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Abstract

Motivation: Cells derived by cellular engineering, i.e. differentiation of induced pluripotent stem

cells and direct lineage reprogramming, carry a tremendous potential for medical applications and

in particular for regenerative therapies. These approaches consist in the definition of lineage-

specific experimental protocols that, by manipulation of a limited number of biological cues—niche

mimicking factors, (in)activation of transcription factors, to name a few—enforce the final

expression of cell-specific (marker) molecules. To date, given the intricate complexity of biological

pathways, these approaches still present imperfect reprogramming fidelity, with uncertain conse-

quences on the functional properties of the resulting cells.

Results: We propose a novel tool eegc to evaluate cellular engineering processes, in a systemic

rather than marker-based fashion, by integrating transcriptome profiling and functional analysis.

Our method clusters genes into categories representing different states of (trans)differentiation

and further performs functional and gene regulatory network analyses for each of the categories of

the engineered cells, thus offering practical indications on the potential lack of the reprogramming

protocol.

Availability and Implementation: eegc R package is released under the GNU General Public License

within the Bioconductor project, freely available at https://bioconductor.org/packages/eegc/.

Contact: christine.nardini.rsrc@gmail.com or hongkang.k.mei@gsk.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the generation of induced pluripotent stem cells (iPSCs) origi-

nally described by Takahashi and Yamanaka (2006), numerous

functional cell types (from epithelial to cardiac to central nervous

system cells) can be obtained by engineered differentiation processes

(Kamao et al., 2014; Lian et al., 2013; Shi et al., 2012). The rapid

development of this technology has been paralleled by research on

lineage conversion (a.k.a. cell-reprogramming) to achieve the con-

version of one cell type (original somatic cell) into another (induced

cell) mimicking a different target primary cell. This was pioneered

by the identification by Davis and colleagues of MyoD, the tran-

scription factor (TF) capable to drive cell conversion from fibroblast

into myoblast (Davis et al., 1987), and further expanded to other

cell lineage conversions with overexpression or ablation of lineage-

specific TFs (Graf and Enver 2009; Xu et al. 2015). The enforced

expression of TFs has been used to drive cell fate conversion either

by direct differentiation from iPSCs or by conversion between cell

lineages, based on the down-regulation of the original cell genes’

expression and up-regulation of target cell gene expression (Ieda

et al., 2010; Xie et al., 2004). Still, incomplete reprogramming
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remains an issue, owing to the persistence of genes of the original

cell or by the silencing of cell-specific genes in the target cells, ulti-

mately leading to immature induced cells (Feng et al., 2008; Marro

et al., 2011; Morris and Daley 2013).

This still challenging issue motivates computational biologists to

work mostly at the improvement of two stages of the reprogram-

ming: (i) better selection of the targets to manipulate and (ii) identifi-

cation of the causes for failure, to modify the input of the

reprograming protocols. As broadly across biology, latest

approaches explore solutions that move from a reductionist to a sys-

temic focus.

For the first stage, after the early manual selection of TFs,

Mogrify has been developed from high-throughput experiments to

predict, from 173 human cell types and 134 tissues, the best candi-

date TFs driving cell fate conversion based on gene expression data

and regulatory network information (Rackham et al., 2016).

Similarly, for the second stage, after the initial comparison of

induced versus target primary cells transcriptional profiles, with a

focus on marker genes—i.e. genes that are highly expressed either in

original somatic or in the target primary cells (Sandler et al., 2014;

Szabo et al., 2010)—attention has been turned to the more extended

and large plethora of genes interconnected and downstream of such

TFs. CellNet (Morris et al., 2014) has been developed to enhance

the estimate of successful cell fate conversion, by analyzing tran-

scriptomics based on gene regulatory network (GRN). However,

CellNet allows input limited to microarray data, quickly being over-

whelmed by more precise RNA-seq data.

Along these lines, we here offer our contribution to the analysis

of incomplete reprogramming: our approach is designed to analyze

gene expression data (from any platform: microarray and RNA-

seq), to isolate the genes that undergo significant expression changes

in the (trans)differentiation process, to then categorize them into

progressive stages of the reprogramming process. Further, it exploits

networks and functional analyses for the evaluation of the success of

the process.

