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Background. Osteoporosis is characterized by low bone mass, deterioration of bone tissue structure, and susceptibility to fracture.
New and more suitable therapeutic targets need to be discovered.Methods. We collected osteoporosis-related datasets (GSE56815,
GSE99624, and GSE63446). The methylation markers were obtained by differential analysis. Degree, DMNC, MCC, and MNC
plug-ins were used to screen the important methylation markers in PPI network, then enrichment analysis was performed. ROC
curve was used to evaluate the diagnostic effect of osteoporosis. In addition, we evaluated the difference in immune cell
infiltration between osteoporotic patients and control by ssGSEA. Finally, differential miRNAs in osteoporosis were used to
predict the regulators of key methylation markers. Results. A total of 2351 differentially expressed genes and 5246 differentially
methylated positions were obtained between osteoporotic patients and controls. We identified 19 methylation markers by PPI
network. They were mainly involved in biological functions and signaling pathways such as apoptosis and immune
inflammation. HIST1H3G, MAP3K5, NOP2, OXA1L, and ZFPM2 with higher AUC values were considered key methylation
markers. There were significant differences in immune cell infiltration between osteoporotic patients and controls, especially
dendritic cells and natural killer cells. The correlation between MAP3K5 and immune cells was high, and its differential
expression was also validated by other two datasets. In addition, NOP2 was predicted to be regulated by differentially expressed
hsa-miR-3130-5p. Conclusion. Our efforts aim to provide new methylation markers as therapeutic targets for osteoporosis to
better treat osteoporosis in the future.

1. Introduction

Osteoporosis is defined as a systemic skeletal disease charac-
terized by reduced bone density and deterioration of bone
tissue microstructure, resulting in increased bone fragility
and sensitivity to fracture [1]. The clinical definition of oste-
oporosis is that the bone mineral density (BMD) measured
by dual-energy X-ray absorptiometry (DEXA) is below the
average level in young people [2]. In the absence of effective
treatment, as many as one in every two Americans over the
age of 50 will develop osteoporosis by 2020 [3]. In Italy,
approximately 3.5 million women and 1 million men suffer
from osteoporosis [4]. The number of fractures worldwide
is expected to double in the coming decades and even by

2040 [5]. The high social and personal costs incurred by
osteoporosis pose a challenge to public health and physicians,
especially because most patients with osteoporosis remain
untreated. This has prompted researchers to develop new
diagnostic markers and therapeutic targets for osteoporosis
in recent years.

Osteoporosis is caused by an imbalance in bone
remodeling. To maintain bone homeostasis, the functions
of osteoblasts and osteoclasts are coordinated by a variety
of molecules [6]. Studies have shown that the spontaneous
increase of proinflammatory cytokines such as interleukin-
(IL-) 6, tumor necrosis factor alpha, and osteoclasts enhance
the ability of osteoclasts to absorb bone, thus promoting the
occurrence of osteoporosis [7, 8]. It has also been observed
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clinically that the degree of osteoporosis corresponds to the
degree of inflammation [9]. Many factors interact, and each
gene also plays an important role [10, 11].

microRNAs (miRNAs) are a superfamily of small mole-
cules (22 nucleotides), single-stranded noncoding RNAs
[12]. Due to the advancement of high-throughput sequenc-
ing technology, more and more new miRNAs have been
found to be associated with osteoporosis [13, 14]. miRNAs
participate in osteoporosis research by regulating target
genes [15]. On the other hand, some gene methylation is
also associated with osteoporosis [16]. Studies speculate
that methylation modification of genes in osteoporotic
patients may be a compensatory mechanism to combat
osteoporosis-related bone loss [17]. So far, large numbers
of differential methylated CPGs associated with BMD have
been identified in bone specimens with large bone density
differences [18].

However, the pathogenesis of osteoporosis is still com-
plex and has not been fully elucidated. Multiomics data can
provide a clearer and more comprehensive understanding
of the pathogenesis of osteoporosis. In this study, we attempt
to study the molecular mechanism of osteoporosis through
sequencing data by using bioinformatics methods. It aims
to reveal potential therapeutic targets.

2. Materials and Methods

2.1. Data Sources. The sequencing datasets were collected
from the gene expression omnibus (GEO) database. We
screened the osteoporosis related datasets with a sample size
greater than 10. GSE56815 included gene expression profil-
ing of circulating monocytes from 40 extremely high and
40 extremely low hip bone mineral density (BMD) subjects.
GSE62402 included transcriptome gene expression of
peripheral blood monocytes from 5 low BMD to 5 high
BMD subjects. GSE13850 included gene expression profiling
of B cells was isolated from 10 low BMD to 10 high BMD
patients. All the expression data had been preprocessed using
RMA (robust multiarray average) normalization. GSE99624
included methylation profiling of whole peripheral blood
from 32 primary osteoporotic patients and 16 control
individuals. Data were normalized with internal controls
according to standard procedures of Illumina. Methylation
level at each locus was calculated with the GenomeStudio
Methylation module as beta-value (ranging from 0 to 1).
GSE63446 included microRNA profiling of 10 samples.
miRNA QC Tool software was used for data summarization,
normalization, and quality control.

