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Abstract 

The integrin family is a group of transmembrane glycoprotein comprised of 19 - and 8 -subunits 
that are expressed in 25 different / heterodimeric combinations on the cell surface. Integrins 
play critical roles in many physiological processes, including cell attachment, proliferation, bone 
remodeling, and wound healing. Integrins also contribute to pathological events such as throm-
bosis, atherosclerosis, tumor invasion, angiogenesis and metastasis, infection by pathogenic mi-
croorganisms, and immune dysfunction. Among 25 members of the integrin family, the v3 is 
studied most extensively for its role of tumor growth, progression and angiogenesis. In contrast, 
the IIb3 is expressed exclusively on platelets, facilitates the intercellular bidirectional signaling 
(“inside-out” and “outside-in”) and allows the aggregation of platelets during vascular injury. The 
IIb3 plays an important role in thrombosis by its activation and binding to fibrinogen especially in 
arterial thrombosis due to the high blood flow rate. In the resting state, the IIb3 on platelets does 
not bind to fibrinogen; on activation, the conformation of platelet is altered and the binding sites of 
IIb3 are exposed for fibrinogen to crosslink platelets. Over the last two decades, integrins have 
been proposed as the molecular targets for diagnosis and therapy of cancer, thrombosis and other 
diseases. Several excellent review articles have appeared recently to cover a broad range of topics 
related to the integrin-targeted radiotracers and their nuclear medicine applications in tumor 
imaging by single photon emission computed tomography (SPECT) or a positron-emitting radi-
onuclide for positron emission tomography (PET). This review will focus on recent developments 
of v3-targeted radiotracers for imaging tumors and the use of IIb3-targeted radiotracers for 
thrombosis imaging, and discuss different approaches to maximize the targeting capability of cyclic 
RGD peptides and improve the radiotracer excretion kinetics from non-cancerous organs. Im-
provement of target uptake and target-to-background ratios is critically important for tar-
get-specific radiotracers. 
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1. INTRODUCTION 

Radiopharmaceuticals, which are also called ra-
diotracers, are drugs containing a radionuclide. Ra-
diotracers are used routinely in nuclear medicine for 
diagnosis or therapy of diseases, such as cancer, in-
flammation and myocardial infarction [1-6]. Radio-

tracers can be classified according to the biodistribu-
tion characteristics: those whose biodistribution is 
determined exclusively by their chemical and physi-
cal properties; and those whose biological properties 
are determined by the receptor binding capability of 
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radiolabeled biomolecules. The latter class is often 
called target-specific radiotracers [3, 4]. Diagnostic 
radiotracers are molecules labeled with either a 

-emitting isotope for single photon emission com-
puted tomography (SPECT) or a positron-emitting 
radionuclide for positron emission tomography 
(PET), and provide a method of assessing the disease 
or disease states by SPECT or PET. They are also 
useful for monitoring the treatment efficacy of a spe-
cific therapeutic regimen in a noninvasive fashion. 

 
 
 

 

Figure 1. Schematic presentation of the target-specific 

radiotracer. Radionuclide is the radiation source. BM is the 

targeting biomolecule for receptor binding. A multidentate 

bifunctional chelator is used for chelation of metallic radi-

onuclides. A spacer is used to bridge the radiometal chelate 

and targeting biomolecule. 

 
 
Fig. 1 shows the schematic illustration of the 

target-specific radiotracers, which are often radio-
metal complexes of a chelator-biomolecule conjugate. 
In some cases, they can be biomolecules attached with 
a non-metallic radionuclide, such as 18F and 123I. A 
target-specific radiotracer is based on the receptor 
binding of the radiolabeled receptor ligand in the 
diseased tissue [7-20]. The metal-containing tar-
get-specific radiotracer can be divided into four parts: 
targeting biomolecule (BM), spacer, bifunctional che-
lating agent (BFC), and radionuclide. The targeting 
biomolecule serves as a ―carrier‖ for target-specific 
delivery of radionuclide to the diseased tissue with 
many targeted receptors. The radiolabeled receptor 
ligand binds to these receptors with high affinity and 
specificity, resulting in selective uptake of the radio-
tracer. The choice of a radionuclide depends on the 
clinical utility of the radiotracer. Table 1 lists several 
selected radionuclides useful for planar imaging and 
SPECT, along with their nuclear characteristics. For 
SPECT, more than 80% of radiotracers used in nuclear 
medicine departments are 99mTc compounds mainly 
due to the optimal nuclear properties of 99mTc and its 
easy availability at low cost [1-5]. The 6 h half-life is 
long enough to allow radiopharmacists to carry out 
radiosynthesis and for physicians to collect clinically 

useful images. It is also short enough to permit ad-
ministration of 20 – 30 mCi of 99mTc radiotracer 
without imposing a significant radiation dose to the 
patient. 111In is also widely used in gamma scintigra-
phy (only second to 99mTc in clinical applications). It 

decays by electron capture and emits two -photons of 
173 and 247 keV (90% and 94% abundance, respec-
tively). 111In radiotracers are often used as the imaging 
surrogates for biodistribution and dosimetry deter-
mination of their corresponding therapeutic 90Y ana-
logs, which might be useful for treatment of cancer. 
67Ga is a cyclotron-produced radionuclide, and has a 
half-life of 78 h. 67Ga has little use in the development 
of target-specific radiotracers since 68Ga radiotracers 
offer significant advantages because of the high spa-
tial resolution of PET as compared to that of SPECT. 
Due to the low solution stability of 201Tl(I) complexes, 
201Tl is used exclusively as its chloride salt for myo-
cardial perfusion imaging in the patients with cardi-
ovascular diseases. 

 
 

Table 1. Selected radionuclides for SPECT.  

Radionuclide Half-life Mode of 
decay 

Principal  emis-
sion in keV (% 
abundance) 

99mTc 6.01 h  140.5 (87.2) 

123I 13.27 h EC 159.0 (83.3) 

131I 8.02 d - &  364.5 (81.2) 

67Ga 3.261 d EC 93.3 (37.0), 184.6 
(20.4) 

111In 2.805 d EC 171.3 (90.2), 245.4 
(94.0) 

201Tl 3.038 d EC 167.4 (9.4) 

 
 
Nuclear imaging techniques are widely used for 

clinical applications because of their high sensitivity. 
Nuclear imaging modalities (PET and SPECT) are able 
to determine concentrations of specific molecules in 
the human body in the picomolar range and provide 
enough sensitivity needed to visualize most interac-
tions between physiological targets and receptor lig-
ands. Many biomolecules (monoclonal antibodies, 
peptides, or non-peptide receptor ligands) have been 
successfully used for target-specific delivery of radi-
onuclides. Among them, small peptides with less than 
30 amino acids or molecular weight less than 3500 
Daltons are of particular interest. Compared to mon-
oclonal antibodies and antibody fragments, small 
peptides offer several advantages. Peptides are nec-
essary elements in more fundamental biological pro-
cesses than any other class of molecule. They can also 
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tolerate harsher conditions for chemical modification 
or radiolabeling. Small peptides are easy to synthesize 
and modify, less likely to be immunogenic, and can 
have rapid blood clearance. The faster blood clearance 
results in adequate T/B ratios earlier so that it is 
practical to use 99mTc, which is the preferred radionu-
clide for diagnostic nuclear medicine. In most cases, 
the primary sites of interactions of peptides are re-
ceptors on the outer surface of cell membranes (ex-
tracellular). All these factors make small bioactive 
peptides excellent candidates for development of 
target-specific radiotracers. The peptide-based radio-
tracers have been reviewed extensively [7-20]. 