The different stages are designed based on an intuitive dynamic

progression of states from inactive (no change from the original

cell), to insufficient (partial desired (in)activation) to final successful

(in)activation, with the addition of two extreme situations, reverse

(expression opposite to the expected one) and over (beyond the

expected levels of (in)activation). With this characterization and fur-

ther exploration of each of these five classes by functional annota-

tion and systemic GRN analysis, our approach evaluates in a

systemic fashion (affected biological functions and pathways, but

also topologically relevant TFs) the impact of imperfect expression

values (insufficient, inactive, over and reverse) and suggests poten-

tial molecules to be manipulated by the reprogramming process, in

consideration of the usability (functionality) of the induced cells.

2 Materials and methods

2.1 Data
The design of our tool was motivated by the evaluation of the line-

age conversion protocol published by Sandler et al. (2014), where

dermal microvascular endothelial cells (DMEC, original cells) were

reprogrammed to hematopoietic cells with multipotent progenitor

activity (rEC-hMPP, induced cells) via the induction of TFs (FOSB,

GFI1, RUNX1 and SPI1, globally referred to with the acronym

FGRS) and a phenocopy of microenviromental niches, to finally

mimic purified Lin�CD34þ cord blood cells (CB, target cells).

Transcriptomic profiles of the three types of cells (DMEC, rEC-

hMPP and CB) screened by RNA-sequencing and quantified in

FPKM (Fragments Per Kilobase of transcript per Million mapped

reads) were downloaded from GEO with accession number

GSE57662. Genes expressed in less than 40% samples were filtered

out and FPKMs were log2 transformed after adding a pseudo-value

of 2 to avoid infinite values.

2.2 Differential gene identification and

categorization by eegc
Differentially expressed genes (DEGs) are computed in each pair-

wise comparison between the original, induced and target cells

with limma R package (Smyth, 2004). Significance is defined by

fold change�2 and false discovery rate (FDR)�0.01 to correct for

multiple hypothesis testing within each list (omic data). This

choice is adequate to also control the overall error rate descending

from testing three genes lists (see Supplementary Material for

details). DEGs are categorized into five categories and namely:

Inactive, Insufficient and Successful, representing the genes

unchanged, insufficiently changed and successfully modified in the

reprogramming process, respectively. In addition, two more cate-

gories are defined: Reverse, indicating the genes differentially

expressed in a direction opposite to the expected one, and Over for

genes that are overly expressed in the induced cells in comparison

to the target cells. To formally define these categories, we exploit

the patterns that are differential across the three comparisons

(Table 1), with the definition of the expression difference (ED) as

the difference of the gene expression in each comparison and the

ED ratio as the ratio of EDs between two arms. The necessity of

five classes is motivated by the observation that Inactive and

Successful ED ratios are, conveniently, centered around 0 and 1,

however, they cover a relatively wide range of values, with queues

overlapping with the Over and Insufficient categories for

Successful genes, and with Reverse and Insufficient for Inactive

genes (see also Results in Fig. 2 for a graphical output). To gain an

accurate and practical categorization allowing to highlight the

genes that need attention in the engineering process, Inactive and

Successful genes boundaries were set more stringently around the

intuitive peaks of 0 and 1, by shrinking the ED ratio boundaries to

the 5th and 95th quantile of the ED-ranked Successful and Inactive

genes (named operational ranges). In each category, further analy-

sis is done by separating up- from down-regulated genes, leading

to 10 genes categories.

2.3 GO and KEGG functional annotation by eegc
Functional annotation is performed by embedding in eegc the

R package clusterProfiler (Yu et al., 2012) with functional enrich-

ment analyses on gene ontology (GO) (Ashburner et al., 2000) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa

et al., 2012).

2.4 Cell/tissue-specific analysis by eegc
We exploited for this the Gene Enrichment Profiler database (Benita

et al., 2010) containing expression profiles of �12 000 NCBI

GeneID entries across 126 primary human cells/tissues (C/Ts) clus-

tered in 30 groups. The database provides custom enrichment scores

for the genes in the 126 C/Ts. As a consequence, genes are attrib-

uted, with different enrichment scores, to more than one C/T. Thus

we applied the SpeCond R package (Cavalli, 2009) to identify genes

specific unique to the 126 C/Ts. The statistical significance of the tis-

sue specificity was assessed by hypergeometric tests.
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2.5 GRN based evaluation by eegc
From each of the 16 networks defined in CellNet we isolated the C/

T-specific TFs and their corresponding down-stream targets (TGs,

defined in CellNet in 16 C/T-specific GRNs), into 1455 TF-TG gene

sets. The 16 C/T-specific gene sets and the 1455 TF-TG gene sets

were used to generate two types of enrichment analyses: one gene-

based and one TF-based. The first uses directly the 16 C/T gene sets,

to offer an enrichment analysis complementary to the former one

(Section 2.4, based on coherent expression levels) including

regulatory elements that may not share the same expression profile.

