each factor of P is in a unique

cluster. We therefore focus on proving that T has the running intersection

property.

Let Cx, Cy be two clusters in T with x � y, and let Cz be a cluster on

the path between Cx and Cy. Because T is a path, we must have

x � z � y. We need to show that Cy \ Cx � Cz.

Observe that by construction Cy \ Cx can only contain r-variables. Let

rl 2 Cy \ Cx be one such variable. We need to show that rl 2 Cz, i.e. that

min PoðlÞ � z � max PoðlÞ.

From rl 2 Cy \ Cx, we have that PoðlÞ � y � x � max PoðlÞ. Because

we also have x � z � y, our claim follows. �

Now let Rj\j+1=Rj \ Rj+1 and Rjnj+1=RjnRj+1. The interested

reader may verify that the message from cluster j to cluster j+1

during a run of max-sum message passing with Cm as the root of T

equals for j41,

MjðRj\j+1Þ =max
hj

max
Rjnj+1

X
i:ri2Rj

log Pðoijjri; hjÞ+Mj�1ðRj�1\jÞ

0
@

1
A; ð1Þ

and for j=1, M1ðR1\2Þ=max R1n2

X
i:ri2C1

log Pðoi1jri; h1=0Þ
� �

. Note

that we disregard the priors PðriÞ; PðhjÞ in all messages except the first

because they are uniform.

Intuitively, MðRj\j+1Þ represents the maximum likelihood of the data

at positions 1; . . . ; j assuming that reads spanning both j and j+1 have

provenances specified by Rj\j+1. The maximum of P is computed using

the recursion

max
hm

max
Rm

X
i:ri2Rm

log Pðoimjri; hmÞ+Mm�1ðRm�1\mÞ

 !
:

4.3.3 Running time The above algorithm computes one message for

each of m. A message specifies a value for each assignment of variables

in Rj\j+1; this value is the maximum over all assignments to hj and to

Rjnj+1, and for each such assignment, we need to compute
P

i:ri2Rj
log P

ðoijjri; hjÞ in OðjRjjÞ time. Therefore, computing a message requires jRjj

�2� 2jRj\j+1j � 2jRjnj+1 j=jRjj2
jRj j+1 iterations. Thus, the total running

time of the algorithm is Oðm�2�+1Þ, where �=maxjjRjj is the maximal

coverage across all the positions.

4.4 Confidence scores

Next, we turn our attention to deriving confidence estimates for genomic

regions. As an example of why such estimates are useful, we show in

Table 4 that, somewhat counter-intuitively, two SNPs may be unphased

even when they are connected by accurate reads.

4.4.1 Motivating example In Table 4, the data contains sequencing

errors at position 3 or 4. If the error occurs at position 3 (in either row),

then the two reads come from the same haplotype and the correct solu-

tion is h=00000. If, on the other hand, the error occurs at position 4,

then the two reads come from different chromosomes and the true haplo-

type is h=00111. If the quality scores are the same at all positions, the

four errors are equally likely, and the haplotypes h=00000, h=00111

have the same probability.

Simple optimization-based algorithms would likely produce a single

haplotype in the above example; our probabilistic model, however, would

assign a transition probability of 0.5 to position 3.

4.4.2 Dynamic programming recursion We again perform probabil-

istic inference in our model using belief propagation. Our particular im-

plementation of this method is inspired by the sum-product message

passing algorithm (Koller and Friedman, 2009) over the previously

defined junction tree T. In sum-product message passing, clusters of vari-

ables pass to each other information about their local probability distri-

bution; after two rounds of message passing (referred to as ‘forwards’ and

‘backwards’), the clusters become calibrated and can be queried for vari-

ous probabilities. A well-known special case of this method is the for-

wards–backwards algorithm for HMMs.

More concretely, we compute for each node j two factors, F½hj;Rj� and

B½hj;Rj�, using the dynamic programming recursions below.