2.2. Analysis of Differentially Expressed Genes and
Methylation Position. The differentially expressed genes were
obtained from high and low BMD subjects through the
limma R software package. The differentially methylation
positions were obtained by chAMP software package. The P
value < 0.05 as threshold for nominally significant differential
expression. Gene expression and methylation were in oppo-
site directions and were considered methylation markers
which regulated by methylation.

2.3. Protein-Protein Interaction Network. The protein-
protein interaction (PPI) network was constructed by
putting methylation markers into the Search Tool for the
Retrieval of Interacting Genes (STRING) (https://string-db
.org) [19]. Important methylation markers were obtained
through Degree, DMNC, MCC, and MNC plug-ins of
Cytoscape, respectively.

2.4. Enrichment Analysis. The enrichment analysis of gene
ontology (GO) functional analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis was per-
formed for important methylationmarkers by the clusterPro-
file R software package [20]. The cellular component (CC),
biological process (BP), and molecular function (MF) terms
were included in GO analysis. Gene Set Enrichment Analysis
(GSEA) of genes in osteoporosis and control was carried out
by the clusterProfile R software package. The P value < 0.05
was considered to indicate a statistically significant difference.

2.5. Infiltration of Immune Cells. The marker gene set for
immune cell types was obtained from Bindea et al. [21].
Single-Sample Gene Set Enrichment Analysis (ssGSEA) pro-
gram was used to quantify the infiltration levels of immune
cell types. The ssGSEA applies gene signatures expressed by
immune cell populations to individual samples.

2.6. Recognition of miRNA Regulation. An integrative
retrieval from TargetScan, a miRNA-target interaction
(MTI) database, was applied to search for experimentally
validated target miRNAs of key methylation markers. The
predicted miRNAs were intersected with differentially
expressed miRNAs to obtain regulatory factors that regulate
key methylation markers.

3. Results

3.1. Differentially Expressed Genes and Methylation Position
in Osteoporosis. By comparing the differentially expressed
genes (DEGs) between osteoporotic patients and controls,
we obtained 2351 statistically significant DEGs (Figure 1(a)).
These included 1594 upregulated DEGs and 757 downregu-
lated DEGs (Figure 1(b)). The DEGs may be involved in the
disease process of osteoporosis. On the other hand, we com-
pared changes in methylation levels in osteoporotic patients.
A total of 5246 differentially methylation positions (DMPs)
were found in osteoporotic patients compared with controls
(Figure 1(c)). Methylation occurs in a larger proportion at
the position of chr1 (Figure 1(d)). Genes whose methylation
levels were in opposite directions to those of gene expression
levels were considered methylation marks. By comparing
DEGs and DMPs, we found 247 genes identified as methyla-
tion marks with this property (Figure 1(e)).

3.2. Identification of Key Methylation Markers. To further
identify key methylation markers, we put 247 genes into the
PPI network. Important methylation markers were obtained
through Degree, DMNC, MCC, and MNC in Cytoscape,
respectively (Figure 2(a), Figure S1). Taking their
intersecting genes, we identified 19 methylation markers
(Figure 2(b)). Among them, HIST1H3G, MAP3K5, NOP2,
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Figure 1: Continued.
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OXA1L, and ZFPM2 had AUC values greater than 0.7 were
considered key methylation markers (Figure 2(c)).
Compared with the control group, HIST1H3G, NOP2,
OXA1L, and ZFPM2 were upregulated in osteoporosis, and
MAP3K5 was downregulated (Figure 2(d)).

3.3. Functional Enrichment of Methylation Markers. Enrich-
ment analysis revealed that 19 methylation markers were
significantly involved in biological processes (BP), cell
composition (CC), molecular function (MF), and KEGG
pathways. It mainly included the upregulated signal trans-
duction by p53 class mediator, and interleukin-7-mediated
signaling pathway, and the downregulated response to vita-
min D (Figure 3(a)). Enrichment results of KEGG showed
that methylation markers were mainly enriched in the
MAPK signaling pathway and Neurotrophin signaling path-
way (Figure 3(b)). In addition, GSEA results showed that
osteoporosis-related methylation markers were significantly
enriched in autoimmune thyroid disease, and steroid
hormone biosynthesis (Figure 3(c)).

3.4. Difference of Immune Infiltration in Osteoporosis.
Compared with the control group, most of the immune cells
infiltrated increased in osteoporosis (Figure 4(a)). Among
them, iDC, NK CD56dim cells, and DC showed the most
significant difference. Differentially infiltrated immune cells
were clustered into four categories and positively or nega-
tively correlated with each other (Figure 4(b)). The positive
correlation between NK CD56brigh cells and NK cells was
the strongest in osteoporosis samples, and that between
Cytotoxic cells and T cells was the strongest in control sam-
ples (Figure 4(c)). Importantly, among the key methylation
markers we identified, MAP3K5 had the strongest correla-
tion with immune cells (Figure 4(d)). The differential expres-
sion of MAP3K5 was also validated by GSE13850 and
GSE62402. In addition, we obtained differentially expressed

miRNAs between osteoporosis and controls, and identified
the regulatory relationship between differentially expressed
hsa-miR-3130-5p and NOP2 by TargetScan (Figure 4(f)).

