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Prioritization of immunogenic neoantigens is key to enhancing cancer immunotherapy
through the development of personalized vaccines, adoptive T cell therapy, and the
prediction of response to immune checkpoint inhibition. Neoantigens are tumor-specific
proteins that allow the immune system to recognize and destroy a tumor. Cancer
immunotherapies, such as personalized cancer vaccines, adoptive T cell therapy, and
immune checkpoint inhibition, rely on an understanding of the patient-specific neoantigen
profile in order to guide personalized therapeutic strategies. Genomic approaches to
predicting and prioritizing immunogenic neoantigens are rapidly expanding, raising new
opportunities to advance these tools and enhance their clinical relevance. Predicting
neoantigens requires acquisition of high-quality samples and sequencing data, followed
by variant calling and variant annotation. Subsequently, prioritizing which of these
neoantigens may elicit a tumor-specific immune response requires application and
integration of tools to predict the expression, processing, binding, and recognition
potentials of the neoantigen. Finally, improvement of the computational tools is held in
constant tension with the availability of datasets with validated immunogenic neoantigens.
The goal of this review article is to summarize the current knowledge and limitations in
neoantigen prediction, prioritization, and validation and propose future directions that will
improve personalized cancer treatment.
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1 INTRODUCTION

Neoantigens are tumor-specific mutated peptides that are key targets of the anti-cancer immune
response, because neoantigens are not subject to immune tolerance (non-reactivity to self) (1–4).
Three classes of cancer therapies reliant on the neoantigen expression and presentation by MHC are
personalized neoantigen vaccines, adoptive T cell therapy, and immune checkpoint inhibitors.
Personalized neoantigen vaccines have gained momentum in recent years because of their early
success (5–9). Several approaches to vaccination have been attempted to date, including direct
exposure to neoantigens (6), neoantigen-encoding RNA vaccines (7), and neoantigen-loaded
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dendritic cell vaccines (5). Regardless of the vaccination strategy,
all personalized neoantigen vaccines rely on accurate prediction
of immunogenic neoantigens, neoantigens that are presented by
MHC and elicit a T cell-mediated immune response.

Adoptive T cell therapy has also demonstrated promise as a
targeted immunotherapy. Adoptive T cell therapy includes
transfer of tumor-infiltrating lymphocytes and T cells
genetically modified to express a T cell receptor (TCR) or
chimeric antigen receptor. Early attempts at adoptive T cell
therapy focused on introducing T cells specific for tumor
associated antigens including MAGE-A3 in melanoma and
carcinoembryonic antigen (CEA) in colorectal cancer (10, 11).
However, the lack of tumor-specificity of these antigens led to
significant off target effects and severe toxicity. There is,
therefore, growing interest in the application of neoantigen-
specific adoptive T cell therapy to enhance T cell mediated
tumor-destruction while reducing off target effects (1, 12–15).
As for personalized neoantigen vaccines, adoptive T cell therapy
specific to neoantigens relies on accurate prediction of
immunogenic neoantigens.

Tumor-specific neoantigens are also the target of cancer
immunotherapy with immune checkpoint inhibitors (16, 17).
Immune checkpoint inhibitors, including monoclonal antibodies
against PD-1 and CTLA-4, block inhibitory signals to the T cells
to increase T cell-mediated tumor destruction (18).
Unfortunately, immune checkpoint inhibitors are only effective
in a subset of patients and are associated with immune-related
adverse events. Thus, there is interest in predicting which
patients will respond to treatment with a single immune
checkpoint inhibitor and which would benefit from
combination therapy. Several recent studies have demonstrated
that the predicted immunogenic neoantigens are more strongly
associated with response to immune checkpoint inhibition than
mutational burden (19–23). Accurately determining the
association of neoantigen immunogenicity with response to
Frontiers in Oncology | www.frontiersin.org 2
immune checkpoint inhibition relies on accurate prioritization
of immunogenic neoantigens.

Successful identification of immunogenic neoantigens using
traditional genomic approaches requires a combination of
neoantigen prediction and neoantigen prioritization (Figure 1).
Neoantigen prediction requires sample acquisition, high quality
sequencing data, prediction of the somatic mutations present in
the tumor cell (variant calling), and accurate prediction of the
neoantigens resulting from these somatic mutations (variant
annotation). A few considerations for neoantigen identification
include the tissue types to be sequenced, the best collection/
preservation method for the tissues, and the type of sequencing
data to be obtained. Additionally, one should decide on the types
of mutations to be considered, appropriate methods by which to
identify these mutations, and the most accurate annotation
methods. Prioritization of immunogenic neoantigens relies on
a thorough understanding of the characteristics of a neoantigen
and the optimal ways of combining these characteristics to
predict the potential of the neoantigen to elicit an immune
response. For both MHC class I- and II-restricted neoantigens,
characteristics that have been considered include expression of
the neoantigen of interest, processing of the peptide including
proteasomal cleavage and transport into the endoplasmic
reticulum, binding of the neoantigen to MHC class I or II, and
TCR recognition. Several tools are available for predicting each
of these characteristics, and a variety of models have synthesized
the characteristics into an overall immunogenicity score (21–26).
We will review the available literature to guide decisions for each
step in neoantigen prediction and prioritization and highlight
areas for future research.

Datasets containing neoantigens that are validated to bind
MHC class I or II and elicit a CD8+ or CD4+ T cell response are
critical for assessing the overall performance of genomic
pipelines and driving improved computational neoantigen
identification. As the available datasets increase, models for
FIGURE 1 | Overview of neoantigen prediction, prioritization, and validation. Neoantigen prediction relies on sample acquisition, high quality sequencing data, variant
calling, and variant annotation. Neoantigen prioritization requires predicting some combination of the potential for the neoantigen to be expressed, processed, bound
by MHC, and recognized by the T cell receptor (TCR). The development of neoantigen prioritization models relies on the availability of validated datasets of neoantigen
immunogenicity. Figure created with BioRender.com.
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neoantigen prioritization will be refined. Currently, many
datasets are available for MHC class I-restricted neoantigens
derived from single nucleotide variants (SNVs) and small
insertions and deletions (indels). There are limited datasets
available for MHC class II-restricted neoantigens and a lack of
datasets for neoantigens derived from large indels, frameshifts,
and gene fusions. We will summarize the available datasets and
highlight ways to enhance future validation sets for continued
improvement of neoantigen prediction and prioritization.
2 NEOANTIGEN PREDICTION

2.1 Sample Acquisition
Sample collection and sequencing are the first steps in
performing neoantigen prediction and prioritization from
DNA- or RNA-level mutations. While proteomic-based
methods, which do not universally require the sequencing data
presented here, have been created with direct profiling of
peptides bound to MHC class I or II molecules, these are
beyond the scope of this review article and have been
discussed (27). Decisions related to sequencing can broadly be
classified into the types of tissue needed, tissue collection
methods, and types of sequencing. Here, we provide an up-to-
date review of the literature to help guide each of these decisions
(summarized in Figure 2).

The first consideration for sample acquisition is the tissues
that need to be used to generate accurate somatic variant calls;
specifically, whether a germline reference sample is required for
variant calling. Typically, tumor and germline samples are
compared to identify tumor-specific, somatic mutations.
However, germline samples are not always available, especially
for archived samples, though they can be collected in clinical
settings. Therefore, there is continued interest in whether
neoantigens can be identified in the absence of a germline
Frontiers in Oncology | www.frontiersin.org 3
sample. A patient-specific germline sample is currently the best
available method to ensure that the variants being detected are
due to true somatic mutations, rather than germline mutations
(28). A few novel approaches have been suggested to reduce the
number of germline variants identified without a germline
reference sample (29–31). One such method uses tumor tissue
only and assumptions about differences in the allelic frequency of
the germline variants, compared to somatic variants to filter
results. A germline heterozygous mutation should be closer to a
50% allelic frequency, whereas a somatic heterozygous mutation
is likely to have less than a 50% allelic frequency because they
won’t be present in germline tissue, only tumor samples.
However, the assumption that a somatic heterozygous
mutation will have less than a 50% allele frequency is
complicated by copy number variations and stromal
contamination, which are also accounted for in the model.
Across seven test tumors, the sensitivity of the method ranged
from 44-87%, which the authors acknowledge is too low to
currently be applicable for clinical use (30). Another method
performed variant calling for a tumor compared to 20
unmatched normal samples and kept variants that were
identified in 90% of the comparisons. The variants were also
filtered by 1) elimination of variants with the same allelic
frequency as known germline mutations, 2) removal of
variants from hard to map regions of the genome and 3)
elimination of C!T and G!A mutations with low allelic
frequencies. This method reported a 94% sensitivity, 99%
specificity, and 76% positive predictive value (31). These
numbers exceed those of other available tools and indicate that
tumor-only variant calling may be an option for clinical
applications in the future. However, these results were only
validated for a set of stringently selected somatic mutations
suggesting that further analysis would be needed to ensure that
the results are stable for a more comprehensive set of tumor
mutations. While the field of somatic variant calling is constantly
FIGURE 2 | Sample collection and sequencing considerations. Here we describe considerations for obtaining sequencing data for neoantigen prediction including
tissues needed, tissue collection method, and sequencing types. Figure created with BioRender.com.
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improving, until the sensitivity and specificity of available
methods improve, a germline sample is recommended.

When using a germline sample, a second question is which
tissue source is the most accurate to use as the germline
reference. Options that have been frequently employed in the
literature include saliva, blood, or tumor-adjacent tissue, but the
source of germline tissue can affect which variants are called as
tumor-specific. Each tissue has its advantages and disadvantages.
Saliva has the advantage of being a readily available, non-invasive
method for obtaining a germline DNA reference. However, two
recent studies using whole genome sequencing (WGS) on saliva
samples demonstrated a risk for contamination from bacteria
and food DNA that can influence the read mapping and variant
calling (32, 33). When aggregated across four patients, saliva
resulted in the identification of 776 unique coding variants
compared to 157 from blood. Manual inspection of a sampling
of the saliva-only variants demonstrated that most were
attributable to bacterial contamination (32). The risk of
bacterial contamination may be lessened in whole exome
sequencing (WES) where hybridization methods are used to
capture exons; however, an older study demonstrated bacterial
contamination in WES data (34). To our knowledge, there are no
studies that assess the impact of bacterial contamination on
variant calling from WES data.

While slightly more invasive than saliva collection, blood still
has the advantage of being minimally invasive. A study on
optimizing cancer genomics experiments suggests that blood
may be the best germline reference for solid tumors. Blood is a
different tissue origin from most solid tumors and may have a
lower risk for tumor-in-normal contamination than tumor-
adjacent tissue (35). While the advantage of no tumor-in-
normal contamination could be undermined by circulating
tumor cell contamination, examination of ten cancer types
from the Cancer Genome Atlas (TCGA) demonstrated no
detection of tumor-in-normal contamination across the 304
blood samples tested (36). The tested blood samples were from
patients with untreated primary tumors, so the risk of circulating
tumor cells may be greater in advanced and metastatic disease. A
recently developed tool, DeTiN has also been suggested as a
means of removing the tumor-in-normal contamination (36).
DeTiN demonstrated increased true positive variant detection
with no significant change in the false positive rate (36).

With regards to tumor-adjacent tissue, a factor to consider is
the potential for shared mutations between the tumor and
tumor-adjacent tissue (37). One cause of these shared
mutations could be exposure to a shared carcinogen. For
example, recent work in skin cancer has demonstrated that
there are early mutations in non-tumor sun-exposed skin due
to exposure to ultraviolet radiation (38). Recent evidence has
demonstrated the presence of somatic mutant clones within
normal tissue (39–41). These somatic mutant clones can have
numerous somatic mutations, a portion of which overlap with
tumor mutations (41). It is unclear whether the presence of
shared mutations within the tumor-adjacent sample will benefit
or hinder the therapeutic utility of identified neoantigens. Shared
mutations between tumor and tumor-adjacent tissue introduce
Frontiers in Oncology | www.frontiersin.org 4
the risk of eliminating neoantigens that occur in the cancer field
and pre-cancerous lesions. However, the elimination of shared
mutations may better facilitate tumor-specific targeting. Overall,
if the goal is to maximize the number of tumor mutations
identified, blood is the best available germline comparison for
solid tumors, since it minimizes the risk of bacterial
contamination and is the least likely to have a shared
mutational profile. Additional research will be needed to assess
the relative therapeutic benefits of neoantigens shared with the
cancer field compared to unique tumor mutations.

Two common options for storing tissues used for neoantigen
identification are fresh-frozen and formalin-fixed, paraffin-
embedded (FFPE) samples, and each sample type has strengths
and weaknesses. Fresh-frozen samples are attractive, because the
samples have minimal processing that can affect DNA integrity;
and typically, fresh-frozen samples can be used for both DNA
and RNA isolation. However, fresh-frozen samples require a
biobank setup to collect and are not part of routine clinical care.
FFPE samples have the distinct advantage of being routinely
collected in clinical settings, but have a characteristic set of
mutations due to the preservation method and lack reliable
RNA. A recent side-by-side comparison of variant calling in
FFPE compared to fresh-frozen samples found that FFPE
samples have ~5% more variants called than paired, fresh-
frozen samples (42). The false discovery rate (FDR) was highly
concentrated in the variants with low allelic frequency and is also
predominated by C!T and G!A transitions due to
deamination of methylated cytosine position (42), introduced
by the FFPE process. Going forward, new approaches have been
developed with DNA extraction kits that include enzymatic
removal of cytosine deamination artifacts. Extraction with
enzymatic removal of artifacts was shown to decrease the
estimated FDR in low allelic frequency variants from 94.8% to
69.8% (42). Thus, fresh-frozen samples are preferred when
possible; and when FFPE samples are used, DNA extraction
protocols specific for FFPE samples are recommended.

Three possible bioinformatic methods can be applied to
reduce false positives from FFPE damage: 1) taking the overlap
from multiple variant callers, 2) eliminating low variant allele
frequency variants, and 3) eliminating characteristic FFPE
mutations. de Shaetzen et al. demonstrated increased
agreement of variants called from FFPE with a set of high-
confidence variants from fresh-frozen tumors when analyzing
the overlap of at least two of the four variant callers employed:
Strelka2, GATK Mutect2, Shimmer, and VarScan2 (43). A
limitation to the consensus approach is that it may emphasize
specificity over sensitivity and eliminate variants with potential
clinical significance. Another approach (to be taken
independently or in combination) is to filter out low allelic
frequency calls, as one study suggested that the bulk of the
false positives occur at lower frequency (42). However, a separate
study demonstrated that highly reliable variants from fresh-
frozen samples were generally represented at a lower allelic
frequency in FFPE samples than in fresh-frozen samples (43).
Additionally, the discrepancies between FFPE and fresh-frozen
samples that remained after using the overlap of two out of four
March 2022 | Volume 12 | Article 836821
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variant callers were demonstrated to be due to differences in the
subclonal population (43). If low frequency variants are not
errors, but rather represent subclonal populations, then
eliminating the low frequency variants will result in a reduced
ability to predict neoantigens. A newer method called Ideafix
uses machine learning to consider a range of characteristics of
the mutation to determine the likelihood of that mutation being
an artifact of FFPE preservation. These characteristics include
the variant allele frequency, the C!T mutational signature, the
genomic context of the variant (based on flanking nucleotides
that may increase the risk of deamination), and strand bias
(whether the mutation is only identified on forward or reverse
strand reads). Combining these features with a machine learning
algorithm demonstrated an area under the receiver operator
characteristics curve (AUC) of over 0.96 in two independent test
datasets (44). Other recently developed models have taken a
similar approach (45, 46). One potential challenge for these
approaches is the inability to distinguish between true C!T
mutations, including those enriched in ultraviolet light-induced
tumors, and those that are artifacts due to FFPE processing.
Overall, application of a newer model such as Ideafix may be
helpful in eliminating FFPE artifacts while sacrificing minimal
clinically relevant variants.