F½hj;Rj�

=
X
hj�1

X
Rj�1�Rj

F½hj�1;Rj�1�PðOjjhj;RjÞPðRjÞPðhjÞ
ð2Þ

B½hj;Rj�

=
X
hj+1

X
Rj+1�Rj

B½hj+1Rj+1�PðOj+1jhj+1;Rj+1ÞPðRj+1ÞPðhj+1Þ
ð3Þ

The notation Rj�Rj�1 indicates that the ri variables common to both Rj

and Rj�1 have been assigned the same value, and PðOjjhj;RjÞ is short-

hand for
Q

i:ri2Rj
Pðoijjri; hjÞ. It follows from our definition of the prior

h1 h2 h3 h4

o11 o21 o31r1

r2 o22 o32 o42

Fig. 3. Bayesian network associated with the problem instance defined in

Table 3. The shaded nodes represent hidden variables; unshaded variables

are observed. Variables belonging to cluster C3 of the associated junction

tree are shown in bold

Table 4. Example of a sequencing error that confounds the long-range

structure of the haplotypes

1 2 3 4 5

Read 1 0 0 1 0 –

Read 2 – – 0 0 0

Note. If the quality scores are the same at all positions, the haplotypes h=00000,

h=00111 have the same probability.

i383

Probabilistic single-individual haplotyping

Since
 ▪
very
[14]
-
``
''
``
''
-
:

Pðh1Þ that the initial values equal F½h1=0;R1�=PðR1Þ and

F½h1=1;R1�=0; in addition, B½hm;Rm�=1.

It is easy to show by induction that

F½hj;Rj�=PðO1:j; hj;RjÞ ð4Þ

B½hj;Rj�=PðOj+1:mjhj;RjÞ; ð5Þ

where Ok:l=foijjk � j � lg.

4.4.3 Computing confidence probabilities From (4), (5), we can

now easily compute confidence scores. One such score is the posterior

probability PðhjjO1:mÞ. It represents the probability that hj was deter-

mined correctly with respect to h1 and can be computed as

PðhjjO1:mÞ=
P

Rj
Pðhj;Rjjo1:mÞ, where

Pðhj;RjjO1:mÞ=PðO1:j; hj;RjÞPðOj+1:mjhj;RjÞ=PðO1:mÞ:

Next, the transition probability Pðhjjhj�1;O1:mÞ represents the prob-

ability of consecutive SNPs being phased correctly; it can be used to

detect potential errors like the one shown in Table 4. We compute this

value using the identity Pðhjjhj�1;O1:mÞ=Pðhj; hj�1jO1:mÞ=Pðhj�1jO1:mÞ,

where the denominator is the posterior probability and the numerator

is computed as

Pðhj; hj�1jO1:mÞ=

P
Rj;Rj�1

Pðhj; hj�1;Rj;Rj�1;O1:mÞ

PðO1:mÞ

=

P
hj;Rj

PðOj+1:mjhj;RjÞTðhj;Rj;OjÞ

PðO1:mÞ
;

where

Tðhj;Rj;OjÞ=
X

hj�1;Rj�1

PðOjjhj;RjÞPðhjÞPðRjÞPðO1:j; hj;RjÞ

Additionally, we found that the emission probability PðOjjhjRjÞ was

useful in detecting errors in the data. Computing this value only involves

the expression PðOjjhjRjÞ=
Q

i:j2PoðiÞ Pðoijjri; hjÞ.

Finally, note that in general, one can compute any set of probabilities

Pðhkjhl;O1:mÞ in the model. However, this involves doing potentially up

to a full run of message passing.

4.5 A merging heuristic

The exact dynamic programming algorithm described above is practical

for coverages of up to 10–12�. For deeper or for highly uneven cover-

ages, we propose a simple preprocessing heuristic. The heuristic consists

in reducing the coverage by repeatedly merging reads that are likely to

come from the same haplotypes until there are no reads that we can

confidently merge.

To determine whether to merge reads k, l, we consider the ratioQ
j2PoðkÞ\PoðlÞ Pðokj; 0; 0ÞPðolj; 1; 0Þ+Pðokj; 1; 0ÞPðolj; 0; 0Þ

� �
Q

j2PoðkÞ\PoðlÞ Pðokj; 0; 0ÞPðolj; 0; 0Þ+Pðokj; 1; 0ÞPðolj; 1; 0Þ
� � ; ð6Þ

where Pðokj;x; yÞ is shorthand for Pðokj; rk=x; hj=yÞ. Intuitively, the

denominator is associated with the likelihood that the two reads come

from the same haplotype and the numerator is associated with the like-

lihood that the reads’ origins are different. Both terms are estimated by a

heuristic formula that decomposes over each position. If reads k, l are

merged, then position j of the resulting new read is assigned the allele that

has the highest q-score in the initial reads k, l (i.e. arg maxk;lfQkj;Qljg);

the q-score at that position is set to the difference of the initial reads’

q-scores (i.e. jQkj �Qljj).

In practice, one may select a confidence threshold for (6) and only

merge reads that are below this threshold. We found empirically a

value of 1� 10�9 to work well.