The integrin family is comprised of 25 identified 
members, which are heterodimers of 19 α- and 8 
β-subunits imbedded non-covalently into the cell 
membrane [21]. The member of this family is still ex-
panding as observed from human genome studies 
[22]. The cell-cell and cell-matrix adhesion processes 
through binding of integrins to their ligands play 
critical roles in physiological processes, including cell 
attachment, proliferation [23-25], bone remodeling 
[26], and wound healing [27]. Besides, integrins also 
contribute to pathological events such as thrombosis, 
atherosclerosis [28, 29], tumor invasion, angiogenesis 
and metastasis [30-33], infection by pathogenic mi-
croorganisms [34, 35], and immune dysfunction [36]. 
Therefore, the integrins have been proposed as the 
molecular targets for the treatment of cancer [37-42], 
thrombosis [43, 44] and other diseases [45, 46] in the 
last two decades. The role of integrins has been re-
viewed extensively [21, 47-50].  

Many integrin family members are crucial to the 
initiation, progression and metastasis of solid tumors. 
Epithelial-derived tumor cells generally retain integ-
rins expressed by epithelial cells including α6β4, α6β1, 
αvβ5, α2β1 and α3β1, and mediate the adhesion, migra-
tion, proliferation and survival of tumor cells. Differ-
ent integrins can promote or suppress the tumor de-
velopment. For example, integrin α2β1 is 
down-regulated in tumor cells, the phenomenon as-
sociated with increased tumor cell dissemination [51]. 
This suggests that α2β1 could function as a tumor 
suppressor [52]. On the other hand, the expression of 
αvβ3, αvβ5, α5β1, α6β4, α4β1 and αvβ6 on tumor cells is 
correlated with disease progression in various tumor 
types [53-58]. More importantly, the expression of 
integrins αvβ3, α5β1 and αvβ6 are usually at low or 
undetectable levels in most adult epithelia. Among 25 
members of the integrin family, integrin αvβ3 is stud-
ied most extensively for its role in the tumor growth 
and angiogenesis. While the αvβ3 plays pivotal role in 
the tumor growth and progression, the αIIBβ3 is critical 
for platelet aggregation during thrombosis. It is be-

lieved that the interaction between the tumor αvβ3 and 
platelet αIIbβ3 is also related to the increased tumor 
metastasis via a bridge such as fibrinogen, von Wil-
lebrand factor or thrombospondin [59]. This interac-
tion is believed to facilitate the tumor cell adhesion to 
the vasculature, and often leads to metastasis to var-
ious secondary sites, including bone marrow [60].  

Integrin αIIBβ3 is exclusively expressed on plate-
lets, although αvβ3, α2β1, α5β1 and α6β1 can also medi-
ate platelet adhesion functions [61]. On the surface of 
platelet, there are 70~90 thousand copies of αIIBβ3, 
which facilitate the intercellular bidirectional signal-
ing (―inside-out‖ and ―outside-in‖) and allow the ag-
gregation of platelets during the vascular injury. The 
αIIBβ3 plays an important role in thrombosis formation 
by its activation and binding to fibrinogen especially 
in arterial thrombi due to the high blood flow rate. In 
the resting state, the αIIBβ3 on platelets does not bind 
to fibrinogen. On activation, the conformation of 
platelet is altered and the binding sites of αIIBβ3 are 
exposed for fibrinogen to crosslink with the activated 
platelets. Integrin αIIBβ3 antagonists have been widely 
used in the antithrombotic therapy in the patients 
with percutaneous coronary interventions and unsta-
ble angina [47, 48, 62-65].  

The αvβ3 and αIIBβ3 receptor ligands share a 
common RGD tripeptide binding sequence. General-
ly, linear RGD peptides, such as GRGDS 
(Gly-Arg-Gly-Asp-Ser), often have low affinity (IC50 > 
100 nM) and selectivity for αvβ3 and αIIBβ3 [66], and 
undergo rapid degradation in serum by a variety of 
proteases [67, 68]. It has been shown that cyclization 
of RGD peptides via linkers, such as S-S disulfide, 
thioether and rigid aromatic rings, often leads to the 
increased receptor binding affinity and selectivity 
[67-77]. It has been reported that the αIIBβ3 is less sen-
sitive to variations in the RGD backbone structure and 
can accommodate a larger distance or spacer than 

αvβ3 and v5 [66]. On the basis of extensive struc-
ture-activity-relationship studies, it was found that 
incorporation of the RGD unit into a cyclic the pen-
tapeptide framework (Fig. 2: top) increases binding 

affinity and selectivity for v3 over αIIBβ3 [66, 68-77], 
while addition of a rigid aromatic ring (Fig. 2: 
DMP728 and DMP757) into the cyclic hexapeptide 
structure enhance the receptor binding affinity and 

selectivity for αIIBβ3 over both v3 and v5 [66, 79, 
80]. It was also found that the valine residue in 
c(RGDfV) could be readily replaced by lysine (K) or 
glutamic acid (E) to afford c(RGDfK) or c(RGDfE), 

without significantly changing the v3 binding affin-
ity [69-71]. Similar behavior was also seen for 
αIIBβ3-selective hexapeptides [66]. 
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Figure 2. Examples of monomeric cyclic RGD peptides. Incorporation of the RGD sequence into a cyclic pentapeptide 

framework increases the binding affinity and selectivity for αvβ3 over v5 and αIIBβ3, while the addition of one or two rigid 

aromatic rings into cyclic hexapeptide structure enhance the binding affinity and selectivity for the αIIBβ3 over αvβ3 and v5.  

 
 
Several excellent review articles have appeared 

recently to cover a broad range of topics related to 
integrin-targeted radiotracers and their nuclear med-
icine applications in tumor imaging by SPECT and 
PET [81-97]. This review is not intended to be an ex-
haustive review on all radiolabeled cyclic RGD pep-
tides. Instead, it will focus on recent development of 

v3-targeted SPECT radiotracers for imaging tumor 

angiogenesis and the use of the IIb3-targeted radio-
tracers for thrombosis imaging by SPECT. Because of 
the limited space, authors would apologize to those 
whose work has not been presented in detail, and for 
the omission of 123I-labeled cyclic RGD peptides as 
radiotracers in this review. 

2. v3–TARGETED RADIOTRACERS FOR 
TUMOR IMAGING 

Integrin v3 and tumor angiogenesis. Tumor cells 
produce many angiogenic factors, which are able to 
activate endothelial cells on the established blood 
vessels and induce endothelial proliferation, migra-

tion, and new vessel formation (angiogenesis) 
through a series of sequential but partially overlap-
ping steps [98-103]. Angiogenesis is a key requirement 
for both the tumor growth and metastasis. Without 
the formation of the new blood vessels which provide 
oxygen and nutrients, tumors cannot grow beyond 1 – 
2 mm in size [98, 103]. Angiogenesis is regulated by 
many proteins, such as vascular endothelial growth 
factor (VEGF), vascular endothelial growth factor re-
ceptors (VEGFR), G-protein coupled receptors for 
angiogenesis modulating proteins, endogenous an-
giogenesis inhibitors and integrins [102-105]. Among 
the angiogenesis factors, integrins are responsible for 
the cellular adhesion to extracellular matrix proteins 
in the intercellular spaces and basement membranes 
and subsequent migration of cells, and regulate cel-
lular entry and withdraw from cell cycle [100, 
107-110]. Among the integrins identified so far, the 

v3 is studied most extensively since serves as a re-
ceptor for a variety of extracellular matrix proteins 
with the exposed RGD tripeptide sequence. These 
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include vitronectin, fibronectin, fibrinogen, laminin, 
collagen, von Willebrand factor, and osteopontin 

[111-119]. The v3 is usually expressed in relatively 
low levels on epithelial cells and mature endothelial 
cells, but is highly expressed in the tumors including 
osteosarcomas, neuroblastomas, glioblastomas, mel-
anomas, breast, lung and prostate carcinomas 

[112-120]. Recently, it has been reported that the v3 
is overexpressed on not only tumor cells but also en-
dothelial cells of the tumor neovasculature [121]. The 

v3 expressed on the activated endothelial cells can 
modulate cell adhesion and migration during tumor 
angiogenesis, and its expression on carcinoma cells 
potentiates metastasis by facilitating invasion and 
movement of tumor cells across blood vessels [121]. It 

has also been demonstrated that the v3 expression 
level correlates well with the potential for metastasis 
and the aggressiveness of many tumors including 
glioblastomas, melanoma, ovarian, breast and lung 

cancers [113, 119-121]. Therefore, the v3 has been 
identified as an interesting molecular target for the 
early diagnosis of rapidly growing and metastatic 
tumors [81-97].  