The second selects, within each of the 16 C/T-specific TF-TG sets,

only the TFs (hereafter relevant TFs) with: (i) highly significant

enrichment for their C/T (FDR�0.01) and (ii) top (50) betweenness

centrality (Koschutzki and Schreiber, 2008) computed by the igraph

R package (Csaridi and Nepusz, 2006).

2.6 Confirmatory DNA methylation analysis
Based on the interpretation of the results of eegc on Sandler et al.

dataset, an additional, custom, analysis was run to explore the

potential epigenetic causes of the observed cell lineage conversion.

DNA methylation data for hematopoietic progenitor cells in cord

blood (CD34þHPCs), taken as proxies for the target CD cells, were

downloaded from ArrayExpress (www.ebi.ac.uk/arrayexpress) with

accession no. E-MTAB-487, and quantile normalized Beta values

ranging from 0 (unmethylated) to 1 (completely methylated)

(Bocker et al., 2011). The average Beta value was calculated among

the seven HPC samples for each of the 27578 CpG dinucleotides.

Coherence between gene expression and methylation was tested

for each of the 10 gene categories according to the finding that, dur-

ing differentiation, hypomethylation positively correlates with gene

over-expression (Han et al., 2012; 2014). Hypomethylation and

hypermethylation were defined as Beta value ranging from 0 to 0.2

and 0.8 to 1, respectively (Du et al., 2010). Special attention was

given to the 65 vascular and hematopoietic specific genes reported

in Sandler’s paper (Sandler et al., 2014 marker genes) and to the rel-

evant TFs defined in Section 2.5.

3 Results and discussion

3.1 Characterization by gene categories
2770, 3645 and 2003 differentially expressed genes were identified

in the rEC-hMPP to DMEC, CB to DMEC and rEC-hMPP to CB

comparisons, respectively, and classified into the Inactive,

Insufficient, Successful categories in Figure 1A, B and Reverse, Over

categories in Figure 1C, D.

Lineage conversion can be thought of, in general, as a progres-

sive change of expression from original- to target-specific genes and,

for this conversion in particular, as a change towards the up-

Table 1. Gene categorization

Category ED patterns ED ratio Operational ranges

of ED ratio

Regulation pattern from

original cell to target cell
Target, original

(CB, DMEC)

Induced, original

(rEChMPP, DMEC)

Induced, target

(rEChMPP, CB)

Reverse �/� � � <0 Up Reverse.Up

Down Reverse.Down

Over >1 Up Over.Up

Down Over.Down

Inactive � � � �0 (Q5th ED ratio,

Q95th ED ratio)

(�0.39, 0.50)

Up Inactive.Up

Down Inactive.Down

Insufficient � � � 0�1 Up Insufficient.Up

Down Insufficient.Down

Successful � � � �1 (Q5th ED ratio,

Q95th ED ratio)

(0.28, 1.31)

Up Successful.Up

Down Successful.Down

Results of the pair-wise comparisons among original (DMEC), induced (rEChMPP) and target (CB) cells were classified into five categories named Reverse,

Over, Inactive, Insufficient and Successful based on ED patterns and ED ratios. Each category is separated into Up and Down (expression variation).

Note: � represents differential,� represents non-differential states identified by limma gene expression differential analysis. Values in italics and parenthesis

indicate the specific boundaries values in our exemplar analysis (see Results).
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Fig. 1. Expression profile (FPKM in log2 scale) of (A, C) the original endothelial

cells (DMEC) versus CB target cells and of (B, D) the induced rEC-hMPPs ver-

sus CB, Each gene category is fitted to a linear model. Successful genes

changed the Pearson’s correlation from �0.071 between DEMC and CB to

0.898 between rEC-hMPP and CB, while Inactive genes showed virtually no

change of correlation from 0.140 to 0.208, Insufficient genes went from

�0.626 to 0.233. The Reverse genes reduced the correlation from 0.741

(between DMEC and CB) to 0.275 (between rEC-hMPP to CB) and Over genes

presented a slightly change in correlation from 0.723 to 0.708
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regulation of hematopoietic genes (target cells specific) and down-

regulation of endothelial cells (original cells specific).