2.2 Sequencing
Each type of sequencing, including RNA sequencing (RNAseq),
WGS, WES and combined approaches have potential advantages
and limitations with regards to neoantigen prediction and
prioritization. Traditionally, WGS or WES have been the
preferred sequencing types for variant calling. WGS has the
advantage of allowing for the identification of certain structural
variants that are excluded byWES data (discussed below) but has
the disadvantage of being more expensive than WES data (47).
RNAseq data is a potential alternative to WGS or WES
sequencing as it would allow for variant calling, as well as
differential expression analysis and incorporation of mRNA
expression data into neoantigen prioritization. Using RNAseq
data for both variant calling and expression is a potentially
attractive measure to reduce sequencing costs. However,
methods for variant calling from RNAseq data have not been
traditionally considered high enough quality to be used in
isolation (48). Recent benchmarking demonstrated a low level
of agreement between WES and RNAseq variants (49). One of
the likely causes of the discrepancy between WES and RNAseq
variants is that WES does not include all areas of the genome that
may be transcribed, as another study demonstrated that ~71% of
RNAseq-only variants occurred in regions not covered by the
WES capture (48). Other possible causes include RNA-level
modifications or differences in the read depth (49). To assess
the performance of each method, variants called were compared
to the COSMIC and dbSNP databases. The COSMIC database is
a set of known cancer-specific mutations, whereas the dbSNP
database is a database of variants known to exist in a healthy
population. Therefore, enrichment of COSMIC-only variants
reflects an increase in the likelihood of the mutation being a
somatic mutation (49). Taking the intersection of RNAseq and
WES variants led to enrichment of COSMIC-only variants, with
Frontiers in Oncology | www.frontiersin.org 5
87.7% being COSMIC-only in the intersection approach
compared to 39.5% in the WES and 3.0% in the RNAseq
approach (49). A limitation acknowledged by the authors is
that the COSMIC database is limited primarily to variants
previously identified by WES analysis, so many RNAseq
mutations may not be included in the COSMIC database.
Overall, although WES-only approaches have been the most
popular to date, there are possible advantages to RNAseq-based
variant calling approaches. Further work is warranted to
document the rates of true positive and false positive variant
calls with RNAseq and WES approaches.

One final sequencing type to consider is a newer method for
ribosomal profiling known as Ribo-seq, which allows for the
specific transcription of all proteins being actively translated at
the time of cell lysis (50). Ribo-seq has two potential advantages
in the space of neoantigen prediction and prioritization. First, it
has been proposed as a novel approach for detecting neoantigens
derived from open reading frames by providing a snapshot of the
reading frames of all proteins being translated in the cell (51).
Secondly, Ribo-seq has the potential to give a more accurate
expression profile for the purposes of neoantigen prioritization
(discussed below). Given the novelty of the Ribo-seq approach, it
does have the downside of being expensive and less readily
available (51). Overall, further research is needed to fully
explore the potential applications and advantages of Ribo-seq
technology in neoantigen prioritization.

2.3 Variant Calling
While SNVs and small indels have been the only sources of
neoantigens considered in most studies to date, a growing body
of evidence demonstrates the need to consider a much broader
set of neoantigens (52–54) (summarized in Figure 3). T cells
specific to a single gene fusion mutation led to complete clinical
response for a patient treated with immune checkpoint
inhibition, even in the absence of any other immunogenic
neoantigens (54). Large indels, particularly those that induce a
frameshift, have a significantly enriched percentage of
neoantigens predicted to bind with high affinity to MHC class
I (52). Additionally, the number of indels with a frameshift was
significantly associated with response to immune checkpoint
inhibitors across three independent melanoma cohorts (52).
Other targets of the immune response to cancer have been
suggested, including peptides selectively expressed in tumors,
foreign peptides in the case of viral-mediated cancers, and
peptides derived from antigen presentation in the absence
of transporter associated with antigen processing (TAP)
(53, 55–57). However, this review focuses specifically on
neoantigens derived from mutated peptides. This section will
assess the literature on identifying SNVs, small indels, DNA-level
structural variants (including gene fusions, large indels, and
frameshifts) and RNA-level gene fusions.

Software for identifying SNVs continue to offer very disparate
reports of the mutational profile, despite being the most common
variant to be identified (22, 23, 58). For example, recent work
across five patients compared the SNV and indel results from
Strelka2, VarScan2, and GATK Mutect2 and demonstrated that
an average of 84.41% (range 77.48-92.23%) of mutations were
March 2022 | Volume 12 | Article 836821
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identified by only one of the three callers, while 13.75% (range
7.21-22.17%) of mutations were identified by two of the three,
and 1.83% (0.35-5.30%) by all three (23). Because of these
disparities, selection of an SNV caller is a critical component
of neoantigen prediction.

Despite a large number of confounding variables, a few
software for identifying SNVs and small indels stand out across
multiple benchmarking studies (Tables 1, 2). Several confounding
factors were shown to influence the performance of variant callers,
including the type of validation sets employed (63), tumor purity
(61), read depth of the sequencing data (59), and upstream
features of the bioinformatic pipeline, such as read mapping
software (62). Additionally, across the six studies summarized in
Table 1 (59–64), only nine of the 21 SNV software were tested in
more than one study. Even with these confounding factors, GATK
Mutect2 and Deep Variant were routinely rated as the top or
second to top programs in terms of their sensitivity and specificity
for detecting SNVs and small indels. When tested at different
tumor purities, all variant callers demonstrated decreased
performance with decreased tumor purity (61). However,
TNscope and GATK Mutect2 maintained high performance for
significantly lower tumor purities than the other variant callers.
Deep Variant was not evaluated in this study. Overall, GATK
Mutect2 and Deep Variant showed consistently high performance
across multiple benchmarking studies, with GATK Mutect2
showing high performance even at lower tumor purities.

Consensus approaches have also been suggested, but
highlight the need to balance sensitivity and specificity,
especially for potential clinical applications. Wang et al.
demonstrated that a majority voting approach with LoFreq,
Mutect2, Strelka, and VarDict demonstrated an improved
balance of precision (false discovery rate) and recall (true
positive discovery rate) compared to any of the individual
methods (63). Wang et al. further enhanced these results by
giving increased voting power to Strelka and MuTect2 for
Frontiers in Oncology | www.frontiersin.org 6
variants with low variant allele frequency, as these variant
callers demonstrated stronger performance for low frequency
variants (63). For indels, results were also improved with the
majority voting approach, but showed even greater improvement
if a greater number of software identified the indel, suggesting
higher rates of false positives among indels (63). Bian et al.
demonstrated improved results, as measured by the average of
sensitivity and specificity, for SNVs using a majority voting
approach between FreeBayes, VarDict, and Mutect compared
to individual programs (60). FreeBayes, VarDict, and Mutect
were selected because they could be run with an integrated
Python package, but these programs were the three callers with
the worst balance of sensitivity and specificity when run
individually (60). Consensus approaches present a trade-off, as
they often improve specificity while decreasing sensitivity. While
increasing the specificity is important to avoid testing a large
number of false positive variants, lowered sensitivity increases
the risk of missing a clinically important variant. Therefore, an
important area for future research is to compare different
combination approaches and their influence on downstream
neoantigen prioritization.

Structural variants, defined as genomic alterations
encompassing at least 50 base pairs, can be identified well by a
single, high-quality software, and do not demonstrate a benefit
from a consensus approach (65). Structural variant types include
large indels (with or without a frameshift) and gene fusions (66).
Several software packages have been created for the identification
of structural variants. GRIDSS and Manta perform consistently
well across samples, as shown by Cameron et al. in a
benchmarking study evaluating precision and recall (65). An
advantage of Manta is that it works well with WES or WGS,
whereas GRIDSS is only applicable to WGS (67). Cameron et al.
also points out the risks of a combination approach with respect to
structural variants: a simple union approach can drive up the false
positives significantly, whereas conservative combinations, such as
FIGURE 3 | Types of mutations that can lead to neoantigens. Single nucleotide variants (SNVs) caused by a point mutation in a single nucleic acid. Insertions and
deletions (indels) caused by addition of nucleic acids or loss of nucleic acids. Indels with a frameshift occur when the number of nucleic acids is not a multiple of
three, changing the reading frame. Gene fusions can be caused by either translocations at the DNA level or RNA splicing of independent transcripts. Figure created
with BioRender.com.
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intersections of two software, can lead to extremely low sensitivity.
No combination approach was able to consistently outperform the
results from Manta or GRIDSS independently (65). Therefore, for
structural variants, the current recommendation is to employ a
single, highly rated caller such as Manta or GRIDSS.
Frontiers in Oncology | www.frontiersin.org 7
A complementary RNAseq approach to detecting gene
fusions allows for both confirmation of DNA-level structural
variants and the identification of RNA-level splicing events. A
2019 benchmarking study recommended the use of
STAR_Fusion, Arriba, or STAR-SEQR for the identification of
TABLE 2 | Comparison of the ranking of insertion and deletion (indel) callers across four benchmarking studies that have been released since 2017.

Software Supernat et al., 2018 (59) Pei et al., 20201 (61) Kumaran et al., 2019 (62) Wang et al., 2020 (63)

Deep Variant #1 #1
GATK MuTect2 #2 #1 #1
LoFreq #1
Strelka #1
TNscope #2
GATK Haplotype Caller #2
VarDict #2
VarScan #2
SpeedSeq #3
TNseq #3
VarScan2 #3
Strelka2 #3
NeuSomatic #3
SAMtools #3
March 2022 | Volu
Benchmarking papers from before 2017 were excluded as they typically compared outdated software versions or compared software that are no longer maintained. Numbers and colors
indicate the relative ranking based on the individual paper, with one (green) being the highest, two (yellow), and three (orange) being the lowest.
140% purity.
TABLE 1 | Comparison of the ranking of single nucleotide variant (SNV) callers across six benchmarking studies that have been released since 2017.

Software Supernat et al.,
2018 (59)1

Bian et al., 2018
(60)

Pei et al., 2020
(61)

Kumaran et al.,
2019 (62)

Wang et al., 2020
(63)4

Wang et al., 2020
(63)5

Hofmann et al.,
2017 (64)

Deep Variant #1 #1
GATK MuTect2 #1 #1 #22 #2 #37

SpeedSeq #1
TNscopeS4 #12

MuSE #2 #1 #2
Strelka #1 #1
LoFreq #1 #2
JointSNVMix2 #1
SAMtools #2 #4
MuTect #3 #2 #2
DeepSNV #2
NeuSomatic #32

SomaticSniper #3 #3
GATK
UnifiedGenotyper

#3

GATK Halotype
Caller

#3 #4

VarDict #4 #3 #48

VarScan #3
FreeBayes #4
VarScan2 #43 #4
Strelka2 #43

TNseq6 #4
me
Benchmarking papers from before 2017 were excluded as they typically compared outdated software versions or compared software that are no longer maintained. Numbers and colors
indicate the relative ranking based on the individual paper, with one (green) being the highest two (yellow), three (orange), and four (red) being the lowest.
1These rankings are based on 30x data. In 15x data, the improved performance of DeepVariant was enhanced.
2At 20% purity.
3Good performance at high purity, but poor performance for low purity samples.
4Results based on DREAM WGS datasets as ground truth.
5Results based on WES and deep sequencing spike in studies.
6Software not free.
7High performance at low VAF, low performance at high VAF.
8High sensitivity, but with very high false positive rate.
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gene fusions from RNAseq, due to their combination of fast
speed and high accuracy, as measured by the AUC (68). At this
time, there have not been reported studies of benefits from
combining gene fusion prediction results.

While frameshift mutations are traditionally accounted for
using structural variant software, an alternative approach that
may allow for identification of an expanded set of open reading
frames is the use of Ribo-seq data. Ribo-seq identifies the triplet
shifts of actively translating ribosomes, which allows the reading
frame to be identified for all proteins being translated at the time
of cell lysis (50). Ribo-seq has been proposed as a novel approach
for detecting neoantigens derived from open reading frames by
providing a snapshot of all active translation (51). An advantage
to Ribo-seq data is that it may be able to identify novel open
reading frames caused by translational dysregulation rather than
by frameshifts. Further evaluation of the neoantigens identified
by Ribo-seq compared to other sequencing technologies may
clarify the implications of Ribo-seq technology to the
clinical setting.

2.4 Variant Annotation
Annotating the effects of a variant on the resulting peptide
sequence has high accuracy for SNVs and small indels, but
accuracy drops for more complex variants such as splicing
variants. Nucleotide mutations can have many potential
impacts on the amino acid sequences including silent variants,
variants in a non-coding region, missense mutations, frameshifts,
and stop codon gain or loss. Each of these results in a
significantly different set of neoantigen predictions, and
therefore, variant annotation is essential to determine the
neoantigen profile. Between the two most common variant
annotation software, the Variant Effects Predictor (VEP) (69)
and ANNOVAR (70), there was an 86.5% exact match rate
overall, dropping to a low of 57.27% for splicing variants (71).
Because of the difficulty in determining a “correct answer” for
each variant, it is very difficult to benchmark the success of
different programs. Nonetheless, based on a 2014 benchmarking
study, VEP more consistently aligned with the best available,
manually curated results (71). Since this benchmarking was
performed before the most recent versions of either software,
the results may be different with a repeated benchmarking
analysis. The most recently released software, ShAn and
Nirvana, have demonstrated an increase in speed and online
accessibility compared to VEP with the same level of predictive
abilities (72, 73). Therefore, the best available software by current
recommendations is VEP for command-line applications and
ShAn or Nirvana for online applications.
3 NEOANTIGEN PRIORITIZATION

3.1 MHC Class I-Restricted Neoantigen
Characteristics
Once the neoantigens are predicted, each neoantigen can be
prioritized for therapeutic use by predicting their potential to
elicit a CD8+ T cell response. The experimentally validated
Frontiers in Oncology | www.frontiersin.org 8
potential for MHC class I and II-restricted neoantigens to elicit
a CD8+ or CD4+ T cell response, respectively, will be referred to
as the “immunogenicity” of the neoantigen. One driving
hypothesis in prioritization of immunogenic neoantigens is
that the ability to predict the potential of the neoantigen to
undergo each requisite step in the antigen presentation pathway
will lead to improved prediction of the neoantigen
immunogenicity. Tools have therefore been created to predict
the expression of the neoantigen, the percentage of the tumor
that contains the neoantigen of interest, the proteasomal cleavage
potential, the potential for transport in the endoplasmic
reticulum via TAP, the potential to bind the MHC class I
molecule, the stability of the neoantigen:MHC class I
interaction, and the potential to be recognized by a TCR
(Summarized in Figure 4). Another body of work has focused
on how to best summarize these individual tools into overall
predictive models for CD8+ T cell response. Here, we will
summarize the tools available for predicting each characteristic
individually and then the different models available for
integrating the characteristics into an overall score of the
neoantigen immunogenicity.