4.6 A post-processing heuristic

In addition, PROBHAP admits an extra post-processing heuristic for ad-

justing the optimal haplotypes h�. This heuristic was initially proposed for

the algorithm RefHap; PROBHAP currently uses it by default, although it

can be disabled. The heuristic starts with the optimal read assignments r�

and determines at each position j a pair of sets

Sj;0=fijðri=0 \Mij=0Þ [ðri=1 \Mij=1Þg

Sj;1=fijðri=0 \Mij=1Þ [ðri=1 \Mij=0Þg:

It then outputs a new haplotype hnew defined as

hnewj =

0 if jSj;0j4jSj;1j

1 if jSj;0j5jSj;1j

� otherwise:

8>><
>>:

We found that this heuristic increases the short switch accuracy of

PROBHAP on the NA12878 dataset; the long switch accuracy remains

the same. We suggest using this heuristic in settings where the quality

scores may not be well calibrated.

5 DISCUSSION: THEORETICAL ASPECTS

Interestingly, the probabilistic framework of PROBHAP general-

izes the SIH formalism on which most existing methods are based.

This allows us to easily derive well-known exact dynamic pro-

gramming algorithms as special cases of the variable elimination

algorithm for graphical models. More interestingly, the variable

elimination algorithm with different variable orderings results in

novel exact algorithms that are far more efficient than existing

ones.

5.1 Generalizing the SIH framework

In its standard formulation, the SIH problem consists in finding a

haplotype h that minimizes the MEC criterion:

MECðh;MÞ

=
Xn
i=1

min
X

j:j2PoðiÞ

IðMij=hjÞ;
X

j:j2PoðiÞ

IðMij=hjÞ

" #
;

where I : fTrue;Falseg ! f0; 1g is the indicator function, and the

remaining notation is the same as defined in the Section 4. The

MEC measures the total number of positions within all the reads

that need to be corrected to make the reads consistent with a

haplotype h.
It is easy to show that the MEC objective can be recovered as a

special case of our framework. Indeed, if we define the factors

�ðoij; ri; hjÞ (which we have previously set to Pðoijjri; hjÞ) in a way

that

�ðoij; ri; hjÞ=
exp ð1Þ if oij 6¼ hjðriÞ

exp ð0Þ if oij=hjðriÞ;

(

then log PðM; r; hÞ equals MEC(h,M), although P is no longer a

probability.
Thus, our dynamic programming algorithms can also produce

exact solutions to the MEC objective, and just as interestingly,

they can produce confidence probabilities associated with the

MEC.

i384

V.Kuleshov

-
X
-
minimum error correction (
)
Methods s

5.2 Rederiving existing SIH algorithms

Interestingly, we can easily recover an existing dynamic program-

ming algorithm (He et al., 2010) for the MEC as a special case
of variable elimination in our graphical model. Indeed, con-
sider the junction tree defined by n variable clusters
Ci=fri; hj; oijj j 2 PoðiÞg connected into a path ordered by i. If

we assume for simplicity that the data have no contained reads,
then the message from cluster i – 1 to cluster i during a run of
max-sum message passing with Cn as the junction tree root

equals precisely

MðHi\i+1Þ=max
ri

max
Hini+1

X
j:hj2Hi

log Pðoijjri; hjÞ+MðHi�1\iÞ

0
@

1
A;
ð7Þ

where Hi\i+1=Hi \Hi+1 and Hini+1=HinHi+1. This is essen-
tially the well-known dynamic programming recursion (He et al.,

2010) we were looking to find.
Unfortunately, the time to compute the above recursion in-

creases exponentially in the length of the reads, which is precisely

the data we want to use for phasing.

5.3 Deriving novel SIH algorithms

Fortunately, as we have seen, we can derive from our framework
exact algorithms that are suitable for long read data.

Interestingly, these methods are in a sense dual to equation (7):
the structure of the probabilistic model P is entirely symmetric in
r, h. If we reverse h and r in Section 4, we obtain recursion (7).

Potentially, our framework allows deriving other exact algo-
rithms by defining alternative junction trees for the max-sum
message passing algorithm. One way to do this involves using
minimizing their tree-width using some well-known heuristics

(Koller and Friedman, 2009). Because the running time max-
sum message passing is exponential in the tree-width of a junc-
tion tree, this would lead to much faster running times.