Based on the expression profiles of the vascular and

hematopoietic marker genes only (hierarchical clustering, Pearson’s

correlation, Sandler et al., 2014), it can be concluded that rEC-

hMPPs are closer to the CBs target cell than the DMEC original cell.

However, a different perspective, based on Pearson’s correlation

measurement of all differential genes (across the five categories),

helps understanding the imperfect final result of this experiment, as

it highlights that not all the marker genes are successfully induced

(Supplementary Table S1), in particular, some hematopoietic (TEK,

SOX17, ECE1, ENG) and vascular (JUNB, KLF2) markers did not

reach the expected expression level (Insufficient), and other were

dis-regulated, such as ETS1 and F13A1 in the Over and Reversed

categories.

To offer additional insight into the success of the cellular engi-

neering process, we calculated and compared the proportions of

genes in each category among all the categorized genes with the

assumption that a high proportion of Successful genes would reflect

a better (trans)differentiation. Results show that the Inactive genes

dominate (Fig. 2), indicating an incomplete conversion, supported

by the results of the additional assays made by the authors, both

in vitro and in vivo, confirming that the obtained rEC-hMPP cells

could further effectively differ into myeloid (erythrocytes, megakar-

yocytes, monocytes, macrophages) and lymphoid lineages (B cells,

nature killer cells), but only negligibly into the T-lymphoid progeny,

representing an important limitation with respect to the properties

of the target cells.

3.2 Functional evaluation of cellular programming
The limited fidelity of the reprogramming in the ability to convert

into the T-cell progeny is confirmed by the GO functional enrich-

ment analyses performed with eegc. Indeed, the significant GO

terms enriched by the 10 major categories are grouped into 6 clus-

ters (Fig. 3, Supplementary Table S2). Among those, cluster 1–3

refer to endothelial cell related functions enriched by down-regu-

lated genes, while cluster 4–6 explicitly refer to terms related with

T-cell differentiation, with up-regulated Successful, Inactive and

Insufficient genes being enriched for these categories. This suggests

that not all of the genes contributing to these functions (GO catego-

ries) are (sufficiently) activated (owing to many Inactive and

Insufficient genes). Interestingly, none of the Successfully down-

regulated genes is enriched in T-cell differentiation related GO

terms, suggesting the lack of a mechanism to silence the biological

cues that impede T-cell differentiation.

These results are further confirmed in the sister KEGG pathways

analysis (Supplementary Fig. S1 and Supplementary Table S3), indi-

cating that up-regulated genes, mostly in the Inactive category, are

enriched in immune related pathways and particularly in T-cell

related pathways, such as hsa04660: T cell receptor (TCR) signaling

pathway (Supplementary Fig. S2), and hsa04064: NF-jB signaling

pathway, in line with the important role of TCR signaling in T cell

lineage development from lymphoid precursors, T cell activation

under antigen stimulations and trigger of the downstream NF-jB

signaling in a TCR-to-NF-jB cascade, also involved in the differen-

tiation of T cells (Berg, 2012; Suman Paul, 2013). Again, down-

regulated genes are enriched in hsa04015: RAP1 signaling pathway

that controls cell–cell and cell-matrix interactions (Supplementary

Fig. S2) confirming the absence of mechanisms involving gene silenc-

ing (down-regulation) of T-cells differentiation.

Besides these, we also noticed that Reversed.Down and Over.Up

genes were specifically enriched in cell development or morphogene-

sis related GO terms (Supplementary Table S2) and KEGG path-

ways (Supplementary Table S3). By this observation, we can

speculate that the genes over or reversely up-regulated in the induced

cells are incline to regulate cell growth and maintain homeostasis

despite the forced mechanisms induced by reprogramming, creating

biomolecular resilience to the expected lineage conversion.

3.3 Tissue specific analysis of each gene category
To deepen these observations we exploited the 126 C/T specific gene

sets provided in eegc to run enrichment analysis.