Integrin v3-targeted radiotracers under clinical in-
vestigation. Many radiolabeled cyclic RGD peptides 

have been evaluated as the v3-targeted radiotracers 
[122-158]. Significant progress has been made on their 
use in tumor imaging by either SPECT or PET. Among 
the radiotracers evaluated in many preclinical tu-
mor-bearing animal models, [18F]Galacto-RGD (Fig. 3: 
top) and [18F]AH111585 (Fig. 3: middle) are currently 
under clinical investigation for non-invasive imaging 

of the v3 expression in cancer patients [159-164]. 
Imaging studies clearly showed that the accumulation 
of 18F-labeled RGD peptide radiotracers correlated 

well with the tumor v3 expression levels in cancer 
patients [159-164]. However, their relatively low tu-
mor uptake, high cost and lack of preparative mod-
ules for routine radiosynthesis will limit their con-
tinued clinical utilities. In addition, several steps of 
manual radiosynthesis and post-labeling purification 
can cause significant radiation exposure to radio-
pharmacists in the clinics. 99mTc-NC100692 (Fig. 3: 
bottom) is a 99mTc-labeled cyclic RGD peptide mono-

mer reportedly to have high integrin v3 binding 
affinity [165]. In breast cancer patients, 19 of 22 ma-
lignant lesions (86%) were detected by SPECT [165]. 
However, its intensive liver uptake and hepatobiliary 
excretion due to its lipophilic Tc-chelate (Fig. 3) will 
limit its continued clinical applications. Thus, there is 

a continuing need for more efficient v3-specific 
99mTc radiotracers that can be readily prepared from a 
kit formulation at low cost. 

Multimer concept. Since interactions between the 

v3 and RGD-containing proteins (e.g. vitronectin, 
fibronectin and fibrinogen) may involve multiple 
binding sites, the idea to use multimeric cyclic RGD 

peptides might provide more effective v3 antago-
nists with tumor targeting capability and hence high-
er cellular uptake for their corresponding radiotracers 
[166]. Multivalent interactions are used in such a way 
that weak ligand-receptor interactions may become 
biologically relevant. The multimer concept has been 
used for enhancing the radiotracer tumor-targeting 
capability. For example, biodistribution studies 
showed that the divalent 99mTc-[sc(Fv)2]2 had ap-
proximately 3-fold higher tumor uptake than 
99mTc-sv(Fv)2 [167]. The increased binding affinity and 
tumor targeting capability were also reported for the 
125I-labeled divalent recombinant antibody fragment 
[168].  

Multimeric cyclic RGD peptides. To improve v3 
binding affinity, dimeric RGD peptides, such as 
E[c(RGDfK)]2 (Fig. 4: RGD2), have been used to de-

velop the v3-targeted radiotracers. Rajopadhye et al 
were the first to use E[c(RGDfK)]2 to develop diag-
nostic (99mTc and 64Cu) and therapeutic (90Y and 177Lu) 
radiotracers [146-157, 169, 170]. Dijkgraff et al found 
that the tumor uptake of 111In-labeled E[c(RGDfK)]2 
was >2x of that for its corresponding monomeric an-
alog in athymic mice with xenografted SK-RC-52 tu-
mors [154]. The same group also reported the 
DOTA-conjugated cyclic RGD dimers and tetramers 
[154, 155], but no in vivo data was presented. Recent-
ly, Chen and coworkers reported 64Cu and 18F-labeled 
E[c(RGDyK)]2 as PET radiotracers [140, 141]. Poethko 
et al also found that the RGDfE dimer 
[c(RGDfE)-HEG]2-K (Fig. 4) had much better targeting 
capability than the monomer c(RGDfE)-HEG 
[128-130]. The multimer concept was also used to 
prepare cyclic RGD tetramers [142, 144, 153, 155, 
171-173] and octamers [173]. For example, Boturyn et 
al reported a series of cyclic RGDfK tetramers [172], 
and found that increasing the peptide multiplicity 

significantly enhanced the v3 binding affinity and 
internalization. Kessler et al reported a cyclic RGDfE 

tetramer (Fig. 5) that had better v3 binding affinity 
than its corresponding dimer counterpart [128-130]. 
Liu et al used E[E[c(RGDfK)]2]2 (Fig. 5: RGD4) for the 

development of v3-targeted diagnostic (99mTc and 
64Cu) radiotracers [142, 153]. Chen et al also reported 
the use of 64Cu and 18F-labeled cyclic RGD peptide 
tetramer E[E[c(RGDyK)]2]2 and octamer 
E[E[E[c(RGDyK)]2]2]2 for tumor imaging by PET [173]. 
Both the in vitro assays and the ex vivo biodistribu-
tion studies showed that the radiolabeled multimeric 
cyclic RGD peptides had better tumor uptake with 
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longer tumor retention time than their dimeric ana-
logs. However, their T/B ratios were not substantially 
better due to their high uptake in the normal organs 
[173]. It remains unclear if the multimeric cyclic RGD 
peptides, such as E[E[E[c(RGDyK)]2]2]2, are really 
multivalent. Moreover, the cost for synthesis of the 
RGD octamer E[E[E[c(RGDyK)]2]2]2 is prohibitively 

high for future development of the v3-targeted di-
agnostic radiotracers. Thus, an alternate approach is 

needed to improve the v3-targeting capability of the 
radiotracer and minimize its accumulation in normal 
organs. 

 

 

 

Figure 3. Examples of radiolabeled cyclic RGD peptide monomers as radiotracers ([18F]Galacto-RGD, [18F]AH111585 and 
99mTc-NC100692) for imaging tumor angiogenesis. They are currently under clinical investigation for noninvasive visualiza-

tion of the αvβ3 expression in cancer patients.  
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Figure 4. Examples of RGD dimers (E[c(RGDfK)]2, E[c(RGDyK)]2 and [c(RGDfE)HEG]2-K) for αvβ3-targeting. 

 

Fiure 5. Structure of a cyclic RGD tetramer [[c(RGDfE)HEG]2K]2-K. 
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Figure 6. Schematic illustration of interactions between a 

cyclic RGD tetramer and the integrin v3 receptor.  