3.1.1 Expression
A neoantigen needs to be expressed within the cell in order to
elicit an immune response, but the best technology to assess the
expression of the neoantigen is an ongoing question. Options for
assessing expression can be broken down broadly into mRNA
expression, protein level expression, or active translation. mRNA
expression can be assessed through RNAseq, targeted
sequencing, or microarray data. RNAseq data has the
advantages that it is a readily available sequencing technique
and can serve as a multi-purpose dataset, contributing to variant
calling and neoantigen prioritization. One limitation in the use of
mRNA expression data has been isolating only the expression of
the specific allele in which the variant occurs. Identification of
the specific variant allele is important as there are demonstrated
cases where transcription of either the mutant allele or wildtype
allele is favored (74). Novel methods of selecting the allele-
specific expression have been published but have not yet been
applied to the field of neoantigen prioritization (74). A second
limitation to the RNAseq approach is that translational
regulation may lead to discrepancies between the mRNA
expression in the cell and the availability of the resulting
peptide to be presented by MHC. Protein level expression can
be assessed through various array-based methods, as well as mass
spectrometry. One method growing in popularity is complete
proteomic analysis, wherein a cell is lysed, and the full protein
profile of the cell is analyzed with mass spectrometry (75). The
advantage of a proteomics-based approach is that it validates the
presence of the mutation on the protein level, eliminating
variants that may never be translated within the cell. Some
limitations to the use of mass spectrometry include low
sensitivity for mutated peptides and high false positives in
peptide identification algorithms (75). The rapid improvement
in these methods may soon ameliorate these concerns (76), but a
remaining limitation is that important neoantigens may come
from translational products that are rapidly degraded and would
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not be detected by proteomic techniques (57). Therefore, another
option is the analysis of active translation occurring within a cell
through the newer Ribo-seq technology. Ribo-seq data allows for
quantification of all transcripts being actively translated at the
time of cell lysis. Advantages of the use of Ribo-seq data are that
it eliminates consideration of variants that are not translated by
the cell, but also will detect translational products that are too
rapidly degraded to be detected by traditional proteomic
approaches (57). An important direction for future research is
the comparison of RNA level, protein level, and translational
level data on quantifying expression and their impact on
neoantigen prioritization.

Following overall expression level, the next characteristic to
consider in prioritizing immunogenicity is the percentage of the
tumor that contains the variant of interest - also termed the
clonality of the variant. Clonality is thought to be of particular
importance for cancer therapeutics, since a variant expressed by
a small, sub-clonal population of the tumor is a less attractive
candidate for tumor therapy. There are a few possible ways by
which to approach estimating the clonality of the variant. The
ideal approach would be to use a clonal deconvolution software
and then assign each neoantigen a value based on the percentage
of the tumor that contains that neoantigen. Until recently,
PyClone was the software most widely used (77). Recently, a
newer model called FastClone was released, which demonstrated
enhanced performance compared to PyClone (78). While clonal
deconvolution is ideal, the programs do not always converge on a
solution, especially depending on the purity and read depth of
the samples. An alternative approach is to use the variant allele
frequency (VAF) as a proxy for the clonality of a neoantigen,
although the VAF does not account for the copy number
Frontiers in Oncology | www.frontiersin.org 9
variation, germline tissue contamination, or sample purity.
Overall, as estimating the clonality of a variant is a rapidly
evolving field, it is likely that enhanced deconvolution methods
will continue to develop and improve.

A unique system for applying the clonality has been put
forward called the CSiN score, which is applied across both MHC
class I- and II-restricted neoantigens (79). The CSiN score is
calculated by first calculating the product of the variant allele
frequency (VAF) of each somatic mutation and the number of
neoantigens that can be generated from that mutation. The
overall score for the tumor is then calculated by taking the
average across all mutations, weighted by the binding affinity of
the neoantigens. The CSiN score is associated with survival in
response to immune checkpoint inhibitors, suggesting that
clonality may play a significant role in determining the
potential of MHC class I and II-restricted neoantigens to elicit
immune-mediated tumor destruction (79).

3.1.2 Processing
One of the first steps in MHC class I-restricted antigen
processing is proteasomal cleavage of proteins in the
cytoplasm; incorporation of the enzyme specificity of the
proteasome may lead to enhanced neoantigen prioritization.
The first available model for predicting proteasomal C-
terminal cleavage was NetChop (80), the method incorporated
in the popular NetCTLpan model for predicting the processing
and MHC binding of neoantigens. NetChop enhances the
specificity of binding predictions (81). A newer model, the
Proteasome Cleavage Prediction Server (PCPS), demonstrated
enhanced sensitivity (0.89 vs. 0.79), but diminished specificity
(0.55 vs. 0.60), compared to NetChop for discriminating known
FIGURE 4 | Steps of MHC class I-restricted neoantigen prioritization and summary of characteristics considered for each step. Mutations in the DNA of a tumor cell
are transcribed into RNA and translated into a protein. At the end of the life cycle of the protein, the protein is broken down into peptides by the proteasome and
transported into the endoplasmic reticulum by the transporter associated with antigen presentation (TAP). Once inside the endoplasmic reticulum, the peptide has
the opportunity to be loaded on MHC class I. If the peptide is successfully bound to MHC class I, the peptide:MHC complex is transported to the cell surface where
the peptide:MHC complex has the opportunity to be recognized by the T cell receptor (TCR). Characteristics of the neoantigen encompassing expression,
processing, MHC class I binding, and TCR recognition potential have been assessed to enhance prioritization of MHC class I-restricted neoantigens and are
summarized in each of the boxes in the figure.
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CD8+ T cell epitopes from random peptides (82). While these
results are not sufficient to recommend proteasomal cleavage as
an independent metric for immunogenicity, they indicate that
proteasomal C-terminal cleavage may play a role in determining
the neoantigen profile.

Once small peptides are generated through proteasomal
cleavage, TAP transports peptides into the endoplasmic
reticulum for loading onto MHC class I; predicting the
specificity of TAP for certain peptide motifs may enhance
neoantigen prioritization. Prediction tools for TAP transport
potential are less established. Currently, the only available
program for predicting TAP specificity is that integrated into
the NetCTL program (81). TAP transport potential was
demonstrated by the NetCTL paper to enhance specificity for
MHC class I binding predictions, but decreased sensitivity at lower
specificity thresholds (81). Assessment of the association between
TAP transport potential and neoantigen immunogenicity has not
been directly assessed. Overall, TAP transport may prove to be a
Frontiers in Oncology | www.frontiersin.org 10
useful addition to other tools, but has not shown evidence of
individual predictive value for neoantigen immunogenicity.

3.1.3 MHC Class I Binding
MHC class I binding affinity is one of the central neoantigen
characteristics considered for prediction of neoantigen
immunogenicity. Many studies have shown that MHC class I
binding affinity alone has strong predictive ability for neoantigen
immunogenicity (83–86). There is an abundance of models to
predict MHC class I binding affinity that are summarized in
Table 3. Binding affinity is defined as the inverse of the
dissociation constant and models created to predict the
binding affinity have been trained on either binding affinity
alone, or binding affinity in combination with peptides eluted
from MHC class I molecules and assessed by mass spectrometry.
Since peptide elution does not give quantitative information
regarding the binding affinity of the peptide, mass
spectrometry data is included in these models as a categorical
TABLE 3 | Comparison of available neoantigen: MHC class I binding prediction tools.

Software Model Type Data Type Published Comparisons Performance metrics

NetMHCpan4.1
(86)

Artificial neural
network

Mass spectrometry eluted
peptides and binding affinity
measurements

Outperformed MHCflurry1.2 and MixMHCpred,
outperformed NetMHC4.0 for HLA-B and -C

Immunogenicity predictions

MHCflurry2.0
(87)

Artificial neural
network

Mass spectrometry eluted
peptides and binding affinity
measurements

Outperformed NetMHCpan4.0 and MixMHCpred Binding vs. non-binding predictions

MHCnuggets
(88)

Artificial neural
network

Binding affinity measurements Comparable performance to MHCflurry1.2 and
NetMHCpan3.0

Binding vs. non-binding predictions

NNAlign (85) Artificial neural
network

Mass spectrometry eluted
peptides and binding affinity
measurements

Comparable performance to NetMHCpan4.0,
outperformed MHCflurry1.2 and MixMHCpred

Binding vs. non-binding predictions

ForestMHC (89) Artificial neural
network

Mass spectrometry eluted
peptides

Outperformed original NetMHC, original
NetMHCpan, and MixMHCpred

Binding vs. non-binding predictions

ACME (90) Artificial neural
network

Binding affinity measurements Outperformed NetMHCpan4.0 Correlation with validated binding
affinity

NetMHC4.0 (84) Artificial neural
network

Binding affinity measurements None provided None provided

MixMHCpred
(91)

Matrix approach Mass spectrometry eluted
peptides

Outperformed NetMHC3.0 and NetMHCpan3.0 Binding vs. non-binding predictions

MSIntrinsic (92) Artificial neural
network

Mass spectrometry eluted
peptides

Outperformed NetMHC4.0 and NetMHCpan2.8 Binding vs. non-binding predictions

ConvMHC (93) Artificial neural
network

Binding affinity measurements Outperformed Pickpocket, IEDB SMM, and original
NetMHCpan model

Binding vs. non-binding predictions

PAComplex
(83)

Binding models Database of known binding
peptides

None provided None provided

IEDB
SMMPMBEC
(94)

Matrix approach Binding affinity measurements Outperformed IEDB SMM, underperformed original
NetMHC model

Binding vs. non-binding predictions

PickPocket1.1
(95)

Matrix approach Binding affinity measurements Underperformed original NetMHCpan model Binding vs. non-binding predictions
and correlation with validated binding
affinity

IEDB
recommended
(96)

Positional
scanning peptide
libraries

Binding affinity measurements Only compared to older models not included in this
summary, performed better than 10/16 available
methods

Binding vs. non-binding predictions

ARB (97) Matrix approach Binding affinity measurements None provided None provided
IEDB SMM (98) Matrix approach Binding affinity measurements None provided None provided
SYFPEITHI (99) Binding motifs Binding affinity measurements None provided None provided
Mar
Models included that met the following criteria 1) released since 2012 or included in a benchmarking study since 2012, 2) published in a peer reviewed journal, 3) available for web-based or
command-line application, and 4) the most recent versions of a given software. Published comparisons are based on the comparisons reported in the publication of the new model.
Performance metrics summarize whether the published comparisons were based on the ability of the model to predict immunogenicity, categorize each neoantigen as a binder vs. non-
binder, or on the correlation between the predicted and experimentally validated binding affinity.
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value that is integrated with the continuous binding affinity data.
Many of the top performing models assess their performance
with metrics such as the AUC, which measure the success of their
ability to classify neoantigens as binders compared to non-
binders. However, the top performing models based on AUC
underperform when assessed with correlation coefficients
between true and predicted binding affinities (100). As noted
in Table 3, many models self-reported relative performance
compared to other available models. In addition to the self-
reported performance, three benchmarking studies have been
published since 2012 which report the relative performance of
the available tools. The first study found that no tool emerged as
the best across all HLA alleles and all peptide lengths, but
generally, artificial neural network tools outperformed those
trained with other models (101). A second benchmarking
study found that MHCflurry, NN_align, and NetMHCpan4.0
performed best for binding/non-binding classification. When
tested specifically on mass spectrometry data, NetMHCpan4.0
and MixMHCpred show enhanced predictive power (100).
Consistent with the first benchmarking study, all of these
except MixMHCpred are artificial neural networks. The third
benchmarking study assessed a large number of tools in terms of
their ability to distinguish peptides that elicited a CD8+ T cell
response. They found, similarly to the first two benchmarking
studies, that NetMHCpan4.0 and MHCflurry outperformed
other available models (102). Overall, neural network
approaches including NetMHCpan4.0, MHCflurry, and
NN_align consistently emerge as the top performing binding
affinity models currently available.

A few studies have also suggested consensus approaches to
the prediction of MHC class I binding, though none are currently
optimized for application. For example, MHCcombine is a web
application which runs 13 prediction algorithms and provides
the outcome from each (100). Given that no model consistently
outperformed across all peptide lengths and HLA alleles,
MHCcombine may allow the user to apply the best result for
the particular peptide length and HLA allele being tested.
Additional research is needed on how to scale this approach
for application to large lists of peptides and how these results
would impact the overall performance. Another study averaged
the results from early versions of NetMHCpan and NetMHC and
showed a small performance enhancement (103). However, as
these results predate many of the high-performing software
summarized in Table 3, further research is needed to see how
combined methods may impact performance.

Another characteristic of MHC class I binding that has been
less studied is the binding stability, which is not directly assessed
in any of the tools summarized above. While the binding affinity
and binding stability are mathematically related, they may
provide complementary information. Whereas the binding
affinity, which is assessed by most available tools, is the inverse
of the concentration at which 50% of the MHC class I molecules
will be bound to the neoantigen, the binding stability is the half-
life of the binding interaction. The binding affinity is the best
metric for reactions in which the interaction of the two molecules
is instantaneous. But, for the prediction of neoantigens, which
Frontiers in Oncology | www.frontiersin.org 11
must stay bound until a circulating T cell is able to recognize
them, the stability of the interaction may also be important.
Therefore, tools predicting the binding affinity and binding
stability have been proposed to be synergistic in predicting the
potential for a neoantigen to be meaningfully presented on an
MHC class I molecule. There is only one program that predicts
MHC class I:peptide binding stability, NetMHCstabpan (104).
As noted by the creators of NetMHCstabpan, the creation of a
binding stability model was limited by the relative lack of
training data for stability compared to binding affinity. Despite
the limited training data, recent work has demonstrated
enhanced neoantigen prioritization by combining both binding
affinity and binding stability predictions (22, 23). Prediction of
binding stability is an area where future work may lead to
substantial improvements.

The hydrophobicity of a neoantigen is an additional
characteristic with the potential to impact MHC binding and
TCR recognition, but has demonstrated inconsistent predictive
value for neoantigen immunogenicity. Since the binding cleft of
the MHC class I molecule and the CD8+ TCR contact residues
are both hydrophobic, one hypothesis is that a more
hydrophobic neoantigen would be more likely to bind the
MHC binding cleft and TCR (105). Two independent neural
network approaches demonstrated a significant association of
increased hydrophobicity with increased neoantigen
immunogenicity (21, 105). In contrast, the TESLA consortium
calculated a hydrophobicity fraction as the number of
hydrophobic neoantigens divided by the length of the
neoantigen and found a significantly higher hydrophobicity
fraction among non-immunogenic neoantigens (22). When the
hydrophobicity fraction was applied across four independent
datasets, no consistent association of hydrophobicity with
immunogenicity was observed (23). The differences in the
observed associations of hydrophobicity with immunogenicity
may be due to differences in the hydrophobicity of different HLA
alleles. Published binding motifs for peptides known to bind
different HLA alleles have demonstrated dramatic differences in
the conserved amino acids. For example, HLA-A02:01 has
several conserved hydrophobic amino acids, whereas HLA-
A01:01 has predominantly polar and charged conserved amino
acids (91). The neural network models from Chowell et al. and
Zhou et al. were trained on known T cell epitopes from the
immune epitope database (IEDB) (106), which has an HLA-A2
allelic bias since HLA-A2 is the most common class I allele,
particularly in Caucasian populations (107). HLA-A2 also has
more available experimental tools, which has expanded the bias
towards this allele. A similar HLA-A2 allelic bias was observed in
the TESLA dataset, with HLA-A2 alleles comprising 39.3% of the
data, but there was also a high percentage of several alleles known
to have conserved amino acid residues that are polar or charged,
including HLA-A01:01 (22). Additional research is needed to
fully understand the association of hydrophobicity with
immunogenicity in the context of a diverse set of HLA alleles.

For all considerations of MHC class I binding, an
understanding of the HLA alleles present in the tumor is
critical. Predictions of dissociation constants and stability rely
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on the specific HLA allele to which the neoantigen is binding.
Additionally, as discussed above, there is evidence that the
impact of hydrophobicity may be allele specific. Beyond the
facilitation of binding and hydrophobicity predictions, changes
in the HLA alleles such as mutations or loss of heterozygosity are
a known mechanism of immune evasion in cancers (108). In
addition, intact antigen processing machinery is required for
presentation of the neoantigen and subsequent destruction by
CD8+ T cells (109). Loss of functional components of the MHC
class I antigen processing pathway including beta-2-
microglobulin (110), TAP (111, 112), and tapasin (113, 114)
have been implicated in immune-evasion or resistance to
immunotherapy. Therefore, the HLA allelic profile of the
tumor and the status of the antigen presentation pathways are
critical to understanding which neoantigens can be presented to
facilitate immune-mediated tumor destruction.