In particular, we selected 10 C/T groups, related to Hematopoietic

thus representing the induced cells: ‘stem cells’, ‘Myeloid’, ‘B cells’

and ‘T cells’; and to Endothelial thus representing the original cells:

‘Endothelial CD105þ’, ‘Lung’, ‘Kidney’, ‘Thyroid’, ‘Heart’ and
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‘Uterus’ (Fig. 4A, Supplementary Fig. S3 and Supplementary Table

S4). The largest part of the differentially up-regulated genes belongs

to the hematopoietic group, and, in confirmation of the previous func-

tional analysis, Successful.Up, Insufficient.Up and Inactive.Up are

included, with only a small set of Over.Up. Not surprisingly, T-cells

enrichment involves mainly the Inactive.Up category. Finally, and

again, the Successful.Down category includes typically endothelial

genes, confirming that genes down-regulation for successful reprog-

ramming involves functions associated to the cells of origin, or, sym-

metrically, that down-regulation in the reprogrammed cells is not

easily achieved on genes that are typically hematopoietic.

3.4 Gene regulatory analysis
Similarly to the gene-based tissue specific analysis (Sections 2.4 and

3.3) the results of the network-based tissue specific enrichment

(Section 2.5) confirm that genes in the Down categories are mostly

specific to the original endothelial cell, while genes in the Up catego-

ries refer mostly to the induced rEC-hMPPs derived blood cells,

including T and B cells and macrophages, and particularly,

Insufficient and Inactive up-regulated genes are significantly

enriched in T cell (Fig. 4B, C, Supplementary Table S5).

The TF-TG enrichment analysis shows that significantly

enriched TFs are clustered into two groups (Down and Up gene cat-

egories) and specific to endothelial cells and hematopoietic cells,

shown in Figure 4D for the Successful, Insufficient, Inactive and

Reverse genes and Supplementary Table S6 for the remaining ones.

Coherently with previous findings, none of T cell-specific TFs is

Successful, although CellNet, lists the same TFs for B and T cells,

limiting the resolution of the suggestions for the reprogramming

process improvement. This clarifies once more the need for multiple

enrichment approaches as they are offered in eegc.

As shown in Figure 4D, the successfully over- or under-expressed

genes are regulated by more Successful TFs (red labeled) while the

Inactive or Insufficient genes failed to be properly expressed because

they are largely regulated by Inactive TFs (dark blue labeled).

At a closer look, TFs SPI1, RUNX1, FOSB and GFI1, whose

transcription were enforced to trigger the reprogramming process,

are as expected in the Successful.Up (SPI1, RUNX1, and FOSB),

despite some of their TGs falling into the Insufficient.Up category

(Supplementary Table S6), reflecting a relatively successful regula-

tion by these TFs during reprogramming. However, GFI1 shows a

large variance of expression across samples and thus was not

selected in the differential analysis for categorization. In this case,

most of its TGs were in the Inactive.Down and Inactive.Up genes,

which represents a possible relevant cause of the limits of the reprog-

ramming process.

Besides the FGRS, we noted that Inactive genes were enriched in

the TF-TG sets, raising the possibility to discover alternative/addi-

tional TFs for reprogramming improvement. The endothelial and T

cell-specific TFs (relevant for the analysis of this specific dataset) are

significantly present in the categories Inactive.Down (Supplementary

Table S7) and Inactive.Up (Supplementary Table S8), respectively.

For the endothelial TF-TG set Inactive.Down genes are enriched

in SOX17-TGs, which means these genes should be down-regulated

by SOX17 while they are not. Not surprisingly SOX17 itself is cate-

gorized as Inactive.Down. Functionally, SOX17, if properly down-

regulated, would allow endothelial-to-hematopoietic transition

(EHT) in synergy with RUNX1 (Lizama et al., 2015).

In the T-cell TF-TG set, we observe the failure to activate:

(i) BCL11B, critical for T lymphocytes survival and early T-cell

development via Notch signaling pathway (Liu et al., 2010;

RothenBerg, 2012); (ii) TCF7 a direct Notch target required from

the Early T-cell precursor stage (RothenBerg, 2012) and (iii) TBX21

which directs T-helper1 (Th1) lineage commitment (Michael and
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Michael, 2000; Szabo et al., 2015). Also an Inactive.Up gene KLF2,

whose absence would make T cell prone to apoptosis (Pearson et al.,

2008), contributes to the inability to obtain viable T-cells.

The two TFs TBX21 and TCF7, whose inactivation potentially

explains the functional immaturity of the induced cell, were also

predicted by Mogrify (Rackham et al., 2016) among the TFs able to

drive cell conversion from microvascular endothelial cells to blood

cells, corroborating eegc suggestion to focus or include these genes

in the reprogramming protocol.