Improve αvβ3 binding affinity via bivalency. Fig. 6 

illustrates the interaction between v3 and a cyclic 
RGD tetramer. The targeting moiety is c(RGDfK). The 
spacer is glutamic acid (E) or its derivatives. Two 

factors contribute to the high v3 binding affinity of 
multimeric cyclic RGD peptides: bivalency and the 
enhanced local RGD concentration. The key for biva-
lency is the distance between two adjacent cyclic RGD 
motifs. If this distance is long enough for simultane-

ous v3 binding, the cyclic RGD multimer will bind 

to v3 in a bivalent fashion. If this distance is too 
short, the local cyclic RGD peptide concentration is 

still ―enriched‖ in the vicinity of neighboring v3 
sites once the first RGD motif is bound. The combina-

tion of simultaneous v3 binding (bivalency factor) 
and the locally enriched RGD concentration (concen-

tration factor) will result in higher v3 binding affin-
ity for cyclic RGD multimers and better tumor uptake 
with longer tumor retention for their corresponding 
radiotracers. 

To demonstrate the proof-of-principle for the 
bivalency concept, Shi et al recently reported a series 
of cyclic RGD dimers (Fig. 7) with G3 (Gly-Gly-Gly) 
and PEG4 (15-amino-4,7,10,13-tetraoxapentadecanoic 
acid) linkers [174-181]. The G3 and PEG4 linkers were 
used to increase the distance between two RGD motifs 
from 6 bonds in RGD2 to 24 bonds in 3G-RGD2 and 38 
bonds in 3P-RGD2 [174, 175]. The αvβ3 binding affini-
ties (Table 2) against 125I-echistatin bound to U87MG 
human glioma cells follow the order of HYNIC-RGD4 
(IC50 = 7 ± 2 nM) > HYNIC-2P-RGD2 (IC50 = 52 ± 7 nM) 
~ HYNIC-3P-RGD2 (IC50 = 60 ± 4 nM) ~ HYNIC-3G- 
RGD2 (IC50 = 61 ± 2 nM) > HYNIC-P-RGD2 (IC50 = 84 ± 
7 nM) ~ HYNIC-RGD2 (IC50 = 112 ± 21 nM) >> 
HYNIC-G-RGD (IC50 = 358 ± 8 nM) > HYNIC-P-RGD 
(IC50 = 452 ± 11 nM). A similar trend was observed for 

their DOTA-conjugates against 125I-c(RGDyK) bound 
to U87MG glioma cells [176]: DOTA-RGD4 (IC50 = 1.3 
± 0.3 nM) ~ DOTA-3P-RGD2 (IC50 = 1.3 ± 0.3 nM) ~ 
DOTA-3G-RGD2 (IC50 = 1.1 ± 0.2 nM) > DOTA-RGD2 

(IC50 = 8.0 ± 2.8 nM) >> DOTA-P-RGD (IC50 = 42.1 ± 
3.5 nM) ~ c(RGDfK) (IC50 = 38.5 ± 4.5 nM) >> 
DOTA-3P-RGK2 (IC50 = 452 ± 11 nM). These data 
suggest that the G3 and PEG4 linkers between two 
RGD motifs are responsible for the improved αvβ3 
binding affinity of HYNIC-3P-RGD2 and 
HYNIC-3G-RGD2 as compared to HYNIC-P-RGD2 

[174, 175]. The higher αvβ3 binding affinity of 
HYNIC-RGD4 is likely due to the presence of its two 
extra RGD motifs in RGD4 as compared to those in 
HYNIC-3P-RGD2 and HYNIC-3G-RGD2 [174].  

It is important to note that the IC50 values of cy-
clic RGD peptides are largely dependent on the type 

of assay (the immobilized v3-binding assay vs 

whole-cell v3 competition assay), the radioligand 
(125I-c(RGDyK) vs 125I-echistatin) and tumor cell lines 
(U87MG vs MDA-MB-435). Caution should be taken 
when comparing their IC50 values. Whenever possi-
ble, a ―control compound‖, such as c(RGDfK) and 
c(RGDyK), should be used in each experiment. In 
addition, the IC50 values obtained from the in vitro 
assays cannot be used as the ―absolute proof‖ to 
support the concept of bivalency. They must be used 
in combination with the biodistribution data of their 
corresponding radiotracers. 

To prove the bivalency of cyclic RGD dimers 
(Fig. 7: 3P-RGD2 and 3G-RGD2), complexes 
99mTc-3P-RGD2 and 99mTc-3G-RGD2 (Fig. 8) were 
evaluated in the athymic nude mice bearing U87MG 
human glioma and MDA-MB-435 human breast tu-
mor xenografts [174, 175]. For comparison purposes, 
99mTc-P-RGD2 and 99mTc-RGD4 (Fig. 8) were also 
evaluated using the same tumor-bearing animal 
models [174, 175]. As expected, the breast tumor up-
take of 99mTc-3P-RGD2 and 99mTc-3G-RGD2 was com-
parable to that of 99mTc-RGD4 (Fig. 8), and was >2x 
higher than that of 99mTc-P-RGD2 [174]. These data 
strongly suggest that RGD4, 3P-RGD2 and 3G-RGD2 
are bivalent and P-RGD2 is only monodentate in 
binding to the integrin αvβ3 even though it has two 
RGD motifs. Similar conclusion was also made for 
3P-RGD2 in 64Cu(DOTA-3P-RGD2) [176], 3G-RGD2 in 
64Cu(DOTA-3G-RGD2) [176], G3-2P4-RGD2 in 
99mTc-G3-2P4-RGD2 [177], and 2P-RGD2 in their 68Ga 
and 18F radiotracers [178, 179]. If P-RGD2 were biva-
lent, HYNIC-P-RGD2 would have had the same αvβ3 
binding affinity as HYNIC-3P-RGD2 and 
HYNIC-3G-RGD2 while 99mTc-P-RGD2 would have 
shared the same tumor uptake with 99mTc-3P-RGD2 
and 99mTc-3G-RGD2. 
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Figure 7. Examples of cyclic RGD dimers with PEG4 and G3 linkers, which are used to increase the distance between two 

RGD motifs and to improve radiotracer excretion kinetics from normal organs. 
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Figure 8. Comparison of the tumor uptake for 99mTc-P-RGD2, 
99mTc-3G-RGD2, 

99mTc-3P-RGD2 and 99mTc-RGD4 in the 

athymic nude mice bearing MDA-MB-435 breast cancer xenografts.  

 

Table 2. Integrin αvβ3 binding data for cyclic RGD peptides and their corresponding HYNIC and DOTA conjugates against 
125I-echistatin bound to the αvβ3–positive U87MG human glioma cells. 

Compound IC50 (nM) Radiotracer 

c(RGDyK) 458 ± 45  

HYNIC-G-RGD 358 ± 8 [99mTc(HYNIC-G-RGD)(tricine)(TPPTS)] 

HYNIC-P-RGD 452 ± 11 [99mTc(HYNIC-P-RGD)(tricine)(TPPTS)] 

HYNIC-RGD2 112 ± 21 [99mTc(HYNIC-RGD2)(tricine)(TPPTS)] 

HYNIC-P-RGD2 84 ± 7 [99mTc(HYNIC-P-RGD2)(tricine)(TPPTS)] 

HYNIC-2G-RGD2 60 ± 4 [99mTc(HYNIC-2G-RGD2)(tricine)(TPPTS)] 

HYNIC-2P-RGD2 52 ± 7 [99mTc(HYNIC-2P-RGD2)(tricine)(TPPTS)] 

HYNIC-3G-RGD2 61 ± 2 [99mTc(HYNIC-3G-RGD2)(tricine)(TPPTS)] 

HYNIC-3P-RGD2 62 ± 5 [99mTc(HYNIC-3P-RGD2)(tricine)(TPPTS)] 

HYNIC-RGD4 7 ± 2 [99mTc(HYNIC-RGD4)(tricine)(TPPTS)] 