3.1.4 T Cell Receptor Recognition
Another characteristic of neoantigens that has been considered
for impact on neoantigen immunogenicity is the TCR
recognition potential. As T cells develop in the thymus, they
are exposed to self peptides. T cells that recognize self peptides
with high avidity undergo apoptosis. Therefore, T cell
recognition has been broadly evaluated as either the similarity
of the neoantigen to a normal human peptide or the similarity of
neoantigens to known T cell epitopes.

The first method, similarity of the neoantigen to a normal
human peptide has been shown to decrease the likelihood of the
neoantigen eliciting an immune response. Increased sequence
similarity was demonstrated to be highly associated with a
decreased chance of eliciting an immune response across a
large set of peptides known to elicit a T cell response from the
IEDB (106). Sequence similarity alone was able to predict
immunogenicity with an AUC of 0.85 (115). Importantly, these
peptides derive from a variety of diseases including viruses,
bacteria, and cancer neoantigens. In subsequent studies
restricted to tumor neoantigens, the sequence similarity has
not shown a significant association with neoantigen
immunogenicity (23, 26). The observed differences may be
explained by the much smaller range of sequence similarity
available in the tumor neoantigens tested for immunogenicity.
Since most tumor-derived neoantigens that have been tested for
immunogenicity derive from SNVs (discussed below), they differ
by a single amino acid. By contrast, peptides from viruses could
be 100% distinct from normal human peptides. Further research
is needed to determine if sequence similarity is more important
in predicting neoantigen immunogenicity of tumor neoantigens
when a broader set of neoantigens is considered.

Another method for accounting for TCR recognition is a
model developed by Łuksza et al., which integrates three
neoantigen characteristics into an aggregate fitness score for
the tumor and demonstrated significant association of a lower
fitness score with improved response to immune checkpoint
inhibition. The overall fitness score is defined by the product of
the T cel l recognit ion probabil i ty , anchor residue
hydrophobicity, amplitude, and a factor of negative one. A
higher value for T cel l recognit ion, amplitude, or
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hydrophobicity all contribute to a lower fitness score (more
negative value) and a neoantigen that is more likely to be
visible to the immune system. The first characteristic, the T
cell recognition potential, applies a probabilistic model for the
binding of the neoantigen to the TCR by using the sequence
similarity between the neoantigen and the closest matched T cell
epitope from the IEDB (19, 106). The second characteristic
accounts for the hydrophobicity of the neoantigen by giving
the neoantigen a hydrophobicity of zero if an anchor residue is
mutated from a hydrophobic residue to a hydrophilic residue,
and all other changes are given a score of one. The third
characteristic is called the “amplitude” and is intended to
adjust for self-recognition. The amplitude is calculated as the
ratio of the dissociation constant for the wildtype peptide and the
neoantigen (19). The amplitude is higher for neoantigens that
have a lower dissociation constant (higher binding affinity) and
are derived from a wildtype peptide with a high dissociation
constant. Neoantigens derived from a wildtype peptide with a
high dissociation constant are predicted to be less likely to be
subject to immune tolerance, since the wildtype peptide is less
likely to be presented to developing T cells in the thymus. The
integrated Łuksza model demonstrated a significant association
of lower tumor fitness score with improved survival in patients
treated with immunotherapy but was not assessed as a predictive
measure for the immunogenicity of individual neoantigens (19).

Capietto et al. independently assessed the amplitude
characteristic and suggested that the amplitude may be of
greatest importance in predicting neoantigen immunogenicity
for mutations in anchor residues (116). Capietto et al. found that
the amplitude was a better predictor of immunogenicity for
neoantigens with a mutation in the anchor residue than was the
dissociation constant alone (116). These results suggest that the
difference based on mutation position may be due to a greater
change in T cell recognition when the mutation is in a non-
anchor residue. However, the unadjusted binding affinity was
significantly associated with immunogenicity in neoantigens
with mutations in either anchor or non-anchor residues in this
study and an independent study (23, 116). Further research will
be needed to isolate the role of mutation position on
immunogenicity predictions.

3.1.5 Integrated Models
Given the large number of neoantigen characteristics and tools to
consider in prioritizing immunogenicity, several papers have focused
on integrating neoantigen characteristics into an overall
immunogenicity score. Table 4 summarizes six recent models
based on the characteristics they include and their reported
performance as an AUC when provided. Of interest, the one
commonality among all models is the inclusion of the binding
affinity calculated by NetMHCpan (21–26). The consistent
inclusion of MHC binding affinity across all available studies
highlights the importance of MHC class I binding in determining
the immunogenicity of at least a subset of neoantigens. Three models
(TESLA, NeoScore and Neopepsee) focused specifically on reducing
the characteristics included to only those most necessary for
prioritizing neoantigens (22, 23, 25). TESLA and NeoScore were
trained on the same training dataset and selected the same three
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characteristics, with the difference being that TESLA provides a series
of thresholds across the three characteristics, while NeoScore provides
a continuous score. The three selected characteristics wereMHC class
I binding affinity, MHC class I binding stability, and mRNA
expression level (22, 23). In contrast, Neopepsee selected
hydrophobicity, polarity, T cell recognition potential, amplitude,
and the amino acid contact potentials (25). The striking difference
in the selected characteristics may reflect a difference in the
underlying training datasets. Neopepsee was trained on a set of
known T cell epitopes from across diseases compared to common
human variants presumed to not be immunogenic, whereas the other
models were trained on tumor-specific neoantigens (22, 23, 25). The
final Neopepsee score was demonstrated to be associated with
immunogenicity in a test set derived exclusively from tumor
mutations (25). Continued research is needed to select and validate
the best set of characteristics to prioritize immunogenic neoantigens

While the models summarized above focus on predicting the
immunogenicity of individual neoantigens, a few models trained
specifically on the response to immune checkpoint inhibition.
These models include the model from Łuksza et al. and the CSiN
model which are both summarized in prior sections. The model
from Łuksza et al. and the CSiN model demonstrate significant
association with the response to immune checkpoint
inhibition but were not tested for their potential to
discriminate between individual neoantigens and their
potential to elicit an immune response (19, 79). NeoScore and
pTuneos have also demonstrated a significant association with
response to immune checkpoint inhibition, despite being trained
on the immune response to individual neoantigens (21, 23).
Additional work is needed to understand the relative predictive
value and clinical utility of each integrated model.
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3.2 MHC Class II-Restricted Neoantigen
Prioritization
The therapeutic applications of a neoantigen are also directly
impacted by the potential of the neoantigen to bind to MHC class
II and elicit a CD4+ T cell response, as CD4+ T cells have been
demonstrated to play a critical role in initiating and maintaining
a successful immune-mediated tumor destruction (6, 117).
Prioritization of MHC class II-restricted neoantigens can
incorporate many of the same characteristics as MHC class I:
expression, processing, binding, and TCR recognition. Though
the body of literature is smaller for prioritizing MHC class II-
restricted neoantigens, tools are available to predict the
expression of the neoantigen, the percentage of the tumor that
contains the neoantigen of interest, the N/C-terminal cleavage
potential, the potential to bind the MHC class II molecule, and
the potential to be recognized by a CD4+ TCR (summarized in
Figure 5). As for MHC class I-restricted neoantigens, there is
also a body of work focused on integrating these tools into overall
neoantigen immunogenicity scores. We will summarize the
individual tools for each characteristic and the models available
for integrating these characteristics into an overall score of the
neoantigen immunogenicity.

3.2.1 Expression
Expression and clonality of MHC class II-restricted neoantigens
can be calculated with the same tools as for MHC class I-
restricted neoantigens.

3.2.2 Processing
Cleavage of peptides for MHC class II occurs in the endocytic
pathway and is performed by cathepsins. The current
TABLE 4 | Summary of MHC class I-restricted neoantigen prioritization models.

MuPeXI (24) Neoepitope
novelty (26)

Neopepsee (25) pTuneos (21) TESLA (22) NeoScore (23)

Expression RNA – – RNA RNA RNA
Clonality VAF1 – – PyClone – –

Cleavage – – – NetCTLpan – –

TAP2
– – – NetCTLpan – –

Kd3 NetMHCpan NetMHCpan NetMHCpan NetMHCpan NetMHCpan NetMHCpan
Stability – – – – NetMHCstabpan NetMHCstabpan
Hydrophobicity – – Chowell et al. Trained neural network – –

Polarity – – Chowell et al. – – –

T cell Recognition – – Sequence similarity to
known epitopes

Łuksza et al. – –

Sequence Similarity Number of
mismatches

BLOSUM62 matrix – BLOSUM62 matrix – –

Amplitude4 X – X X – –

Viral Similarity – BLOSUM62 matrix – – – –

Amino Acid Contact
Potentials

– – Saethang et al. – – –

AUC5 (if reported) AUC = 0.635 in
test set

AUC = 0.66 in
training set

Not reported AUC = 0.833 with 10-fold
cross-validation

Cannot be
calculated

AUC = 0.845 in
test set
March
 2022 | Volume 1
Where applicable, the tool used for each characteristic is specified. Dashes indicate that the characteristic was not included in the model and “X” indicates that the characteristic was
included in a model, but that the characteristic is a fixed quantity with no specific tools to report.
1VAF, variant allele frequency.
2TAP, transporter associated with antigen processing.
3Kd, dissociation constant.
4Amplitude, ratio of the dissociation constant of the wild type peptide and neoantigen.
5AUC, area under the receiver operator characteristics curve.
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understanding of cleavage of peptides for MHC class II is that
cleavage occurs both before and after binding of the peptide to
the MHC class II molecule (118). Cleavage before and after
binding is supported by binding of large proteins with exposed
binding motifs in the absence of any protease activity (119) and
dominant binding of accessible regions of proteins over high-
affinity binders that are not solvent accessible (120). Abelin et al.
applied the current understanding of MHC class II-restricted
neoantigen processing to create models for predicting MHC class
II-restricted neoantigens. Abelin et al. assessed the solvent
accessibility of different regions of the protein at the pH of the
late endosome to account for binding before processing and the
N- and C-terminal motifs to account for enzyme specificity of
the cathepsins (121). Abelin et al. demonstrated enhanced
prioritization of neoantigens that bind MHC class II based on
specific N- and C-terminal motifs, but did not find an impact of
solvent accessibility (121). These results are in concordance with
several other models which have demonstrated an ability to
improve neoantigen prioritization by identifying specific motifs
(122, 123). These studies combine to suggest the importance of
considering N- and C-terminal motifs in the prioritization of
MHC class II-restricted neoantigens.

3.2.3 MHC Class II Binding
There are many tools to predict the MHC class II binding affinity
and a few that stand out as top candidates. A potentially helpful
resource is the IEDB MHC II automated server benchmarks
(124). The IEDB automated benchmarking system releases
weekly scoring reports, ranking available MHC class II binding
predictions based on the performance of the model in the most
recently updated IEDB test datasets. While the IEDB automated
Frontiers in Oncology | www.frontiersin.org 14
benchmarking system has the potential to be useful for research
purposes, it is currently limited by only having six software
registered, all of which were published by or before 2015. A
benchmarking study of a set of older tools compared to two
newer tools, NetMHCIIpan3.2 and DeepSeqPanII, demonstrated
a distinct jump in performance between the older and newer
tools (125). Because of the large gap in performance, only a set of
the five newest models is included in Table 5. Based on the
published data, NetMHCIIpan4.0 and DeepSeqPanII are likely
the best performing models currently available (125). One newer
method, NeonMHC, demonstrated enhanced positive predictive
value compared to NetMHCIIpan3.1 (121). However, no direct
comparison has been done of NeonMHC to updated versions of
the other software, suggesting that further comparison studies
between these techniques may be beneficial. While MHC class II
binding affinity models have improved dramatically in the last
few years, side-by-side comparisons of MHC class I and II
binding affinity prediction models demonstrate that MHC class
II binding affinity predictions still have lower performance than
binding affinity predictions for MHC class I (86). This highlights
the importance of continued research and model development
for MHC class II binding affinity prediction.

There is evidence that a hydrophobicity-type approach to
MHC class II binding may be worth exploring. To our knowledge
a hydrophobicity model has not yet been attempted for MHC
class II-restricted neoantigens. For HLA-DR, crystal structures
have demonstrated that the binding cleft is hydrophobic (127).
Additional, complementary evidence has demonstrated that
there are two cooperative, hydrophobic binding pockets on
HLA-DR which are thought to be primarily responsible for
binding of MHC class II-restricted neoantigens (128). Similar
FIGURE 5 | Steps of MHC class II-restricted neoantigen prioritization and summary of characteristics considered for each step. Mutations in the DNA of a tumor cell
are transcribed into RNA and translated into a protein. The protein can either be taken up into the endocytic compartment of an antigen presenting cell or processed
and presented by the tumor cell if the tumor cell expresses MHC class II (not pictured). In the late endosomes, protein cleavage and MHC class II loading occurs.
The protein is cleaved by cathepsins at the N- and C-termini before and after binding to the MHC class II molecule. If the peptide is successfully bound to MHC class
II, the peptide:MHC complex is transported to the cell surface where the peptide: MHC complex has the opportunity to be recognized by the T cell receptor (TCR).
Characteristics of the neoantigen encompassing expression, processing, MHC class II binding, and TCR recognition potential that may enhance prioritization of MHC
class II-restricted neoantigens are summarized in each of the boxes in the figure. * indicates characteristics that, to our knowledge, have not been assessed for the
prioritization of MHC class II-restricted neoantigens.
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to MHC class I-restricted neoantigen prediction, the hypothesis
is that, given the hydrophobicity of key binding pockets in the
MHC class II binding groove and the TCR contact residues,
increased neoantigen hydrophobicity may lead to increased
immunogenicity. Overall, hydrophobicity is a characteristic of
MHC class II-restricted neoantigens that will require
additional research.

3.2.4 T Cell Receptor Recognition
Studies predicting the T cell recognition of MHC class II-
restricted neoantigens have also been limited to date. Dhanda
et al. trained neural networks using known T cell epitopes and
demonstrated an AUC of 0.725 (129). This study suggests that
there is potential for using known T cell epitopes to determine
the probability of eliciting a T cell response, although more work
is needed to enhance these predictions. An integrated model
from Alspach et al. (discussed below) considered the amplitude
characteristic and demonstrated that a neoantigen with a high
amplitude was validated to be immunogenic (117). Additional
work is needed to assess the impact of T cell recognition and
immune tolerance on MHC class II-restricted neoantigen
immunogenicity, whether measured by sequence similarity,
amplitude, or a novel method.
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3.2.5 Integrated Models
A few models have integrated multiple MHC class II-restricted
neoantigen characteristics into an overall predictive model for
MHC class II-restricted neoantigen immunogenicity. Three of the
most recent models are summarized in Table 6. All three models
have demonstrated particularly strong performance in predicting
the presentation of neoantigens onMHC class II, with Abelin et al.
demonstrating the strongest predictive value (AUC = 0.98) (121).
Because of the limited data available for experimentally validated
CD4+ T cell responses, all three of these models were built on
predicting MHC class II presentation rather than neoantigen
immunogenicity. The MARIA model was subsequently tested on
two available datasets for MHC class II-restricted neoantigen
immunogenicity and demonstrated significant association with
T cell responses when split into a high, medium, and low
immunogenicity score (130). The model by Abelin et al. was
used to predict top candidates for immunogenicity and 8/12 tested
neoantigens elicited a CD4+ T cell response, suggesting good
predictive ability for immunogenic neoantigens (121). Finally, the
Alspach et al. model (trained in mouse data) was integrated with
amplitude and expression data, and a CD4+ T cell response was
observed for the top predicted neoantigen candidate (117). Testing
of these models on expanded sets of neoantigens validated to elicit
TABLE 5 | Comparison of available neoantigen: MHC class II binding prediction tools.