6 CONCLUSION

In summary, we have introduced a new single-individual phasing
algorithm, PROBHAP, that offers an 11% improvement in accur-

acy over the current state-of-the-art method, RefHap. In add-
ition, it is one of the only methods to provide the user with
confidence scores at every position; these confidence scores can

be used to prune positions whose phase is uncertain and thus
substantially increase the overall accuracy.
The advances behind PROBHAP are made possible by framing

the phasing problem within a probabilistic graphical models
framework. This framework makes it particularly easy to
reason about the problem; in fact, all our algorithms are special
cases of standard procedures for optimizing graphical models.

On the theoretical side, this work generalizes the MEC criter-
ion used by existing methods. Our approach allows us to obtain
existing algorithms as special cases of well-known optimization

procedures, and also easily derive new, more efficient algorithms;

it may thus serve as a foundation for further algorithmic insights.

ACKNOWLEDGEMENT

We thank Sivan Berovici for important suggestions regarding the

model definition, as well as Dmitry Pushkarev and Michael

Kertesz for helpful discussions. This research was partly done

at Moleculo Inc.

Funding: This work was partly funded by NIH/NHGRI grant

T32 HG000044.

Conflict of Interest: none declared.

REFERENCES

Bansal,V. and Bafna,V. (2008) HapCUT: an efficient and accurate algorithm for the

haplotype assembly problem. Bioinformatics, 24, i153–i159.

Bansal,V. et al. (2008) An MCMC algorithm for haplotype assembly from whole-

genome sequence data. Genome Res., 18, 1336–1346.

Browning,S.R. and Browning,B.L. (2011) Haplotype phasing: existing methods and

new developments. Nat. Rev. Genet., 12, 703–714.

DePristo,M.A. et al. (2011) A framework for variation discovery and genotyping

using next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

Duitama,J. et al. (2010) ReFHap: a reliable and fast algorithm for single individual

haplotyping. In: Proceedings of the First ACM International Conference on

Bioinformatics and Computational Biology. ACM, New York, NY, USA,

pp. 160–169.

Duitama,J. et al. (2012) Fosmid-based whole genome haplotyping of a HapMap

trio child: evaluation of Single Individual Haplotyping techniques. Nucleic Acids

Res., 40, 2041–2053.

Geraci,F. (2010) A comparison of several algorithms for the single individual SNP

haplotyping reconstruction problem. Bioinformatics, 26, 2217–2225.

Gusfield,D. (2001) Inference of haplotypes from samples of diploid populations:

complexity and algorithms. J. Comput. Biol., 8, 305–323.

He,D. et al. (2010) Optimal algorithms for haplotype assembly from whole-genome

sequence data. Bioinformatics, 26, i183–i190.

He,D. et al. (2012) Hap-seq: an optimal algorithm for haplotype phasing with im-

putation using sequencing data. In: RECOMB’12: Proceedings of the 16th

Annual international conference on Research in Computational Molecular

Biology. Springer-Verlag, Berlin.

Kaper,F. et al. (2013) Whole-genome haplotyping by dilution, amplification, and

sequencing. Proc. Natl Acad. Sci. USA, 110, 5552–5557.

Kim,J.H. et al. (2007) Diploid genome reconstruction of Ciona intestinalis and

comparative analysis with Ciona savignyi. Genome Res., 17, 1101–1110.

Kitzman,J.O. et al. (2010) Haplotype-resolved genome sequencing of a Gujarati

Indian individual. Nat. Biotechnol., 29, 59–63.

Koller,D. and Friedman,N. (2009) Probabilistic Graphical Models: Principles and

Techniques - Adaptive Computation and Machine Learning. The MIT Press,

Cambridge, MA.

Lippert,R. et al. (2002) Algorithmic strategies for the single nucleotide polymorph-

ism haplotype assembly problem. Brief. Bioinformatics, 3, 23–31.

Matsumoto,H. and Kiryu,H. (2013) MixSIH: a mixture model for single individual

haplotyping. BMC Genomics, 14 (Suppl. 2), S5.

Panconesi,A. and Sozio,M. (2004) Fast hare: a fast heuristic for single individual

snp haplotype reconstruction. In: Jonassen,I. and Kim,J. (eds) Algorithms in

Bioinformatics. Springer, Berlin Heidelberg, pp. 266–277.

Peters,B.A. et al. (2012) Accurate whole-genome sequencing and haplotyping from

10 to 20 human cells. Nature, 487, 190–195.

Voskoboynik,A. et al. (2013) The genome sequence of the colonial chordate,

Botryllus schlosseri. eLife, 2, e00569.

i385

Probabilistic single-individual haplotyping

[9]
s
--
[9]
the Methods
[14]
Since
,