DOTA-RGD2 102 ± 5 64Cu(DOTA-RGD2)/111In(DOTA-RGD2) 

DOTA-3G3-RGD2 74 ± 3 64Cu(DOTA-3G-RGD2)/111In(DOTA-3G-RGD2) 

DOTA-3PEG4-RGD2 62 ± 6 64Cu(DOTA-3P-RGD2)/111In(DOTA-3P-RGD2) 

DOTA-RGD4 10 ± 2 64Cu(DOTA-RGD4)/111In(DOTA-RGD4) 

NOTA-RGD2 100 ± 3 68Ga(NOTA-RGD2) 

NOTA-2G3-RGD2 66 ± 4 68Ga(NOTA-2G-RGD2) 

NOTA-2PEG4-RGD2 54 ± 2 68Ga(NOTA-2P-RGD2) 
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Impact of radiometal chelate on tumor uptake and 

pharmacokinetics. Shi et al [180, 181] also prepared the 
cyclic RGD conjugates: MAG2-3P-RGD2 and 
MAG2-3G-RGD2. It was found that 
99mTcO(MAG2-3P-RGD2) had better tumor uptake 
than 99mTc-3P-RGD2 [180], while their liver and kidney 
uptake was almost identical at >60 min p.i. On the 
other hand, 99mTcO(MAG2-3G-RGD2) had the same 
tumor uptake as 99mTc-3G-RGD2 at <60 min p.i., but its 
liver and kidney uptake was much lower than that of 
99mTc-3G-RGD2 [181]. Among 99mTc-labeled cyclic 
RGD dimers evaluated in the U87MG glioma-bearing 
model, 99mTcO(MAG2-3P-RGD2) has the highest gli-
oma uptake (~15 %ID/g over 2 h study period) while 
99mTcO(MAG2-3G-RGD2) has the best tumor/kidney 
(2.49 ± 0.25) and tumor/liver (8.29 ± 1.50) ratios at 120 
min p.i. Obviously, replacing 
[99mTc(HYNIC)(tricine)(TPPTS)] (M.W. = ~1000 Dal-
tons) with 99mTcO(MAG2) (M.W. = ~350 Daltons) had 
a significant impact on both tumor uptake and phar-
macokinetics of 99mTc radiotracers. In contrast, sub-
stituting the bulky [99mTc(HYNIC)(tricine)(TPPTS)] 
with a much smaller and more hydrophilic 
111In(DOTA) chelate had little impact on the radio-
tracer tumor uptake [182, 183]. However, the liver and 
kidney uptake of 111In(DOTA-3P-RGD2) is signifi-
cantly lower than that of 99mTc-3P-RGD2, probably due 
to higher hydrophilicity of 111In(DOTA) [82]. Similar 
conclusion could be made by directly comparing 
111In(DOTA-3G-RGD2) and 99mTc-3G-RGD2 [181, 183]. 

111In(DOTA-3P-RGD2) and 64Cu(DOTA-3P- 
RGD2) share the same DOTA-conjugate. The tumor 
uptake of 111In(DOTA-3P-RGD2) was very close to that 
of 64Cu(DOTA-3P-RGD2) [176, 182]. They also have a 
similar uptake in normal organs. For example, the 
kidney uptake of 111In(DOTA-3P-RGD2) was com-
pared well with that of 64Cu(DOTA-3P-RGD2) within 
the experimental errors. The liver uptake of 
111In(DOTA-3P-RGD2) was 2.52 ± 0.57 %ID/g at 30 
min and 1.61 ± 0.06 %ID/g at 240 min p.i., while 
64Cu(DOTA-3P-RGD2) had the liver uptake of 2.80 ± 
0.35 %ID/g at 30 min p.i. and 1.87 ± 0.51 %ID/g at 240 
min p.i. These data suggest that the radiometal (64Cu 
vs. 111In) has little impact on the radiotracer tumor 
uptake and excretion kinetics, probably due to the 
overwhelmingly large size of the dimeric RGD pep-
tides as compared to that of the radiometal chelate. 
The same conclusion was also made by directly com-
paring the uptake in tumor and normal organs for 

111In(DOTA-3G-RGD2) [183] and 64Cu(DOTA-3G- 
RGD2) [176].  

Integrin v3 and RGD specificity. The 
αvβ3-specificity of 99mTcO(MAG2-3P-RGD2) and 

111In(DOTA-3P-RGD2) was demonstrated by the 
―blocking experiment‖ (Fig. 9).  

 

 

Figure 9. Comparison of the 60-min biodistribution data in 

the athymic nude mice bearing U87MG glioma xenografts in 

the absence/presence of excess RGD2 to demonstrate its 

αvβ3–specificity for 99mTcO(MAG2-3P-RGD2) (top) and 
111In(DOTA-3P-RGD2) (bottom). The blockage of their 

tumor uptake indicates that the radiolabeled cyclic RGD 

dimers are αvβ3-specific.  

 
The blockage of their tumor uptake indicates that 

they are v3-specific [181, 182]. The uptake blockage 
in eyes, intestine, lungs, liver and spleen suggests that 
their uptake in these organs is partially 

v3-mediated. The RGD-specificity of 
99mTcO(MAG2-3P-RGD2) and 111In(DOTA-3P-RGD2) 
was demonstrated by comparing their 60-min uptake 
with that of 99mTcO(MAG2-3P-RGK2) and 
111In(DOTA-3P-RGK2), respectively. The dimeric pep-
tide 3P-RGK2 has the same molecular weight as 
3P-RGD2; but they have different peptide sequence 
[181, 182]. As expected, replacing the two c(RGDfK) 
moieties in 3P-RGD2 with two c(RGKfD) motifs re-
sulted in a much lower αvβ3 binding affinity of 
MAG2-3P-RGK2 (IC50 = 711 ± 128 nM) and 
DOTA-3P-RGK2 (IC50 = 715 ± 45 nM) than that of 
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MAG2-3P-RGD2 (IC50 = 3.9 ± 0.4 nM) and 
DOTA-3P-RGD2 (IC50 = 1.3±0.3 nM) against 

125I-c(RGDyK) bound to the U87MG glioma cells. As a 
result, 99mTcO(MAG2-3P-RGK2) and 
111In(DOTA-3P-RGK2) had much lower uptake as 
compare to that of 99mTcO(MAG2-3P-RGD2) and 

111In(DOTA-3P-RGD2) in both tumor and normal or-
gans (Fig. 10). These data strongly suggest that the 
localization of 99mTcO(MAG2-3P-RGD2) and 
111In(DOTA-3P-RGD2) in the tumor is indeed based on 
interactions between RGD motifs and αvβ3 [181, 182].  

 

  

Figure 10. Comparison of biodistribution data of 99mTcO(MAG2-3P-RGD2)/
99mTcO(MAG2-3P-RGK2) and 

111In(DOTA-3P-RGD2)/
111In(DOTA-3P-RGK2) in athymic nude mice bearing U87MG glioma xenografts at 60 min 

post-injection. The low tumor uptake for 99mTcO(MAG2-3P-RGK2) and 111In(DOTA-3P-RGK2) indicates that the radio-

labeled cyclic RGD dimers are RGD-specific. 