Software Model
Type

Data Type Published Comparisons Performance Metrics

DeepSeqPanII
(125)

Artificial
neural
network

Binding affinity measurements Comparable performance to NetMHCIIpan3.2,
outperformed models from before 2012

Binding vs. non-binding predictions and
correlation with validated binding affinity

NetMHCIIpan4.0
(86)

Artificial
neural
network

Mass spectrometry eluted peptides
and binding affinity measurements

Outperformed NetMHCIIpan3.2,
MixMHC2Pred, MHCnuggets, and
DeepSeqPanII

Immunogenicity predictions

MHCnuggets
(88)

Artificial
neural
network

Binding affinity measurements Comparable performance to NetMHCIIpan3.2 Binding vs. non-binding predictions

MixMHCIIpred
(126)

Matrix
approach

Mass spectrometry eluted peptides Outperformed NetMHCIIpan3.2 Binding vs. non-binding predictions

NeonMHC (121) Artificial
neural
network

Mass spectrometry eluted peptides Outperformed NetMHCpan3.1 Binding vs. non-binding predictions
Five of the newest methods summarized here due to recent benchmarking demonstrating that these methods highly outperformed earlier models. Only the most recent version of each
software is included. Published comparisons are based on the comparisons reported in the publication of the new model. Performance metrics summarize whether the published
comparisons were based on the ability of the model to predict immunogenicity, categorize each neoantigen as a binder vs. non-binder, or on the correlation between the predicted and
experimentally validated binding affinity.
TABLE 6 | Summary of MHC class II-restricted neoantigen prioritization models.

MARIA (130) Abelin (121) Alspach (117)

Expression RNA RNA –

Processing Neural network for N-/C-terminal motifs Neural network for N-/C-terminal motifs –

MHC class II Binding Neural network for MHC class II binding
scores

NeonMHC Hidden Markov
modelOverlap with known HLA-DQ peptides

Gene Bias – Weighted for genes over-represented on MHC
class II

–

AUC1 for Predicted MHC class II
Presentation

AUC = 0.89 AUC = 0.98 AUC = 0.90
March 2022 | Volume
Where applicable, the tool used for each characteristic is specified. Dashes indicate that the characteristic was not included in the model.
1AUC stands for area under the receiver operator characteristics curve.
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a CD4+ T cell response would be useful to further understand
their performance capabilities and areas for improvement.
4 NEOANTIGEN VALIDATION

The development of prioritization models for MHC class I- and II-
restricted neoantigens is reliant on the availability of datasets with
validated CD8+ and CD4+ T cell responses, respectively.
Generating a neoantigen validation dataset requires identification
of mutations, prioritization of neoantigens to test, and testing of the
neoantigens. A number of validation sets are available for MHC
class I-restricted neoantigens (Table 7), but a far more limited
selection of validation sets are available for MHC class II-restricted
neoantigens (Table 8). The creation of a neoantigen validation set
requires a number of choices regarding the mutations to be
validated, the methods by which to select which neoantigens to
test, and the experimental validation methods employed. This
section will summarize the standard methods used for generating
validation datasets to date and highlight potential areas for
further research.

Neoantigen validation sets have traditionally focused on SNV
and small indel-derived neoantigens, though expansion to a larger
set of mutations may be an important future direction in the field.
As demonstrated in Tables 7, 8, all available datasets have
validated SNVs and small indels (5–7, 22, 131–138). The
abundance of data has allowed for the creation and testing of
many models for neoantigen prioritization. However, expanding
the mutations tested has the potential to illuminate if there are
different characteristics that are important for neoantigens
Frontiers in Oncology | www.frontiersin.org 16
derived from a broader set of mutations. One characteristic that
may be particularly impacted by expanded sets of mutations is the
sequence similarity. SNVs change only a single amino acid in a
protein, leaving most of the neoantigen unaltered. While indels
may have slightly greater changes, these represent a minority of
neoantigens validated to date. By contrast, neoantigens from
novel open reading frames, gene fusions, or large indels may
have over 50% of the neoantigen changed compared to the
corresponding wildtype peptide. Given recent evidence of the
increased immunogenicity of large indels compared to SNVs (52),
the inclusion of these neoantigens may enhance the importance of
the sequence similarity, which has a small range when considering
only SNVs and small indels. Additionally, inclusion of an
expanded set of mutations may enhance the clinical
applications of available neoantigen prioritization models.
Currently available MHC class I and II models are trained on
mutations derived from SNVs and indels and are not trained on
other mutations such as frameshifts and gene fusions (21–26, 117,
121, 130). Therefore, expanding validation sets would pave the
way to allow these models to expand the neoantigens considered.
A recent report demonstrated that a single gene fusion neoantigen
was able to drive complete disease response in a patient (54),
which further underscores the importance of considering
additional sources of mutations beyond SNVs and indels as
candidates for personalized cancer vaccines.

Expanding the subsets of neoantigens tested may also
contribute to enhanced models for MHC class I- and II-
restricted neoantigen prioritization. In order to select a
reasonable number of neoantigens for validation, candidates are
typically prioritized by one or more neoantigen characteristics
TABLE 7 | Available sets of MHC class I-restricted neoantigens validated to elicit a CD8+ T cell response.

Author and Year Tumor Type Tested Neoantigens:
Immunogenic Neoantigens

Available
Sequencing Data

Mutations
Tested

Prioritization Method Validation
Method

Robbins et al., 2013
(131)

Melanoma 227:10 WES SNVs and
small indels

NetMHCpan2.4 ELISPOT

Wick et al., 2014
(132)

Ovarian cancer 114:1 WES SNVs NetMHCpan2.4 ELISPOT

Rajasagi et al.,
2014 (133)

Chronic
lymphocytic
leukemia

48:3 WES SNVs NetMHCpan2.4 ELISPOT

Cohen et al., 2015
(134)

Melanoma 357:9 WES, RNAseq SNVs Expression >1 FPKM and MHC
binding by IEDB

ELISA

Carreno et al., 2015
(5)

Melanoma 21:11 WES, RNAseq SNVs NetMHC2.4 ELISA

McGranahan et al.,
2016 (135)

Lung cancer 355:2 WES SNVs NetMHCpan2.8 Multimers

Strønen et al., 2016
(136)

Melanoma 57:11 WES, RNAseq SNVs Expression >0 FPKM and
NetMHC3.2, NetMHCpan2.0

Multimers

Bentzen et al., 2016
(137)

Lung cancer 702:9 WES SNVs NetMHCpan2.8 Multimers

Gros et al., 2016
(138)

Melanoma 27:6 WES, RNAseq SNVs VAF>10%, mutation in DNA and
RNA

ELISPOT

Ott et al., 2017 (6) Melanoma 165:18 WES, RNAseq SNVs and
small indels

NetMHCpan2.4 and oncogene
mutations

ELISPOT

Wells et al., 2020
(22)

Melanoma and
Lung cancer

347:27 (available) WES, RNAseq SNVs and
small indels

Consensus from 25 groups Multimers
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before validation. As demonstrated in Tables 7, 8, neoantigens are
nearly universally prioritized by MHC binding, and in the
majority of cases, by NetMHCpan predicted binding. Given the
low prevalence of immunogenic neoantigens, pre-filtering is
important to ensure that some immunogenic neoantigens are
identified. However, the pre-filtering of neoantigens does
represent a bias in the selection of optimal neoantigen
characteristics. The use of the binding as a criterion is limited by
the predictive power of the MHC class I binding prediction tool
employed. Furthermore, work in mice has demonstrated that
neoantigens with a dissociation constant experimentally
validated to be orders of magnitude above 500 nM (the typical
cutoff used) successfully elicited a CD8+ T cell response (139). The
observation that neoantigens with low binding affinity (high
dissociation constants) can elicit a CD8+ T cell response
suggests that there may be additional characteristics at play in
determining the neoantigen immunogenicity. However, building
neoantigen prioritization models on existing datasets cannot
assess these other characteristics as effectively since none of the
tested neoantigens have low predicted binding affinity. While
model building with the same validation datasets may enhance
our ability to prioritize the neoantigens that are known to be
candidates, it also has the potential to bias the field away from
classes of neoantigens that have not been explored in as great
of depth.

Validation of immunogenic neoantigens can be done in
multiple ways, which all provide slightly different and
complementary information. In this review, we focus on
methods that involve the direct challenge of a T cell with a
neoantigen. Other methods such as TCR profiling are available
and have been recently reviewed (140). The standard validation
techniques employed are mass spectrometry, tetramer/multimer
staining, and ELISpot, ELISA, or intracellular cytokine staining,
which are illustrated in Figure 6. These methods measure three
different features of the neoantigen, and therefore, provide
information about different aspects of neoantigen binding and
immunogenicity. Mass spectrometry has been employed to
directly profile the neoantigens presented on MHC class I and
II by eluting bound peptides and identifying them using tumor-
specific variant libraries (121). Mass spectrometry of eluted
peptides validates MHC class I or II presentation, but must be
combined with one of the other techniques to provide T cell
recognition data. MHC multimers (sets of multiple MHC
molecules complexed to a neoantigen of interest) bind the TCR
and can be fluorescently labeled and used to stain T cells that
recognize the neoantigen, a process called “multimer staining.”
Multimer staining directly measures the presence of neoantigen-
Frontiers in Oncology | www.frontiersin.org 17
specific T cells that have expanded populations after activation.
One feature of multimer staining that is important to keep in
mind is that smaller multimers, such as tetramers, have a tendency
not to stain low affinity T cells (141, 142). Given that the affinity of
T cells responsive to cancer has been shown to be much lower
than anti-viral neoantigens (143), using advanced methodologies
for increasing sensitivity might be particularly useful in the study
of tumor-specific neoantigens. The final group of techniques,
ELISpot, ELISA, and intracellular cytokine staining, all test for
cytokine production after stimulation of the TCR, a sign of T cell
activation. One potential limitation of techniques that measure
cytokine production is that these methods can give false negatives
if a neoantigen-specific T cell becomes exhausted. Overall, each of
the techniques provides valuable information regarding the
binding or immunogenicity of the neoantigen. Where possible,
combining two or more techniques may provide the best
confirmation of immunogenicity.
FIGURE 6 | Summary of three commonly applied validation techniques for
the immunogenicity of MHC class I or II-restricted neoantigens. Mass
spectrometry is performed by eluting peptides directly from tumor cells and
validates the in vivo presentation of the neoantigen on the cell surface. MHC
multimers (most commonly a tetramer) bind T cell receptors (TCR) specific for
the particular neoantigen: MHC, validating TCR recognition of the neoantigen
and expansion of neoantigen-specific T cells. ELISA, ELISpot, and intracellular
cytokine staining detect the production of cytokines, typically interferon-
gamma (IFNg), interleukin-2 (IL-2), or tumor necrosis factor alpha (TNFa), to
validate T cell activation. Figure created with BioRender.com.
TABLE 8 | Available sets of MHC class II-restricted neoantigens validated to elicit a CD4+ T cell response.

Author and
Year

Tumor
Type

Neoantigens Tested : Immuno-
genic Neoantigens

Available
Sequencing Data

Mutations
Tested

Prioritization Method Validation
Method

Ott et al.,
2017 (6)

Melanoma 165:80 WES, RNAseq SNVs and
small indels

NetMHCpan2.4 and oncogene mutations ELISPOT

Sahin et al.,
2017 (7)

Melanoma 125:60 WES, RNAseq SNVs RNA expression > 10 RPKM and IEDB
binding predictions

ELISPOT
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Another consideration, both in the generation and application
of neoantigen validation sets, is the differences in the neoantigen
characteristics that can be validated in vaccine datasets. A common
source of validated neoantigens is from vaccination studies (5–7,
136). While testing after vaccination has the advantage of
demonstrating whether a given neoantigen has the potential to
elicit a T cell response, it limits the validation of key, tumor-level
characteristics such as expression. As recently demonstrated,
models that incorporate expression underperform on these
datasets (23). The underperformance of models incorporating
expression is likely because the presence of a T cell response in a
vaccinated patient is not necessarily due to the T cells encountering
that neoantigen within the tumor. Rather, the T cells could have
been activated by the vaccine, even if the tumor did not express the
neoantigen of interest. Therefore, vaccination with neoantigens
prior to testing presents an important consideration, both in the
creation of neoantigen validation sets and in their application to
validating the impact of various neoantigen characteristics on
neoantigen immunogenicity.

Overall, a significant body of work has been done particularly
for MHC class I-restricted neoantigen validation. Moving forward,
there are several key areas that may enhance the development of
clinically useful prioritization models. Specifically, these areas
include 1) expansion of validation sets for MHC class II-
restricted neoantigens, 2) expansion of the types of mutations
considered in neoantigen validation, and 3) careful selection of
which neoantigens to test for immunogenicity. Further research in
these areas has the potential to build on the work already done to
advance the utility of neoantigen prioritization models.
5 CONCLUSION

The field of neoantigen prediction and prioritization for cancer
therapeutics has made tremendous strides and is still rapidly
expanding. Prioritization of immunogenic neoantigens can be
largely broken down into data acquisition and variant calling,
neoantigen prioritization, and neoantigen validation. High
quality sequencing data is becoming ever more accessible, and
techniques for artifact removal in FFPE data and tumor-only
variant calling are rapidly expanding, increasing what is feasible
in each of these areas. One of the central questions in variant
calling is how to find the appropriate balance between sensitivity
Frontiers in Oncology | www.frontiersin.org 18
and specificity for the clinical applications of neoantigens. While
using consensus approaches between several variant calling
software has the potential to enhance specificity, it may do so
at the expense of missing clinically important variants. Within
neoantigen prioritization, a wide range of high-performance
tools are available for prioritizing MHC class I- and II-
restricted neoantigens. However, MHC class II tools generally
have not been assessed to the same degree as those for MHC class
I, representing a key area for future research. Other key areas for
enhancing neoantigen prioritization models include 1) training
models directly on predicting the potential of an MHC class II-
restricted neoantigen to elicit a CD4+ T cell response and 2)
expanding models to include neoantigens derived from other
sources of mutations. Advances in these areas will rely on the
expansion of available neoantigen validation datasets with a
specific focus on MHC class II-restricted neoantigens and
neoantigens derived from large indels, gene fusions, or
frameshifts. Overall, a combination of expanding datasets and
continued improvement of computational modelling will build
on past successes to create more clinically relevant models
moving forward.
AUTHOR CONTRIBUTIONS

Writing – original draft preparation, EB. Writing – review and
editing, KH, MW, KB, and EB. Visualization, EB. Supervision,
KH, MW, and KB. Project administration, KH. Funding
acquisition, KH and EB. All authors have read and agreed to
the published version of the manuscript.
FUNDING

This work was supported in part by the Springboard Initiative
from the University of Arizona College of Medicine-Phoenix
(KH), Merit Review Award I01-BX005336 from the United
States Department of Veterans Affairs (VA), Biomedical
Laboratory Research and Development Service (KH), the
University of Arizona College of Medicine-Phoenix M.D./
Ph.D. Program (EB), and the 2021 Melanoma Research
Foundation Medical Student Award (EB). The contents do not
represent the views of the VA or the United States Government.
REFERENCES
1. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer

Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient
With Epithelial Cancer. Science (2014) 344(6184):641–5. doi: 10.1126/
science.1251102

2. Schumacher TN, Schreiber RD. Neoantigens in Cancer Immunotherapy.
Science (2015) 348(6230):69–74. doi: 10.1126/science.aaa4971

3. Ward JP, Gubin MM, Schreiber RD. The Role of Neoantigens in Naturally
Occurring and Therapeutically Induced Immune Responses to Cancer. Adv
Immunol (2016) 130:25–74. doi: 10.1016/bs.ai.2016.01.001

4. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and
Response Rate to PD-1 Inhibition. N Engl J Med (2017) 377(25):2500–1.
doi: 10.1056/nejmc1713444
5. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti
AA, et al. Cancer Immunotherapy. A Dendritic Cell Vaccine Increases the
Breadth and Diversity of Melanoma Neoantigen-Specific T Cells. Science
(2015) 348(6236):803–8. doi: 10.1126/science.aaa3828

6. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An
Immunogenic Personal Neoantigen Vaccine for Patients With Melanoma.
Nature (2017) 547(7662):217–21. doi: 10.1038/nature22991

7. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al.
Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic
Immunity Against Cancer. Nature (2017) 547(7662):222–6. doi: 10.1038/
nature23003

8. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanovic S, Gouttefangeas C,
et al. Actively Personalized Vaccination Trial for Newly Diagnosed
Glioblastoma.Nature (2019) 565(7738):240–5. doi: 10.1038/s41586-018-0810-y
March 2022 | Volume 12 | Article 836821

https://doi.org/10.1126/science.1251102
https://doi.org/10.1126/science.1251102
https://doi.org/10.1126/science.aaa4971
https://doi.org/10.1016/bs.ai.2016.01.001
https://doi.org/10.1056/nejmc1713444
https://doi.org/10.1126/science.aaa3828
https://doi.org/10.1038/nature22991
https://doi.org/10.1038/nature23003
https://doi.org/10.1038/nature23003
https://doi.org/10.1038/s41586-018-0810-y
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Borden et al. Neoantigen Prediction, Prioritization, and Validation
9. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al.
Neoantigen Vaccine Generates Intratumoral T Cell Responses in Phase Ib
Glioblastoma Trial. Nature (2019) 565(7738):234–9. doi: 10.1038/s41586-
018-0792-9

10. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA,
et al. T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression
of Metastatic Colorectal Cancer But Induce Severe Transient Colitis. Mol
Ther (2011) 19(3):620–6. doi: 10.1038/mt.2010.272

11. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z,
et al. Cancer Regression and Neurological Toxicity Following Anti-MAGE-
A3 TCR Gene Therapy. J Immunother (2013) 36(2):133–51. doi: 10.1097/
CJI.0b013e3182829903

12. Stevanovic S, Draper LM, Langhan MM, Campbell TE, Kwong ML,
Wunderlich JR, et al. Complete Regression of Metastatic Cervical Cancer
After Treatment With Human Papillomavirus-Targeted Tumor-Infiltrating
T Cells. J Clin Oncol (2015) 33(14):1543–50. doi: 10.1200/JCO.2014.58.9093

13. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, et al.
Immune Recognition of Somatic Mutations Leading to Complete Durable
Regression in Metastatic Breast Cancer. Nat Med (2018) 24(6):724–30.
doi: 10.1038/s41591-018-0040-8

14. Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell
Therapies for Cancer: Making T-Cell Products More Personal. Front
Immunol (2020) 11:1215. doi: 10.3389/fimmu.2020.01215

15. Wang Z, Cao YJ. Adoptive Cell Therapy Targeting Neoantigens: A Frontier
for Cancer Research. Front Immunol (2020) 11:176. doi: 10.3389/
fimmu.2020.00176

16. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al.
Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific
Mutant Antigens.Nature (2014) 515(7528):577–81. doi: 10.1038/nature13988

17. Lommatzsch M, Bratke K, Stoll P. Neoadjuvant PD-1 Blockade in Resectable
Lung Cancer. N Engl J Med (2018) 379(9):e14. doi: 10.1056/NEJMc1808251

18. Rausch MP, Hastings KT. “Immune Checkpoint Inhibitors in the Treatment
of Melanoma: From Basic Science to Clinical Application”. In: WH Ward
and JM Farma, editors. Cutaneous Melanoma: Etiology and Therapy.
Brisbane (AU): Codon Publications (2017).

19. Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov
A, et al. A Neoantigen Fitness Model Predicts Tumour Response to
Checkpoint Blockade Immunotherapy. Nature (2017) 551(7681):517–20.
doi: 10.1038/nature24473

20. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, et al.
Integrative Molecular and Clinical Modeling of Clinical Outcomes to PD1
Blockade in Patients With Metastatic Melanoma. Nat Med (2019) 25
(12):1916–27. doi: 10.1038/s41591-019-0654-5

21. Zhou C, Wei Z, Zhang Z, Zhang B, Zhu C, Chen K, et al. Ptuneos:
Prioritizing Tumor Neoantigens From Next-Generation Sequencing Data.
Genome Med (2019) 11(1):67. doi: 10.1186/s13073-019-0679-x

22. Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF,
Campbell KM, et al. Key Parameters of Tumor Epitope Immunogenicity
Revealed Through a Consortium Approach Improve Neoantigen Prediction.
Cell (2020) 183(3):818–34. doi: 10.1016/j.cell.2020.09.015

23. Borden ES, Ghafoor S, Buetow KH, LaFleur BJ, Wilson MA, Hastings KT.
NeoScore Integrates Characteristics of the Neoantigen:MHC Class I
Interaction and Expression to Accurately Prioritize Immunogenic
Neoantigens. J Immunol Accepted (2022). doi: 10.4049/jimmunol.2100700

24. Bjerregaard AM, Nielsen M, Hadrup SR, Szallasi Z, Eklund AC. MuPeXI:
Prediction of Neo-Epitopes From Tumor Sequencing Data. Cancer Immunol
Immunother (2017) 66(9):1123–30. doi: 10.1007/s00262-017-2001-3

25. Kim S, Kim HS, Kim E, Lee MG, Shin EC, Paik S, et al. Neopepsee: Accurate
Genome-Level Prediction of Neoantigens by Harnessing Sequence and
Amino Acid Immunogenicity Information. Ann Oncol (2018) 29(4):1030–
6. doi: 10.1093/annonc/mdy022

26. Wood MA, Paralkar M, Paralkar MP, Nguyen A, Struck AJ, Ellrott K, et al.
Population-Level Distribution and Putative Immunogenicity of Cancer
Neoepitopes. BMC Cancer (2018) 18(1):414. doi: 10.1186/s12885-018-
4325-6

27. Hayes SA, Clarke S, Pavlakis N, Howell VM. The Role of Proteomics in the
Age of Immunotherapies. Mamm Genome (2018) 29(11-12):757–69.
doi: 10.1007/s00335-018-9763-6
Frontiers in Oncology | www.frontiersin.org 19
28. Koboldt DC. Best Practices for Variant Calling in Clinical Sequencing.
Genome Med (2020) 12(1):91. doi: 10.1186/s13073-020-00791-w

29. Halperin RF, Carpten JD, Manojlovic Z, Aldrich J, Keats J, Byron S, et al. A
Method to Reduce Ancestry Related Germline False Positives in Tumor
Only Somatic Variant Calling. BMC Med Genomics (2017) 10(1):61.
doi: 10.1186/s12920-017-0296-8

30. Halperin RF, Liang WS, Kulkarni S, Tassone EE, Adkins J, Enriquez D, et al.
Leveraging Spatial Variation in Tumor Purity for Improved Somatic Variant
Calling of Archival Tumor Only Samples. Front Oncol (2019) 9:119.
doi: 10.3389/fonc.2019.00119

31. Little P, Jo H, Hoyle A, Mazul A, Zhao X, Salazar AH, et al. UNMASC:
Tumor-Only Variant Calling With Unmatched Normal Controls. NAR
Cancer (2021) 3(4):zcab040. doi: 10.1093/narcan/zcab040

32. Trost B, Walker S, Haider SA, Sung WWL, Pereira S, Phillips CL, et al.
Impact of DNA Source on Genetic Variant Detection From Human Whole-
Genome Sequencing Data. J Med Genet (2019) 56(12):809–17. doi: 10.1136/
jmedgenet-2019-106281

33. Samson CA, Whitford W, Snell RG, Jacobsen JC, Lehnert K. Contaminating
DNA in Human Saliva Alters the Detection of Variants From Whole
Genome Sequencing. Sci Rep (2020) 10(1):19255. doi: 10.1038/s41598-020-
76022-4

34. Kidd JM, Sharpton TJ, Bobo D, Norman PJ, Martin AR, Carpenter ML, et al.
Exome Capture From Saliva Produces High Quality Genomic and
Metagenomic Data. BMC Genomics (2014) 15:262. doi: 10.1186/1471-
2164-15-262

35. Griffith M, Miller CA, Griffith OL, Krysiak K, Skidmore ZL, Ramu A, et al.
Optimizing Cancer Genome Sequencing and Analysis. Cell Syst (2015) 1
(3):210–23. doi: 10.1016/j.cels.2015.08.015

36. Taylor-Weiner A, Stewart C, Giordano T, Miller M, Rosenberg M, Macbeth
A, et al. DeTiN: Overcoming Tumor-in-Normal Contamination. Nat
Methods (2018) 15(7):531–4. doi: 10.1038/s41592-018-0036-9

37. Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, Sanders MA,
et al. The Mutational Landscape of Human Somatic and Germline Cells.
Nature (2021) 597(7876):381–6. doi: 10.1038/s41586-021-03822-7

38. Wei L, Christensen SR, Fitzgerald ME, Graham J, Hutson ND, Zhang C,
et al. Ultradeep Sequencing Differentiates Patterns of Skin Clonal Mutations
Associated With Sun-Exposure Status and Skin Cancer Burden. Sci Adv
(2021) 7(1):eabd7703. doi: 10.1126/sciadv.abd7703

39. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ,
et al. Somatic Mutant Clones Colonize the Human Esophagus With Age.
Science (2018) 362(6417):911–7. doi: 10.1126/science.aau3879

40. Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, et al.
Somatic Mutations and Clonal Dynamics in Healthy and Cirrhotic Human
Liver. Nature (2019) 574(7779):538–42. doi: 10.1038/s41586-019-1670-9

41. Oh JH, Sung CO. Comprehensive Characteristics of Somatic Mutations in
the Normal Tissues of Patients With Cancer and Existence of Somatic
Mutant Clones Linked to Cancer Development. J Med Genet (2021) 58
(7):433–41. doi: 10.1136/jmedgenet-2020-106905

42. Bhagwate AV, Liu Y, Winham SJ, McDonough SJ, Stallings-Mann ML,
Heinzen EP, et al. Bioinformatics and DNA-Extraction Strategies to Reliably
Detect Genetic Variants From FFPE Breast Tissue Samples. BMC Genomics
(2019) 20(1):689. doi: 10.1186/s12864-019-6056-8

43. de Schaetzen van Brienen L, Larmuseau M, van der Eecken K, De Ryck F,
Robbe P, Schuh A, et al. Comparative Analysis of Somatic Variant Calling on
Matched FF and FFPE WGS Samples. BMC Med Genomics (2020) 13(1):94.
doi: 10.1186/s12920-020-00746-5

44. Tellaetxe-Abete M, Calvo B, Lawrie C. Ideafix: A Decision Tree-Based
Method for the Refinement of Variants in FFPE DNA Sequencing
Data. NAR Genom Bioinform (2021) 3(4):lqab092. doi: 10.1093/nargab/
lqab092

45. Kim H, Lee AJ, Lee J, Chun H, Ju YS, Hong D. FIREVAT: Finding Reliable
Variants Without Artifacts in Human Cancer Samples Using Etiologically
Relevant Mutational Signatures. Genome Med (2019) 11(1):81. doi: 10.1186/
s13073-019-0695-x

46. Diossy M, Sztupinszki Z, Krzystanek M, Borcsok J, Eklund AC, Csabai I,
et al. Strand Orientation Bias Detector to Determine the Probability of FFPE
Sequencing Artifacts. Brief Bioinform (2021) 22(6):bbab186. doi: 10.1093/
bib/bbab186
March 2022 | Volume 12 | Article 836821

https://doi.org/10.1038/s41586-018-0792-9
https://doi.org/10.1038/s41586-018-0792-9
https://doi.org/10.1038/mt.2010.272
https://doi.org/10.1097/CJI.0b013e3182829903
https://doi.org/10.1097/CJI.0b013e3182829903
https://doi.org/10.1200/JCO.2014.58.9093
https://doi.org/10.1038/s41591-018-0040-8
https://doi.org/10.3389/fimmu.2020.01215
https://doi.org/10.3389/fimmu.2020.00176
https://doi.org/10.3389/fimmu.2020.00176
https://doi.org/10.1038/nature13988
https://doi.org/10.1056/NEJMc1808251
https://doi.org/10.1038/nature24473
https://doi.org/10.1038/s41591-019-0654-5
https://doi.org/10.1186/s13073-019-0679-x
https://doi.org/10.1016/j.cell.2020.09.015
https://doi.org/10.4049/jimmunol.2100700
https://doi.org/10.1007/s00262-017-2001-3
https://doi.org/10.1093/annonc/mdy022
https://doi.org/10.1186/s12885-018-4325-6
https://doi.org/10.1186/s12885-018-4325-6
https://doi.org/10.1007/s00335-018-9763-6
https://doi.org/10.1186/s13073-020-00791-w
https://doi.org/10.1186/s12920-017-0296-8
https://doi.org/10.3389/fonc.2019.00119
https://doi.org/10.1093/narcan/zcab040
https://doi.org/10.1136/jmedgenet-2019-106281
https://doi.org/10.1136/jmedgenet-2019-106281
https://doi.org/10.1038/s41598-020-76022-4
https://doi.org/10.1038/s41598-020-76022-4
https://doi.org/10.1186/1471-2164-15-262
https://doi.org/10.1186/1471-2164-15-262
https://doi.org/10.1016/j.cels.2015.08.015
https://doi.org/10.1038/s41592-018-0036-9
https://doi.org/10.1038/s41586-021-03822-7
https://doi.org/10.1126/sciadv.abd7703
https://doi.org/10.1126/science.aau3879
https://doi.org/10.1038/s41586-019-1670-9
https://doi.org/10.1136/jmedgenet-2020-106905
https://doi.org/10.1186/s12864-019-6056-8
https://doi.org/10.1186/s12920-020-00746-5
https://doi.org/10.1093/nargab/lqab092
https://doi.org/10.1093/nargab/lqab092
https://doi.org/10.1186/s13073-019-0695-x
https://doi.org/10.1186/s13073-019-0695-x
https://doi.org/10.1093/bib/bbab186
https://doi.org/10.1093/bib/bbab186
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Borden et al. Neoantigen Prediction, Prioritization, and Validation
47. Jegathisawaran J, Tsiplova K, Hayeems R, Ungar WJ. Determining Accurate
Costs for Genomic Sequencing Technologies-A Necessary Prerequisite.
J Community Genet (2020) 11(2):235–8. doi: 10.1007/s12687-019-00442-7

48. O'Brien TD, Jia P, Xia J, Saxena U, Jin H, Vuong H, et al. Inconsistency and
Features of Single Nucleotide Variants Detected in Whole Exome
Sequencing Versus Transcriptome Sequencing: A Case Study in Lung
Cancer. Methods (2015) 83:118–27. doi: 10.1016/j.ymeth.2015.04.016

49. Coudray A, Battenhouse AM, Bucher P, Iyer VR. Detection and
Benchmarking of Somatic Mutations in Cancer Genomes Using RNA-Seq
Data. PeerJ (2018) 6:e5362. doi: 10.7717/peerj.5362

50. Erhard F, Halenius A, Zimmermann C, L'Hernault A, Kowalewski DJ,Weekes
MP, et al. Improved Ribo-Seq Enables Identification of Cryptic Translation
Events. Nat Methods (2018) 15(5):363–6. doi: 10.1038/nmeth.4631

51. Dersh D, Holly J, Yewdell JW. A Few Good Peptides: MHC Class I-Based
Cancer Immunosurveillance and Immunoevasion. Nat Rev Immunol (2021)
21(2):116–28. doi: 10.1038/s41577-020-0390-6

52. Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al.
Insertion-And-Deletion-Derived Tumour-Specific Neoantigens and the
Immunogenic Phenotype: A Pan-Cancer Analysis. Lancet Oncol (2017) 18
(8):1009–21. doi: 10.1016/S1470-2045(17)30516-8

53. Laumont CM, Vincent K, Hesnard L, Audemard E, Bonneil E, Laverdure JP,
et al. Noncoding Regions are the Main Source of Targetable Tumor-Specific
Antigens. Sci Transl Med (2018) 10(470):eaau5516. doi: 10.1126/
scitranslmed.aau5516

54. Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al.
Immunogenic Neoantigens Derived From Gene Fusions Stimulate T Cell
Responses. Nat Med (2019) 25(5):767–75. doi: 10.1038/s41591-019-0434-2

55. Marijt KA, van Hall T. To TAP or Not to TAP: Alternative Peptides for
Immunotherapy of Cancer. Curr Opin Immunol (2020) 64:15–9.
doi: 10.1016/j.coi.2019.12.004

56. Zhao Q, Laverdure JP, Lanoix J, Durette C, Cote C, Bonneil E, et al.
Proteogenomics Uncovers a Vast Repertoire of Shared Tumor-Specific
Antigens in Ovarian Cancer. Cancer Immunol Res (2020) 8(4):544–55.
doi: 10.1158/2326-6066.CIR-19-0541

57. Ruiz Cuevas MV, Hardy MP, Holly J, Bonneil E, Durette C, Courcelles M,
et al. Most Non-Canonical Proteins Uniquely Populate the Proteome or
Immunopeptidome. Cell Rep (2021) 34(10):108815. doi: 10.1016/
j.celrep.2021.108815

58. Kroigard AB, Thomassen M, Laenkholm AV, Kruse TA, Larsen MJ.
Evaluation of Nine Somatic Variant Callers for Detection of Somatic
Mutations in Exome and Targeted Deep Sequencing Data. PLoS One
(2016) 11(3):e0151664. doi: 10.1371/journal.pone.0151664

59. Supernat A, Vidarsson OV, Steen VM, Stokowy T. Comparison of Three
Variant Callers for Human Whole Genome Sequencing. Sci Rep (2018) 8
(1):17851. doi: 10.1038/s41598-018-36177-7

60. Bian X, Zhu B, Wang M, Hu Y, Chen Q, Nguyen C, et al. Comparing the
Performance of Selected Variant Callers Using Synthetic Data and Genome
Segmentation. BMC Bioinf (2018) 19(1):429. doi: 10.1186/s12859-018-2440-7

61. Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. Benchmarking Variant Callers in
Next-Generation and Third-Generation Sequencing Analysis. Brief
Bioinform (2021) 22(3):bbaa148. doi: 10.1093/bib/bbaa148

62. KumaranM,SubramanianU,DevarajanB.PerformanceAssessmentofVariant
CallingPipelinesUsingHumanWholeExome Sequencing and SimulatedData.
BMC Bioinf (2019) 20(1):342. doi: 10.1186/s12859-019-2928-9

63. Wang M, Luo W, Jones K, Bian X, Williams R, Higson H, et al.
SomaticCombiner: Improving the Performance of Somatic Variant Calling
Based on Evaluation Tests and a Consensus Approach. Sci Rep (2020) 10
(1):12898. doi: 10.1038/s41598-020-69772-8

64. Hofmann AL, Behr J, Singer J, Kuipers J, Beisel C, Schraml P, et al. Detailed
Simulation of Cancer Exome Sequencing Data Reveals Differences and
Common Limitations of Variant Callers. BMC Bioinf (2017) 18(1):8.
doi: 10.1186/s12859-016-1417-7

65. Cameron DL, Di Stefano L, Papenfuss AT. Comprehensive Evaluation and
Characterisation of Short Read General-Purpose Structural Variant Calling
Software.Nat Commun (2019) 10(1):3240. doi: 10.1038/s41467-019-11146-4

66. Mahmoud M, Gobet N, Cruz-Davalos DI, Mounier N, Dessimoz C,
Sedlazeck FJ. Structural Variant Calling: The Long and the Short of It.
Genome Biol (2019) 20(1):246. doi: 10.1186/s13059-019-1828-7
Frontiers in Oncology | www.frontiersin.org 20
67. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M,
et al. Manta: Rapid Detection of Structural Variants and Indels for Germline
and Cancer Sequencing Applications. Bioinformatics (2016) 32(8):1220–2.
doi: 10.1093/bioinformatics/btv710

68. Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A. Accuracy
Assessment of Fusion Transcript Detection via Read-Mapping and De
Novo Fusion Transcript Assembly-Based Methods. Genome Biol (2019) 20
(1):213. doi: 10.1186/s13059-019-1842-9

69. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The
Ensembl Variant Effect Predictor. Genome Biol (2016) 17(1):122.
doi: 10.1186/s13059-016-0974-4

70. Yang H, Wang K. Genomic Variant Annotation and Prioritization With
ANNOVAR and wANNOVAR. Nat Protoc (2015) 10(10):1556–66.
doi: 10.1038/nprot.2015.105

71. McCarthy DJ, Humburg P, Kanapin A, Rivas MA, Gaulton K, Cazier JB,
et al. Choice of Transcripts and Software Has a Large Effect on Variant
Annotation. Genome Med (2014) 6(3):26. doi: 10.1186/gm543

72. Stromberg M, Roy R, Lajugie J, Jiang Y, Li H, Margulies E. “Nirvana: Clinical
Grade Variant Annotator”. In: Proceedings of the 8th ACM International
Conference on Bioinformatics, Computational Biology, and Health
Informatics (2017).

73. Rathinakannan VS, Schukov HP, Heron S, Schleutker J, Sipeky C. ShAn: An
Easy-to-Use Tool for Interactive and Integrated Variant Annotation. PLoS
One (2020) 15(7):e0235669. doi: 10.1371/journal.pone.0235669

74. Grant AD, Vail P, Padi M, Witkiewicz AK, Knudsen ES. Interrogating
Mutant Allele Expression via Customized Reference Genomes to Define
Influential Cancer Mutations. Sci Rep (2019) 9(1):12766. doi: 10.1038/
s41598-019-48967-8

75. Wang D, Eraslan B, Wieland T, Hallstrom B, Hopf T, Zolg DP, et al. A Deep
Proteome and Transcriptome Abundance Atlas of 29 Healthy Human
Tissues. Mol Syst Biol (2019) 15(2):e8503. doi: 10.15252/msb.20188503

76. Wen B, Li K, Zhang Y, Zhang B. Cancer Neoantigen Prioritization Through
Sensitive and Reliable Proteogenomics Analysis. Nat Commun (2020) 11
(1):1759. doi: 10.1038/s41467-020-15456-w

77. Gillis S, Roth A. PyClone-VI: Scalable Inference of Clonal Population
Structures Using Whole Genome Data. BMC Bioinf (2020) 21(1):571.
doi: 10.1186/s12859-020-03919-2

78. Xiao Y, Wang X, Zhang H, Ulintz PJ, Li H, Guan Y. FastClone Is a
Probabilistic Tool for Deconvoluting Tumor Heterogeneity in Bulk-
Sequencing Samples. Nat Commun (2020) 11(1):4469. doi: 10.1038/
s41467-020-18169-2

79. Lu T, Wang S, Xu L, Zhou Q, Singla N, Gao J, et al. Tumor Neoantigenicity
Assessment With CSiN Score Incorporates Clonality and Immunogenicity
to Predict Immunotherapy Outcomes. Sci Immunol (2020) 5(44):eaaz3199.
doi: 10.1126/sciimmunol.aaz3199

80. Saxova P, Buus S, Brunak S, Kesmir C. Predicting Proteasomal Cleavage
Sites: A Comparison of Available Methods. Int Immunol (2003) 15(7):781–7.
doi: 10.1093/intimm/dxg084

81. Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: Pan-Specific
MHC Class I Pathway Epitope Predictions. Immunogenetics (2010) 62
(6):357–68. doi: 10.1007/s00251-010-0441-4

82. Gomez-Perosanz M, Ras-Carmona A, Lafuente EM, Reche PA.
Identification of CD8(+) T Cell Epitopes Through Proteasome Cleavage
Site Predictions. BMC Bioinf (2020) 21(Suppl 17):484. doi: 10.1186/s12859-
020-03782-1

83. Liu IH, Lo YS, Yang JM. PAComplex: AWeb Server to Infer Peptide Antigen
Families and Binding Models From TCR-pMHC Complexes. Nucleic Acids
Res (2011) 39(Web Server issue):W254–260. doi: 10.1093/nar/gkr434

84. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-
4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating
Eluted Ligand and Peptide Binding Affinity Data. J Immunol (2017) 199
(9):3360–8. doi: 10.4049/jimmunol.1700893

85. Alvarez B, Reynisson B, Barra C, Buus S, Ternette N, Connelley T, et al.
NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding
Motif Characterization and Improved T-Cell Epitope Predictions. Mol Cell
Proteomics (2019) 18(12):2459–77. doi: 10.1074/mcp.TIR119.001658

86. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and
NetMHCIIpan-4.0: Improved Predictions of MHC Antigen Presentation by
March 2022 | Volume 12 | Article 836821

https://doi.org/10.1007/s12687-019-00442-7
https://doi.org/10.1016/j.ymeth.2015.04.016
https://doi.org/10.7717/peerj.5362
https://doi.org/10.1038/nmeth.4631
https://doi.org/10.1038/s41577-020-0390-6
https://doi.org/10.1016/S1470-2045(17)30516-8
https://doi.org/10.1126/scitranslmed.aau5516
https://doi.org/10.1126/scitranslmed.aau5516
https://doi.org/10.1038/s41591-019-0434-2
https://doi.org/10.1016/j.coi.2019.12.004
https://doi.org/10.1158/2326-6066.CIR-19-0541
https://doi.org/10.1016/j.celrep.2021.108815
https://doi.org/10.1016/j.celrep.2021.108815
https://doi.org/10.1371/journal.pone.0151664
https://doi.org/10.1038/s41598-018-36177-7
https://doi.org/10.1186/s12859-018-2440-7
https://doi.org/10.1093/bib/bbaa148
https://doi.org/10.1186/s12859-019-2928-9
https://doi.org/10.1038/s41598-020-69772-8
https://doi.org/10.1186/s12859-016-1417-7
https://doi.org/10.1038/s41467-019-11146-4
https://doi.org/10.1186/s13059-019-1828-7
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1186/s13059-019-1842-9
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1038/nprot.2015.105
https://doi.org/10.1186/gm543
https://doi.org/10.1371/journal.pone.0235669
https://doi.org/10.1038/s41598-019-48967-8
https://doi.org/10.1038/s41598-019-48967-8
https://doi.org/10.15252/msb.20188503
https://doi.org/10.1038/s41467-020-15456-w
https://doi.org/10.1186/s12859-020-03919-2
https://doi.org/10.1038/s41467-020-18169-2
https://doi.org/10.1038/s41467-020-18169-2
https://doi.org/10.1126/sciimmunol.aaz3199
https://doi.org/10.1093/intimm/dxg084
https://doi.org/10.1007/s00251-010-0441-4
https://doi.org/10.1186/s12859-020-03782-1
https://doi.org/10.1186/s12859-020-03782-1
https://doi.org/10.1093/nar/gkr434
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.1074/mcp.TIR119.001658
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Borden et al. Neoantigen Prediction, Prioritization, and Validation
Concurrent Motif Deconvolution and Integration of MS MHC Eluted
Ligand Data. Nucleic Acids Res (2020) 48(W1):W449–54. doi: 10.1093/nar/
gkaa379

87. O'Donnell TJ, Rubinsteyn A, Laserson U. MHCflurry 2.0: Improved Pan-
Allele Prediction of MHC Class I-Presented Peptides by Incorporating
Antigen Processing. Cell Syst (2020) 11(4):418–9. doi: 10.1016/
j.cels.2020.09.001

88. Shao XM, Bhattacharya R, Huang J, Sivakumar IKA, Tokheim C, Zheng L,
et al. High-Throughput Prediction of MHC Class I and II Neoantigens With
MHCnuggets. Cancer Immunol Res (2020) 8(3):396–408. doi: 10.1158/2326-
6066.CIR-19-0464

89. Boehm KM, Bhinder B, Raja VJ, Dephoure N, Elemento O. Predicting
Peptide Presentation by Major Histocompatibility Complex Class I: An
Improved Machine Learning Approach to the Immunopeptidome. BMC
Bioinf (2019) 20(1):7. doi: 10.1186/s12859-018-2561-z

90. Hu Y, Wang Z, Hu H, Wan F, Chen L, Xiong Y, et al. ACME: Pan-Specific
Peptide-MHC Class I Binding Prediction Through Attention-Based Deep
Neural Networks. Bioinformatics (2019) 35(23):4946–54. doi: 10.1093/
bioinformatics/btz427

91. Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H, Gannon
PO, et al. Deciphering HLA-I Motifs Across HLA Peptidomes Improves
Neo-Antigen Predictions and Identifies Allostery Regulating HLA
Specificity. PLoS Comput Biol (2017) 13(8):e1005725. doi: 10.1371/
journal.pcbi.1005725

92. Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, et al.
Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-
Allelic Cells Enables More Accurate Epitope Prediction. Immunity (2017)
46(2):315–26. doi: 10.1016/j.immuni.2017.02.007

93. Han Y, Kim D. Deep Convolutional Neural Networks for Pan-Specific
Peptide-MHC Class I Binding Prediction. BMC Bioinf (2017) 18(1):585.
doi: 10.1186/s12859-017-1997-x

94. Kim Y, Sidney J, Pinilla C, Sette A, Peters B. Derivation of an Amino Acid
Similarity Matrix for Peptide: MHC Binding and Its Application as a
Bayesian Prior. BMC Bioinf (2009) 10:394. doi: 10.1186/1471-2105-10-394

95. Zhang H, Lund O, Nielsen M. The PickPocket Method for Predicting
Binding Specificities for Receptors Based on Receptor Pocket Similarities:
Application to MHC-Peptide Binding. Bioinformatics (2009) 25(10):1293–9.
doi: 10.1093/bioinformatics/btp137

96. Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative
Peptide Binding Motifs for 19 Human and Mouse MHC Class I Molecules
Derived Using Positional Scanning Combinatorial Peptide Libraries.
Immunome Res (2008) 4:2. doi: 10.1186/1745-7580-4-2

97. Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, et al.
Automated Generation and Evaluation of Specific MHC Binding Predictive
Tools: ARB Matrix Applications. Immunogenetics (2005) 57(5):304–14.
doi: 10.1007/s00251-005-0798-y

98. Peters B, Sette A. Generating Quantitative Models Describing the Sequence
Specificity of Biological Processes With the Stabilized Matrix Method. BMC
Bioinf (2005) 6:132. doi: 10.1186/1471-2105-6-132

99. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S.
SYFPEITHI: Database for MHC Ligands and Peptide Motifs.
Immunogenetics (1999) 50(3-4):213–9. doi: 10.1007/s002510050595

100. Zhao W, Sher X. Systematically Benchmarking Peptide-MHC Binding
Predictors: From Synthetic to Naturally Processed Epitopes. PLoS Comput
Biol (2018) 14(11):e1006457. doi: 10.1371/journal.pcbi.1006457

101. Bonsack M, Hoppe S, Winter J, Tichy D, Zeller C, Kupper MD, et al.
Performance Evaluation of MHC Class-I Binding Prediction Tools Based on
an Experimentally Validated MHC-Peptide Binding Data Set. Cancer
Immunol Res (2019) 7(5):719–36. doi: 10.1158/2326-6066.CIR-18-0584