4. Discussion

In this study, we identified genes modified by methylation
through analyzing gene expression and methylation levels in
osteoporosis patients. Through the PPI network, we screened
the key methylation markers, which were mainly involved in
apoptosis, immune inflammation and other related functions.
Differences in immune cell infiltration showed that innate
immune response was more associated with osteoporosis.

Methylation markers have been acted as biological
markers recently [22, 23]. In this study, we also similarly
found methylation markers involved in the process of osteo-
porosis [24]. We identified 19 important methylation
markers which enriched some important biological functions
and signaling pathways may be associated with osteoporosis.
Stability regulation of p53 plays an important role in osteo-
blast differentiation [25]. At the same time, downregulation
of p53 expression may be a potential marker for drug treat-
ment of osteoporosis [26, 27]. Interleukin-7 (IL-7) is a potent
osteoclast [28]. IL-7 increases bone loss mainly by increasing
T cells produced by RANKL and TNF [29]. Vitamin D and
its active metabolites are important components of the
immune and hormonal systems, not only controlling phos-
phorus and calcium homeostasis but also playing an impor-
tant role in providing a variety of biological effects [30].
Studies have confirmed the importance of maintaining ade-
quate levels of vitamin D to prevent and treat osteoporosis
[31]. Interleukin activates priming signals through mitogen-
activated protein kinase (MAPK), leading to the expression
of proinflammatory cytokines and chemokines, plays a cen-
tral role in bone resorption, leading to osteoporosis [32].
Drugs can also play a role in the treatment of osteoporosis
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Figure 1: Differentially methylation markers of osteoporosis. (a) Thermogram of differentially expressed genes between osteoporosis and
control. (b) The venny map of differentially expressed genes between osteoporosis and control. (c) The difference of methylation position
between osteoporosis and control. (d) The proportion of different methylation position in different chromosomes. (e) Expression and
methylation level of selected methylation markers.
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by inhibiting the activation of the MAPK signaling pathway
[33]. Neurotrophin signaling pathway has also been con-
firmed to be involved in the process of osteoporosis [34].

Among key methylation markers we identified, the
MAP3 kinase-5 (MAP3K5), also known as apoptosis signal-
regulating kinase 1 (ASK1), is a serine/threonine protein
kinase that activates JNK and p38 and induces apoptosis
[35]. Importantly, we validated the differential expression of

MAP3K5 in three sets of data. Consistent with our findings,
NOP2 was identified as a candidate gene associated with
bone mineral density (BMD) [36]. OXA1L is differentially
expressed in estrogen-exposed osteoblasts and is involved
in bone formation [37]. Studies have shown that overexpres-
sion of ZFPM 2 inhibits the differentiation of osteoblasts [38].
We obtained better AUC values for key methylation markers,
whichmay have the ability to differentiate osteoporosis. These
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Figure 2: PPI network of methylation markers. (a) The important genes were screened through degree in Cytoscape. The edge of the node
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results once again confirm that methylation modification is
associated with the occurrence and development of osteopo-
rosis and that intervening modification of gene methylation
may be a potential therapeutic means.

The immune system plays an increasingly important role
in bone pathophysiology, which has led to a new research

field-bone immunology [39]. From the enrichment results,
most methylation markers are involved in the immune
inflammatory response. This was also confirmed in the dif-
ferential results of immune cell infiltration. We found that
iDC, NK CD56dim cells, and DC had increased differential
infiltration in osteoporosis. Bone remodeling is regulated by
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the interaction of osteoclasts and osteoblasts with complex
factors such as immune cells (DCs, etc.) and cytokines [40].
Bone marrow dendritic cells play an important role in
the induction of T cell inflammatory cytokine production,
which may be related to postmenopausal bone loss [41].
Invariant natural killer T cells (iNKT) cells have long-
term effects on bone physiology in osteoporosis patients
and play an important role in bone loss in osteoporosis
patients [42]. This suggests that immune changes in
osteoporotic patients may be the underlying molecular
mechanism of pathogenesis, which may also serve as a
potential therapeutic target.

Like other studies, this study has some limitations. Firstly,
our analytical data are derived from public database with rela-
tively small sample sizes. Second, important analysis results
also require experimental validation of clinical samples.

In conclusion, we conducted a comprehensive bioinfor-
matics analysis and identified a set of target genes poten-
tially relevant for osteoporosis treatment and biological
pathways that may lead to changes in bone density. Our
results reveal valuable insights into the pathogenesis of
osteoporosis and methylation markers that may have a
treatment role. These results will help to provide hypotheses
for future functional studies.
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