 
 
Multimeric ≠ multivalent. On the basis of the in 

vitro αvβ3 binding assays and the ex-vivo biodistribu-
tion data, it becomes quite clear that 3P-RGD2, 
3G-RGD2 and RGD4 are bivalent in binding to the 
αvβ3. However, it remains unclear if RGD4 will be-
come tetravalent if a number of G3 or PEG4 linkers are 
incorporated between its four cyclic RGD motifs. To 
answer this fundamental question, two 
DOTA-conjugated cyclic peptide RGD tetramers (Fig. 
11: 6P-RGD4 and 6G-RGD4) have been successfully 
prepared [183, 184]. Fig. 12 compares the tumor up-
take of 111In-labeled RGD dimers (3P-RGD2 and 
3G-RGD2) and tetramers (6P-RGD4 and 6G-RGD4) in 
the athymic nude mice bearing U87MG glioma xeno-

grafts. The fact that 111In(DOTA-3P-RGD2) and 
111In(DOTA-6P-RGD4) shared a very similar initial 
tumor uptake within the experimental errors suggests 
that 6P-RGD4 and 6G-RGD4 may not be truly tetrava-
lent [183, 184].  

As discussed previously, both bivalency and the 
locally enhanced RGD concentration contribute to the 

high v3 binding affinity of multimeric RGD pep-
tides. The concentration factor exists in all multimeric 
RGD peptides regardless of spacers or linkers.  The 
key for bivalency is the distance between two RGD 
motifs.  For example, this distance in 3P-RGD2 (38 
bonds) and 3G-RGD2 (26 bonds) is long enough for 

them to achieve bivalency, which leads to higher v3 
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binding affinity of DOTA-3P-RGD2 and 
DOTA-3G-RGD2 than that of DOTA-RGD2 (Table 2), 
and higher tumor uptake of111In(DOTA-3P-RGD2) 
and 111In(DOTA-3G-RGD2) than that of 
111In(DOTA-P-RGD2) [139].  In contrast, the concen-
tration factor might be responsible for the longer tu-
mor retention times (Fig. 13) of 111In(DOTA-6G-RGD4) 
as compared to that of 111In(DOTA-3G-RGD2). Even if 
6P-RGD4 and 6G-RGD4 are not tetravalent, the mere 
presence of two extra RGD motifs definitely helps to 
improve the radiotracer tumor retention time, which 
may become important for 90Y and 177Lu radiotracers, 

which have great potential for systemic radiotherapy 
of the αvβ3-positive tumors. 

It must be noted that the ability of a multimeric 
RGD peptide to achieve bivalency also depends on 
the αvβ3 density.  If the αvβ3 density is very high, the 
distance between two neighboring αvβ3 sites will be 
short, which makes it easier for the multimeric cyclic 
RGD peptide to achieve the bivalency.  If the αvβ3 
density is very low, the distance between two neigh-
boring αvβ3 sites will be very long, and it might be 
more difficult for the same multimeric cyclic RGD 

peptide to achieve simultaneous v3 binding.   

 
 

Figure 11. DOTA-conjugated cyclic RGD tetramers: DOTA-6P-RGD4 and DOTA-6G-RGD4. 
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Figure 12. Direct comparison of the tumor uptake of the 111In-labeled cyclic RGD dimers (3P-RGD2 and 3G-RGD2) and 

tetramers (RGD4, 6P-RGD4 and 6G-RGD4) in athymic nude mice bearing U87MG human glioma xenografts.  

 
 

 

Figure 13. The whole-body planar images of the tumor-bearing mice administered with ~100 Ci of 
111In(DOTA-6G-RGD4) and 111In(DOTA-3G-RGD2) at 1, 4, 24 and 72 h p.i. The concentration factor is responsible for the 

longer tumor retention time of 111In(DOTA-6G-RGD4) (left) as compared to that of 111In(DOTA-3G-RGD2) (right). 

 

 

3. IIb3–TARGETED RADIOTRACERS FOR 
THROMBOSIS IMAGING 

Cardiovascular diseases and vulnerable plaque. Car-
diovascular diseases are the most frequent causes of 
death in the Western world. Atherosclerosis is the 

main cause of coronary and peripheral arterial dis-
eases [185-189]. Atherosclerosis is a chronic and pro-
gressive systemic disease, with a long asymptomatic 
phase, characterized by accumulation of lipids, in-
flammatory cells and connective tissue within the 
intima of arterial wall [187, 189]. The initial pathologic 
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abnormality is the fatty streak, due to accumulation of 
lipoproteins and macrophages, which may develop 
into a mature atherosclerotic plaque, with a lipid core 
bounded on its lumen side by a fibrous cap containing 
vascular smooth muscle cells and connective tissue. 
Atherosclerosis remains clinically silent until the le-
sion can expand to the point at which it limits flow, 
producing symptoms of reversible ischemia, such as 
angina, during periods of high demand [187-192]. 
Alternatively, the fibrous plaque can erode or rupture, 
resulting in the exposure of subendothelial collagen 
and lipid [187, 190], which leads to activation of 
platelets and clotting cascade proteins. Platelet acti-

vation upregulates IIb3 (or glycoprotein IIb/IIIa) on 
the platelet surface which, when stimulated, promote 
platelet aggregation [193-199]. Activation of clotting 
factor proteins VII and XI results in production of 
thrombin, fibrinogen, and fibrin through the so-called 
extrinsic and intrinsic coagulation pathways, respec-
tively. The result is the formation of thrombus com-
posed of both fibrin and platelets. The consequences 
of plaque rupture range from complete lysis of the 
thrombus by endogenous fibrinolytic pathways with 
subsequent healing of the fibrous cap and overlying 
endothelium to the unchecked thrombosis and com-
plete lumen occlusion. Such an event can range from 
being clinically silent at one extreme through precip-
itation of an acute vascular event, such as unstable 
angina, myocardial infarction or stroke, to sudden 
death at the other extreme [188-190]. It is the rupture 
of plaque and formation of a thrombus that causes the 
most serious complications of atherosclerosis, such as 
acute coronary syndromes and stroke [187, 189, 190]. 
In fact, the plaque rupture is responsible for 76% of all 
fatal heart attacks caused by coronary thrombosis 
worldwide [187-190, 196-204]. Thus, early detection of 
the processes underlying progressive plaque destabi-
lization for the purpose of identifying the patients in 
whom rupture of a vulnerable plaque is likely to re-
sult in a clinical event, is of the utmost importance 
[201-205]. Since the disruption of atherosclerotic 
plaques is known to initiate thrombus formation 
leading to thrombotic and thromboembolic events, it 
has been suggested that the thrombogenicity of ath-
erosclerotic plaques is one of the most promising ap-
proaches to detecting vulnerable plaques [189, 190, 
196-205]. From this point of view, the accurate detec-
tion of the intra-arterial thrombus noninvasively 
could have significant diagnostic and prognostic im-
plications [201-205].  

Deep vein thrombosis (DVT). DVT is the formation 
of blood clots in veins and is also known as venous 
thromboembolism [14, 65, 206]. DVT occurs when a 
thrombus forms in one of large veins in the lower 

extremities, leading to partially or completely blocked 
blood circulation. The condition may result in health 
complications, such as a pulmonary embolism (PE) or 
death if not diagnosed and treated effectively. A ma-
jority of DVT patients will experience PE (~30% are 
symptomatic, and 40% are asymptomatic and at high 
risk) because the blood clot is unstable and can travel 
to, and lodges in, the lungs. More than 1 million peo-
ple in the United States suffer from DVT blood clots 
every year. Complications from DVT blood clots kill 
almost 300,000 people a year —more than AIDS and 
breast cancer combined [14, 206]. Thus, accurate early 
detection of DVT and PE is highly desirable so that 
various therapeutic regimens can be given.  