3.5 Coherence between expression and DNA

methylation
The results produced by eegc allow to confirm that several types of

anomalies occurring in the process involve not only TFs, but also,

importantly, genes assumed to be markers of the target cells, impact-

ing on all four ‘imperfect’ categories (Reverse, Inactive, Insufficient

and Over). There are overall two recurring messages emerging from

these analyses across the four results provided by eegc: (i) success-

fully up-regulated genes are not backed by a sufficient number of

genes involved in the completion of the same functions (presence of

Insufficient, Inactive genes) and (ii) successfully down-regulated

genes are markers of pertain to functions that are typical of the orig-

inal cell, not of the target cell. The latter seems to suggest that while

the reprogramming process permits to preserve the original func-

tions that are needed also in the target cell, it cannot perform the

silencing of functions needed to allow complete reprogramming, as

it is the case for T-cells differentiation.

As other studies have described lineage conversion achieved by

the combination of TFs with epigenetic regulators such as chromatin

modifiers (Takeuchi and Bruneau, 2009) or by a deficiency of DNA

methyltransferase Dnmt1 in mice (Dhawan et al., 2011), we

explored this additional layer of information to shed light on the

connections with the epigenomic cellular makeup in order to give

workable directions to experimentalists designing the protocol.

In particular, literature supports the negative correlation

between a gene’s expression and the methylation of its promoters,

and symmetrically between demethylation and higher expression

(Jones, 2012). In particular, during cellular reprogramming several

studies report the coherence between hypomethylation and overex-

pression of the target cell-specific TFs or of marker genes (Han

et al., 2012; 2014).

Supplementary Table S9 shows indeed that cell-specific TFs and

markers genes in the Successful.Up category are perfectly in line with

this expectation: all expectedly hypomethylated genes are also overex-

pressed. Conversely, the reverse is not true (Successful.Down genes

are not hypermethylated). In our results, successfully down-regulated

genes pertain in general to functions associated to the cell of origin,

i.e. they are not functionally involved in the reprogramming process.

Focusing on the genes that failed to be (in)activated, we observe

that they have a coherent methylation state with gene expression in

the target cell (Supplementary Table S10) and that they include T

cell-specific relevant TFs and marker genes. Thus, incoherence

between expected and observed methylation-expression patterns is

an indicator of ‘distance’ from the target cell. In particular, the

Inactive.Up BCL11B, TCF7 and TBX21 relevant TFs, participating

the T cell development, are hypomethylated in cord blood samples

but fail to be overexpressed in the induced cells; the same holds for

the Inactive.Up marker gene KLF2 specifically expressed in

hematopoietic progenitors. Coherently, RUNX1 showed perfectly

matched gene expression and methylation and was successfully up-

regulated as a necessary TF to promote EHT.

Experimental validation is required to know whether this

depends on the ability of the engineering process to mimic hypome-

thylation by acting on TF overexpression or reversely to mimic

hypermethylation to control gene down-regulation.

As a final observation we specifically searched for the activity of

methyltransferases, responsible for maintenance and de novo DNA

methylation in human (Bestor, 2000). DNA-methyltransferase 1

(encoded by gene DNMT1) and DNA-methyltransferase 3 alpha

and beta (encoded by genes DNMT3A and DNMT3B, respectively)

did not show significant differences between the original DMEC

cells and the target CB cells (Supplementary Table S11), and hence

could not be classified into any of the categories in Table 1.

However, we observed an expression increase of DNMT1 and

DNMT3B (fold change>2, Supplementary Table S11) in the

induced cells compared to original cells, which indicates that

changes of methylation patterns are indeed elicited by the reprog-

ramming protocol.

Overall we confirm, as Sandlers et al. observed experimentally,

that the niche environment and the four TFs were not sufficient to

make a complete reprogramming allowing progenitors to differenti-

ate into mature blood cells. Incrementally, the results of our package

recommend a list of candidate TFs (among which BCL11B, TBX21,

TCF7, KLF2 in Supplementary Table S10) whose selection is driven

by a mixture of heterogeneous criteria, to guarantee that further

improvement of cellular engineering protocol take into better

account the complex interplay among transcriptional actors.

The results of eegc also suggest, for their systemic nature, to

move beyond the transcriptional level and our final investigation

into the epigenomic layer confirms that mixed techniques including

not only TFs forced overexpression, but also induction of hypome-

thylation has to be taken in consideration.
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