102. Paul S, Croft NP, Purcell AW, Tscharke DC, Sette A, Nielsen M, et al.
Benchmarking Predictions of MHC Class I Restricted T Cell Epitopes in a
Comprehensively Studied Model System. PLoS Comput Biol (2020) 16(5):
e1007757. doi: 10.1371/journal.pcbi.1007757

103. Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: A Consensus
Method for the Major Histocompatibility Complex Class I Predictions.
Immunogenetics (2012) 64(3):177–86. doi: 10.1007/s00251-011-0579-8

104. Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M,
et al. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a
Frontiers in Oncology | www.frontiersin.org 21
Correlate of T Cell Immunogenicity. J Immunol (2016) 197(4):1517–24.
doi: 10.4049/jimmunol.1600582

105. Chowell D, Krishna S, Becker PD, Cocita C, Shu J, Tan X, et al. TCR Contact
Residue Hydrophobicity is a Hallmark of Immunogenic CD8+ T Cell
Epitopes. Proc Natl Acad Sci USA (2015) 112(14):E1754–1762.
doi: 10.1073/pnas.1500973112

106. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The
Immune Epitope Database (IEDB): 2018 Update. Nucleic Acids Res (2019) 47
(D1):D339–43. doi: 10.1093/nar/gky1006

107. Ellis JM, Henson V, Slack R, Ng J, Hartzman RJ, Katovich Hurley C.
Frequencies of HLA-A2 Alleles in Five U.S. Population Groups.
Predominance Of A*02011 and Identification of HLA-A*0231. Hum
Immunol (2000) 61(3):334–40. doi: 10.1016/s0198-8859(99)00155-x

108. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson
GA, et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer
Evolution. Cell (2017) 171(6):1259–71.e1211. doi: 10.1016/j.cell.2017.10.001

109. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion
Through Loss of MHC Class I Antigen Presentation. Front Immunol
(2021) 12:636568:636568. doi: 10.3389/fimmu.2021.636568

110. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-
Lieskovan S, et al. Mutations Associated With Acquired Resistance to PD-1
Blockade in Melanoma. N Engl J Med (2016) 375(9):819–29. doi: 10.1056/
NEJMoa1604958

111. Seliger B, Ritz U, Abele R, Bock M, Tampe R, Sutter G, et al. Immune Escape
of Melanoma: First Evidence of Structural Alterations in Two Distinct
Components of the MHC Class I Antigen Processing Pathway. Cancer Res
(2001) 61(24):8647–50.

112. Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, et al.
Immunoselective Pressure and Human Leukocyte Antigen Class I Antigen
Machinery Defects in Microsatellite Unstable Colorectal Cancers. Cancer Res
(2005) 65(14):6418–24. doi: 10.1158/0008-5472.CAN-05-0044

113. Belicha-Villanueva A, Golding M, McEvoy S, Sarvaiya N, Cresswell P,
Gollnick SO, et al. Identification of an Alternate Splice Form of Tapasin in
Human Melanoma. Hum Immunol (2010) 71(10):1018–26. doi: 10.1016/
j.humimm.2010.05.019

114. Chang CC, Pirozzi G, Wen SH, Chung IH, Chiu BL, Errico S, et al. Multiple
Structural and Epigenetic Defects in the Human Leukocyte Antigen Class I
Antigen Presentation Pathway in a Recurrent Metastatic Melanoma
Following Immunotherapy. J Biol Chem (2015) 290(44):26562–75.
doi: 10.1074/jbc.M115.676130

115. Richman LP, Vonderheide RH, Rech AJ. Neoantigen Dissimilarity to the
Self-Proteome Predicts Immunogenicity and Response to Immune
Checkpoint Blockade. Cell Syst (2019) 9(4):375–82.e374. doi: 10.1016/
j.cels.2019.08.009

116. Capietto A-H, Jhunjhunwala S, Pollock SB, Lupardus P, Wong J, Hänsch L,
et al. Mutation Position Is an Important Determinant for Predicting Cancer
Neoantigens. J Exp Med (2020) 217(4):e20190179. doi: 10.1084/
jem.20190179

117. Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, et al.
MHC-II Neoantigens Shape Tumour Immunity and Response to
Immunotherapy. Nature (2019) 574(7780):696–701. doi: 10.1038/s41586-
019-1671-8

118. Sercarz EE, Maverakis E. Mhc-Guided Processing: Binding of Large Antigen
Fragments. Nat Rev Immunol (2003) 3(8):621–9. doi: 10.1038/nri1149

119. Lee P, Matsueda GR, Allen PM. T Cell Recognition of Fibrinogen. A
Determinant on the A Alpha-Chain Does Not Require Processing.
J Immunol (1988) 140(4):1063–8.

120. Buus S, Sette A, Colon SM, Miles C, Grey HM. The Relation Between Major
Histocompatibility Complex (MHC) Restriction and the Capacity of Ia to
Bind Immunogenic Peptides. Science (1987) 235(4794):1353–8. doi: 10.1126/
science.2435001

121. Abelin JG, Harjanto D, Malloy M, Suri P, Colson T, Goulding SP, et al.
Defining HLA-II Ligand Processing and Binding Rules With Mass
Spectrometry Enhances Cancer Epitope Prediction. Immunity (2021) 54
(2):388. doi: 10.1016/j.immuni.2020.12.005

122. Barra C, Alvarez B, Paul S, Sette A, Peters B, Andreatta M, et al. Footprints of
Antigen Processing Boost MHC Class II Natural Ligand Predictions. Genome
Med (2018) 10(1):84. doi: 10.1186/s13073-018-0594-6
March 2022 | Volume 12 | Article 836821

https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1016/j.cels.2020.09.001
https://doi.org/10.1016/j.cels.2020.09.001
https://doi.org/10.1158/2326-6066.CIR-19-0464
https://doi.org/10.1158/2326-6066.CIR-19-0464
https://doi.org/10.1186/s12859-018-2561-z
https://doi.org/10.1093/bioinformatics/btz427
https://doi.org/10.1093/bioinformatics/btz427
https://doi.org/10.1371/journal.pcbi.1005725
https://doi.org/10.1371/journal.pcbi.1005725
https://doi.org/10.1016/j.immuni.2017.02.007
https://doi.org/10.1186/s12859-017-1997-x
https://doi.org/10.1186/1471-2105-10-394
https://doi.org/10.1093/bioinformatics/btp137
https://doi.org/10.1186/1745-7580-4-2
https://doi.org/10.1007/s00251-005-0798-y
https://doi.org/10.1186/1471-2105-6-132
https://doi.org/10.1007/s002510050595
https://doi.org/10.1371/journal.pcbi.1006457
https://doi.org/10.1158/2326-6066.CIR-18-0584
https://doi.org/10.1371/journal.pcbi.1007757
https://doi.org/10.1007/s00251-011-0579-8
https://doi.org/10.4049/jimmunol.1600582
https://doi.org/10.1073/pnas.1500973112
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1016/s0198-8859(99)00155-x
https://doi.org/10.1016/j.cell.2017.10.001
https://doi.org/10.3389/fimmu.2021.636568
https://doi.org/10.1056/NEJMoa1604958
https://doi.org/10.1056/NEJMoa1604958
https://doi.org/10.1158/0008-5472.CAN-05-0044
https://doi.org/10.1016/j.humimm.2010.05.019
https://doi.org/10.1016/j.humimm.2010.05.019
https://doi.org/10.1074/jbc.M115.676130
https://doi.org/10.1016/j.cels.2019.08.009
https://doi.org/10.1016/j.cels.2019.08.009
https://doi.org/10.1084/jem.20190179
https://doi.org/10.1084/jem.20190179
https://doi.org/10.1038/s41586-019-1671-8
https://doi.org/10.1038/s41586-019-1671-8
https://doi.org/10.1038/nri1149
https://doi.org/10.1126/science.2435001
https://doi.org/10.1126/science.2435001
https://doi.org/10.1016/j.immuni.2020.12.005
https://doi.org/10.1186/s13073-018-0594-6
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Borden et al. Neoantigen Prediction, Prioritization, and Validation
123. Paul S, Karosiene E, Dhanda SK, Jurtz V, Edwards L, Nielsen M, et al.
Determination of a Predictive Cleavage Motif for Eluted Major
Histocompatibility Complex Class II Ligands. Front Immunol (2018)
9:1795:1795. doi: 10.3389/fimmu.2018.01795

124. Andreatta M, Trolle T, Yan Z, Greenbaum JA, Peters B, Nielsen M. An
Automated Benchmarking Platform for MHC Class II Binding Prediction
Methods. Bioinformatics (2018) 34(9):1522–8. doi: 10.1093/bioinformatics/
btx820

125. Liu Z, Jin J, Cui Y, Xiong Z, Nasiri A, Zhao Y, et al. DeepSeqPanII: An
Interpretable Recurrent Neural Network Model With Attention Mechanism
for Peptide-HLA Class II Binding Prediction. IEEE/ACM Trans Comput Biol
Bioinform PP (2021). doi: 10.1109/TCBB.2021.3074927

126. Racle J, Michaux J, Rockinger GA, Arnaud M, Bobisse S, Chong C, et al.
Robust Prediction of HLA Class II Epitopes by Deep Motif Deconvolution of
Immunopeptidomes. Nat Biotechnol (2019) 37(11):1283–6. doi: 10.1038/
s41587-019-0289-6

127. Jones EY, Fugger L, Strominger JL, Siebold C. MHC Class II Proteins and
Disease: A Structural Perspective. Nat Rev Immunol (2006) 6(4):271–82.
doi: 10.1038/nri1805

128. Ferrante A, Gorski J. Cooperativity of Hydrophobic Anchor Interactions:
Evidence for Epitope Selection by MHC Class II as a Folding Process.
J Immunol (2007) 178(11):7181–9. doi: 10.4049/jimmunol.178.11.7181

129. Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, et al.
Predicting HLA CD4 Immunogenicity in Human Populations. Front
Immunol (2018) 9:1369:1369. doi: 10.3389/fimmu.2018.01369

130. Chen B, Khodadoust MS, OlssonN,Wagar LE, Fast E, Liu CL, et al. Predicting
HLA Class II Antigen Presentation Through Integrated Deep Learning. Nat
Biotechnol (2019) 37(11):1332–43. doi: 10.1038/s41587-019-0280-2

131. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining
Exomic Sequencing Data to Identify Mutated Antigens Recognized by
Adoptively Transferred Tumor-Reactive T Cells. Nat Med (2013) 19
(6):747–52. doi: 10.1038/nm.3161

132. Wick DA, Webb JR, Nielsen JS, Martin SD, Kroeger DR, Milne K, et al.
Surveillance of the Tumor Mutanome by T Cells During Progression From
Primary to Recurrent Ovarian Cancer. Clin Cancer Res (2014) 20(5):1125–
34. doi: 10.1158/1078-0432.CCR-13-2147

133. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al.
Systematic Identification of Personal Tumor-Specific Neoantigens in
Chronic Lymphocytic Leukemia. Blood (2014) 124(3):453–62.
doi: 10.1182/blood-2014-04-567933

134. Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K,
Bliskovsky VV, et al. Isolation of Neoantigen-Specific T Cells From Tumor
and Peripheral Lymphocytes. J Clin Invest (2015) 125(10):3981–91.
doi: 10.1172/JCI82416

135. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK,
et al. Clonal Neoantigens Elicit T Cell Immunoreactivity and Sensitivity to
Immune Checkpoint Blockade. Science (2016) 351(6280):1463–9.
doi: 10.1126/science.aaf1490
Frontiers in Oncology | www.frontiersin.org 22
136. Strønen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N,
et al. Targeting of Cancer Neoantigens With Donor-Derived T Cell Receptor
Repertoires. Science (2016) 352(6291):1337–41. doi: 10.1126/science.aaf2288

137. Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, Donia M, et al.
Large-Scale Detection of Antigen-Specific T Cells Using Peptide-MHC-I
Multimers Labeled With DNA Barcodes. Nat Biotechnol (2016) 34
(10):1037–45. doi: 10.1038/nbt.3662

138. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al.
Prospective Identification of Neoantigen-Specific Lymphocytes in the
Peripheral Blood of Melanoma Patients. Nat Med (2016) 22(4):433–8.
doi: 10.1038/nm.4051

139. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, et al.
Genomic and Bioinformatic Profiling of Mutational Neoepitopes Reveals
New Rules to Predict Anticancer Immunogenicity. J Exp Med (2014) 211
(11):2231–48. doi: 10.1084/jem.20141308

140. Pai JA, Satpathy AT. High-Throughput and Single-Cell T Cell Receptor
Sequencing Technologies. Nat Methods (2021) 18(8):881–92. doi: 10.1038/
s41592-021-01201-8

141. Huang J, Zeng X, Sigal N, Lund PJ, Su LF, Huang H, et al. Detection,
Phenotyping, and Quantification of Antigen-Specific T Cells Using a
Peptide-MHC Dodecamer. Proc Natl Acad Sci USA (2016) 113(13):E1890–
1897. doi: 10.1073/pnas.1602488113

142. Dolton G, Zervoudi E, Rius C,Wall A, Thomas HL, Fuller A, et al. Optimized
Peptide-MHC Multimer Protocols for Detection and Isolation of
Autoimmune T-Cells. Front Immunol (2018) 9:1378:1378. doi: 10.3389/
fimmu.2018.01378

143. Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, et al.
Different Affinity Windows for Virus and Cancer-Specific T-Cell Receptors:
Implications for Therapeutic Strategies. Eur J Immunol (2012) 42(12):3174–
9. doi: 10.1002/eji.201242606
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Borden, Buetow, Wilson and Hastings. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
March 2022 | Volume 12 | Article 836821

https://doi.org/10.3389/fimmu.2018.01795
https://doi.org/10.1093/bioinformatics/btx820
https://doi.org/10.1093/bioinformatics/btx820
https://doi.org/10.1109/TCBB.2021.3074927
https://doi.org/10.1038/s41587-019-0289-6
https://doi.org/10.1038/s41587-019-0289-6
https://doi.org/10.1038/nri1805
https://doi.org/10.4049/jimmunol.178.11.7181
https://doi.org/10.3389/fimmu.2018.01369
https://doi.org/10.1038/s41587-019-0280-2
https://doi.org/10.1038/nm.3161
https://doi.org/10.1158/1078-0432.CCR-13-2147
https://doi.org/10.1182/blood-2014-04-567933
https://doi.org/10.1172/JCI82416
https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1126/science.aaf2288
https://doi.org/10.1038/nbt.3662
https://doi.org/10.1038/nm.4051
https://doi.org/10.1084/jem.20141308
https://doi.org/10.1038/s41592-021-01201-8
https://doi.org/10.1038/s41592-021-01201-8
https://doi.org/10.1073/pnas.1602488113
https://doi.org/10.3389/fimmu.2018.01378
https://doi.org/10.3389/fimmu.2018.01378
https://doi.org/10.1002/eji.201242606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Cancer Neoantigens: Challenges and Future Directions for Prediction, Prioritization, and Validation
	1 Introduction
	2 Neoantigen Prediction
	2.1 Sample Acquisition
	2.2 Sequencing
	2.3 Variant Calling
	2.4 Variant Annotation

	3 Neoantigen Prioritization
	3.1 MHC Class I-Restricted Neoantigen Characteristics
	3.1.1 Expression
	3.1.2 Processing
	3.1.3 MHC Class I Binding
	3.1.4 T Cell Receptor Recognition
	3.1.5 Integrated Models

	3.2 MHC Class II-Restricted Neoantigen Prioritization
	3.2.1 Expression
	3.2.2 Processing
	3.2.3 MHC Class II Binding
	3.2.4 T Cell Receptor Recognition
	3.2.5 Integrated Models


	4 Neoantigen Validation
	5 Conclusion
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