Imaging arterial thrombi. To identify healthy sub-
jects at risk for future cardiovascular events, a con-
sensus of experts has recently defined criteria for the 
diagnosis of vulnerable plaques [190, 192]. Major cri-
teria have been established to represent different as-
pects of the rupture-prone plaque. These include the 
calcified nodules, yellow appearance of the plaque, 
intraplaque hemorrhage, thrombogenicity, active in-
flammation and plaque injury. Further major criteria 
include a thin cap, a large lipid core, and luminal 
stenosis [190, 192, 203]. Although many imaging 
techniques are now clinically available for diagnosis 
of luminal narrowing, arterial occlusion and intra-
mural hematoma [201-205], arterial thrombi are not 
reliably detected by current diagnostic methods. 
Coronary angiography remains the gold standard to 
assess vessel lumen narrowing. Other invasive tech-
niques include intravascular coronary ultrasound, 
coronary angioscopy, intravascular elastography, 
elastography, thermography, or optical coherence 
tomography [201-205, 207]. These techniques can 
provide anatomic details of plaque size and composi-
tion, but they have the disadvantage of being inva-
sive. MRI and CT have also been used for diagnosis of 
arterial thrombi; but these two modalities are ana-
tomical and functional [208-213]. It is difficult to dis-
tinguish the ―fresh‖ and ―old‖ thrombi with MRI and 
CT. In contrast, nuclear imaging by SPECT and PET 
has the most potential to furnish functional infor-
mation on biologic events which determine the risk of 
plaque rupture [201, 203, 205]. Besides their noninva-
sive nature, nuclear medicine techniques have the 
potential to evaluate important determinants of 
plaque vulnerability, taking into account specific cel-
lular or biochemical changes that characterize these 
lesions. Radiolabeled monoclonal antibodies have 
been used to target fibrin or platelets on acute thrombi 
in humans [214-229], but they were expected to have 
very limited clinical usage due to their long blood 
circulation time. These limitations can be alleviated by 
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using synthetic peptides that are much smaller and 
are cleared quickly from the blood circulation 
[230-232]. Examples of 99mTc-labeled small peptide 
radiotracers include 99mTc-apcitide [233-239] and 

DMP444 [240-255], both of which target IIb3 recep-
tors on the activated platelets. 99mTc-TP850 is a 
99mTc-labeled linear peptide targeting the fibrin com-
ponent of thrombi [256]. The peptide-based radio-
tracers for thrombus imaging have been reviewed 
extensively [201-205, 257-265].  

Imaging deep vein thrombosis. Contrast-enhanced 
venography remains the gold standard for diagnosis 
of DVT, but compression ultrasonography is the most 
common technique used to detect DVT in the lower 
extremities. Pooled analyses showed that ultraso-
nography has a sensitivity of 96 % and a specificity of 
98 % for proximal vein thrombosis. The primary lim-
itation of these diagnostic procedures is that neither 
technique can distinguish between chronic and un-
stable thrombi [14, 207, 259]. Both contrast venogra-
phy and ultrasonography are imaging procedures 
that detect changes in venous anatomy that are caused 
by the intraluminal thrombus that is sufficiently 
formed either to reduce vascular filling with contrast 
medium or to resist compression. However, these 
procedures do not reflect the metabolic activity of the 
clot, and therefore, they may overestimate the pres-
ence of active clots. The sensitivity of ultrasonography 
is also limited by disease-related and technical factors. 
An alternative approach for diagnosis of acute DVT is 
to detect a molecular marker that is not present in old, 
organized DVT.  

99mTc-apcitide: approved for imaging DVT. One of 
the important components of clotting process is 
platelet activation, which leads to the expression of 

IIb3 receptors that bind fibrinogen and promote 
platelet–platelet interaction, resulting in platelet ag-
gregation and the formation of a secure plug. Many 

synthetic peptides targeting the IIb3 on activated 
platelets have been successfully radiolabeled with 
99mTc. Because of their small size, these radiotracers 
often have very rapid clearance from the blood circu-
lation. For example, 99mTc-P280 (Fig. 14: 
99mTc-apcitide) was the first RGD-mimicking peptide 
studied in humans [233]. 99mTc-apcitide was shown to 

specifically bind the IIb3 (IC50 = 0.20 ± 0.11 μM for 
dog platelets as compared with 0.056 ± 0.011 μM for 
human platelets), and to selectively accumulate in 
fresh thrombi [233, 234]. Imaging studies in dogs also 
showed that the thrombus could be readily detected 
with 99mTc-apcitide [234]. A pilot study of 9 patients 
with carotid atherosclerosis showed the uptake in 11 
of 18 carotid arteries after injection of 99mTc-apcitide 
[237, 238]. There was only a moderate correlation 

when compared with ultrasound findings. Bates et al 
enrolled patients with newly diagnosed first DVT and 
the patients with previous DVT [235]. It was found 

that the sensitivity and specificity of 99mTc-apcitide 
were 92% and 86%, respectively, for differentiating 
between the acute and chronic thrombus [235]. 
99mTc-apcitide had a sensitivity and specificity of 87% 
and 100%, respectively, for the patients with DVT. 
These data have clearly demonstrated the potential of 
the 99mTc-apcitide scintigraphy to address the im-
portant issues in terms of identifying the arterial le-
sions responsible for recent symptoms. However, 
99mTc-apcitide was not particularly useful for detec-
tion of pulmonary embolism (PE) in 83% of the pa-
tients, most likely due to its low thrombus uptake and 
prolonged radioactivity accumulation in the blood 
pool and chest region [234]. 99mTc-apcitide has been 
approved by FDA (Food and Drug Administration) 
for imaging acute venous thrombosis in the lower 
extremities of patients. Apcitide (AcuTec™) is availa-
ble commercially as a non-radioactive freeze-dried kit 
that can be labeled with 99mTc for clinical usage 
[236-239]. 

 
 

 

Figure 14. Structure of 99mTc-apcitide, a cyclic RGD pep-

tide mimetic specifically binding to the IIb3 expressed on 

fresh thrombi. 99mTc-apcitide has been approved by FDA for 

diagnosis of DVT in patients. 

 
 
DMP444: clinically useful for imaging DVT. Acti-

vated platelets express IIb3 receptors which recog-
nize proteins and small peptides bearing the RGD 
sequences while non-activated platelets express vir-

tually no IIb3 receptors in their active conformation 
[240]. DMP728 and DMP757 (Fig. 2) were originally 
developed by DuPont Merck Pharmaceuticals as an 
antithrombotic agents and had very high selectivity 
and binding affinity for GPIIb/IIIa with IC50 values in 
the nanomolar range against fibrinogen binding to the 
activated platelets [240]. Therefore, DMP728 and 
DMP757 are excellent biomolecules to target the fresh 
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thrombi. Liu and coworkers at DuPont Medical Im-
aging used the 6-aminocaproic acid linker to connect 
DMP757 with a Tc-binding group, and to keep the Tc 
chelate separate from the cyclic RGD motif to mini-
mize the impact of 99mTc-labeling on the binding af-

finity for IIb3 [241-247]. The N2S2 and N3S-type of 
BFCs were used for 99mTc-labeling of DMP757. It was 
found that BFCs had a significant impact on thrombus 
uptake and excretion kinetics of radiotracers 
[240-244]. DMP444 (Fig. 15: top) was prepared using 
HYNIC as the BFC, tricine and TPPTS as coligands. 
Among the 99mTc radiotracers evaluated in various 
models, DMP444 had the best thrombus uptake with 
the highest thrombus/blood and thrombus/muscle 
ratios [246]. In the AV shunt model, DMP444 was 
rapidly incorporated into thrombi under both venous 
and arterial conditions [246]. In the canine DVT mod-
el, DMP444 was able to detect a growing venous 
thrombus (Fig. 15: bottom) as early as 15 min p.i. 
DMP444 has a slow blood clearance (45 % of the in-
jected dose at 2 h) and a high thrombus uptake (9.93 ± 
0.52 % ID/g for arterial thrombi; and 2.86 ± 0.37 % 
ID/g for venous thrombi). Mitchel et al [250] tested 
the ability of DMP444 to identify platelet-rich 
thrombus in a canine model, and found that the 
thrombus radioactivity correlated well with thrombus 
weights. Kaul’s group found that the micro-
throboembli can be detected after primary percuta-
neous transluminal coronary angioplasty (PTCA), and 
the infarct size was proportional to the magnitude 
and extent of microthroboembli [255]. Thrombus im-
aging during reperfusion may provide important in-
formation in the patients with acute myocardial in-
farction that may lead to better adjuvant therapy 
during PTCA. In the patients suspected with DVT, no 
clinically significant adverse effects were noted after 
administration of DMP444 [253]. Most of patients 
were taking Warfarin® (Coumadin®) and heparin (n 
= 8) or Heparin® (n = 1) and Warfarin® (n = 1) alone 
at the time of imaging. The average time from the 
onset of symptoms to injection of DMP444 was 5 days 
(range 1 to 18 days). At 10 – 40 min p.i., 8 of 10 pa-
tients demonstrated an area of the increased radioac-
tivity that was clearly related to the abnormality as 
noted by ultrasound methods [253]. These prelimi-
nary data lead to the comprehensive Phase II clinical 
studies. It was concluded that DMP444 is very useful 
for noninvasive imaging of DVT with high sensitivity 
and specificity. In addition, it has also shown that the 
DMP444 SPECT allows in vivo visualization of infec-
tive endocarditis if it is performed within 1 to 2 weeks 
after antibiotic treatment [251]. A non-radioactive 
freeze-dried kit has been developed, and can be used 
for routine 99mTc-labeling in clinical settings [248, 266]. 

 

Figure 15. Top: Structure of DMP444; Bottom: DVT 

images of a dog administered with DMP444 at 15, 30, 60, 

and 120 min post-infusion. The bar to the right of the im-

ages indicates the scale from 0 (white) to 506 (great-

est/black). The phase II clinical studies have demonstrated 

that DMP444 is clinically useful for imaging DVT.  

 

4. SUMMARY AND OUTLOOK 

Radiolabeled cyclic RGD peptides represent a 
new class of radiotracers for diagnosis of tumor or 

thrombosis, depending upon their selectivity for v3 

or IIb3. While cyclic RGD pentapeptides have high 

binding affinity and selectivity for v3, the cyclic 
hexapeptides with one or more rigid aromatic rings 
tend to show high binding affinity and selectivity for 

IIb3 over v3/v5. The v3-targeted radiotracers 
have the potential for early detection of rapidly 
growing and metastatic tumor, and for monitoring the 
tumor growth, metastasis and therapeutic response 
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by PET or SPECT [267, 268]. [18F]Galacto-RGD, 
[18F]AH111585 and 99mTc-NC100692 are currently 
under clinical investigations for noninvasive visuali-

zation of the v3-positive tumors in cancer patients. 

While the research efforts on v3–targeted radiotrac-
ers have been focused on new RGD peptides with the 

improved v3 affinity, the formulation development 
for routine preparation of radiotracers remains to be 
strengthened. It must be emphasized that the success 

of a new v3-targeted radiotracer relies largely on its 
clinical availability at reasonable cost and capability to 
improve the quality of cancer patient’s life. In this 
respect, the 99mTc radiotracers will offer significant 
advantages because of the nuclear properties of 99mTc 
for SPECT, easy availability of 99Mo-99mTc generators, 
and the kit formulation for routine preparation of 
99mTc radiotracers at low cost. 

Increasing the RGD peptide multiplicity can 

significantly enhance their v3 binding affinity, and 
improve tumor targeting ability of their radiotracers. 
However, the tumor selectivity is not substantially 
improved because the uptake of radiolabeled cyclic 
RGD peptide multimers in the intestine, liver and 
kidneys is also significantly increased. As a result, 
there is no significant advantage in using radiolabeled 
tetramers (such as RGD4, 6G-RGD4 and 6P-RGD4) 
over their dimeric counterparts (such as 3G-RGD2 and 
3P-RGD2) as diagnostic radiotracers with respect to 
the tumor selectivity or T/B ratios. Among the cyclic 
RGD dimers evaluated in different preclinical tu-
mor-bearing animal models, 3G-RGD2 and 3P-RGD2 

are the best v3-targeting biomolecules because their 
corresponding PET and SPECT radiotracers tend to 
have excellent tumor uptake with very high T/B ra-
tios. Recently, 99mTc-3P-RGD2 has been selected as a 
candidate for clinical evaluations because of its high 
tumor uptake, long tumor retention and high meta-
bolic stability [174, 175]. 

It is important to emphasize that v3 is also 
over-expressed on the activated endothelial cells 
during wound healing and post-infarction remodel-
ing, in rheumatoid arthritis and psoriatic plaque 

[269-271]. Thus, the v3–targeted radiotracers de-
veloped for tumor imaging have been proposed for 
imaging myocardial angiogenesis. For example, re-
cent studies clearly showed that the 111In-labeled 

nonpeptide v3 antagonist (RP748) was able to image 
angiogenesis in the heart after myocardial infarction 
[271], and the radiotracer uptake in the infarct region 

was associated with the level of v3 expression. The 
results from imaging studies also suggest that 
[18F]Galacto-RGD might be a powerful tool to distin-
guish between acute and chronic phases of T-cell me-

diated immune responses [272]. These promising re-
sults give rise to the possibility of extending applica-

tions of the v3–targeted radiotracers from imaging 
tumor angiogenesis to detection of inflammatory 
processes, and to monitoring outcomes of therapeutic 
interventions in patients with cancer, myocardial in-
farction, and inflammation.  

While the DVT can be detected by con-
trast-enhanced venography and compression ultra-
sonography, accurate detection of arterial thrombi 
and PE remains a significant challenge because of 
their small size and location. 99mTc-apcitide was ap-
proved for diagnosis of DVT; but its T/B ratios are 
low due to its accumulation in the blood pool and 
chest region [246]. DMP444 has higher thrombus up-
take with better T/B ratios than 99mTc-apcitide [240, 
246]. However, its blood clearance rate is relatively 
slow, due to the lipophilic 6-aminocaproic linker 
and/or the highly charged ternary ligand system. 
Therefore, the focus of future research in this area 
should be directed towards developing more efficient 
radiotracers that have faster blood clearance and are 
useful for accurate detection of small thrombosis le-
sions in the coronary artery, as well as DVT and PE in 
patients. The ―bivalency concept‖ developed for 

v3-targeted radiotracers may also apply to cyclic 

RGD hexapeptides to improve the IIb3-targeting 
capability. Since thrombus formation represents the 
final step in atherosclerosis progression, imaging with 

the v3-targeted radiotracers may be able to not only 
identify those patients at high risk for cardiovascular 
events (death, myocardial infarction or stroke) not 
identified by routine clinical evaluation, but also 
characterize the lesion vulnerability in high-risk areas 
of the coronary vasculature. Once the lesion is deter-
mined to be of particularly high risk, novel local 
therapies such as intracoronary drug-eluting stents or 
local drug delivery with suitable drug-delivery bal-
loon catheters could be justified. In addition, molecu-
lar imaging of arterial thrombi will help to select the 
individualized treatment strategies based on the mo-
lecular profile of vulnerable plaques identified in a 
particular patient. 
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