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Abstract

Background: Earlobe color is a naturally and artificially selected trait in chicken. As a head furnishing trait, it has

been selected as a breed characteristic. Research has demonstrated that white/red earlobe color was related to at

least three loci and sex-linked. However, there has been little work to date to identify the specific genomic regions
and genes response to earlobe color in Rhode Island Red chickens. Currently, it is possible to identify the genomic
regions responsible for white/red earlobe in Rhode Island Red chicken to eliminate this gap in knowledge by using

genome-wide association (GWA) analysis.

Results: In the present study, genome-wide association (GWA) analysis was conducted to explore the candidate
genomic regions response to chicken earlobe color phenotype. Hens with red dominant and white dominant
earlobe was used for case-control analysis by lllumina 600 K SNP arrays. The GWA results showed that 2.38 Mb
genomic region (50.13 to 52.51 Mb) with 282 SNPs on chromosome Z were significantly correlated to earlobe color,
including sixteen known genes and seven anonymous genes. The sixteen genes were PAM, SLCO4CT, ST8SIA4,
FAM174A, CHD1, RGMB, RIOK2, LIX1, LNPEP, SHB, RNF38, TRIM14, NANS, CLTA, GNE, and CPLX].

Conclusions: The study has revealed the white/red earlobe trait is polygenic and sex-linked in Rhode Island Red
chickens. In the genome significant ~2.38 Mb region, twenty-three genes were found and some of them could play
critical roles in the formation of white/red earlobe color, especially gene SLCO4CT. Taken together, the candidate
genes findings herein can help elucidate the genomic architecture of response to white/red earlobe and provide a
new insight on mechanisms underlying earlobe color in Rhode Island Red chickens and other breeds.
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Background

Earlobe color, a qualitative trait in chicken, is artificially
and naturally selected in various breeds [1, 2]. It is a part
of skin structure on the face without feathers and below
the ear. In nature, shining color is selected to get more
attention of their predators or partners [3, 4]. Earlobe
color, a head furnishing trait, has been selected as a
breed characteristicc. Red or white earlobes are
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predominant in a number of the wild and domestic
chickens worldwide [2] although vyellow, blue, purple
and black earlobe could be found in some breeds.

Variation in chicken earlobe color may be caused by
ancestral lineages and mutations [2], as well as the
adaptability to local conditions [5]. For example, The
presence of white earlobes is due to purine base depos-
ition and the formation of other color earlobe is attrib-
uted to the mixture of different pigments including
melanin or carotenoid [6]. The red earlobe, the same
color as the rest of the red face, could reflect the health
of the birds with the degree of redness [7].
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Genetic foundation studies of chicken earlobe color
were conducted in previous studies. The white earlobe
has been identified to be polygenic and it appeared to be
sex-linked in some breeds [7]. The mottled earlobe in
Rhode Island Reds appears to be produced by two reces-
sive autosomal genes [8]. Recently, Wragg et al. [9] iden-
tified 7 concordant significances (P<0.05 and Z>4)
SNPs on chicken chromosomes 1, 2, 4 and Z related to
white/red earlobe color by using genome-wide associ-
ation (GWA) analysis, indicating that earlobe color trait
is sex-linked and polygenic. However, there has been lit-
tle work to date to identify the accurate genomic regions
and genes response to earlobe color in Rhode Island Red
chickens. To eliminate this gap in knowledge, we per-
formed a genome-wide association study (GWAS) to
identify the genomic regions responsible for white/red
earlobe in the Rhode Island Red chickens.

Results
After quality control, a total of 78 female chickens aged
20 weeks old were analyzed, of which 48 (61 %) presented
white earlobe color as cases and 30 (39 %) presented red
earlobe color as controls. The MultiDimensional scaling
(MDS) analysis indicated the absence of population stratifi-
cation in our study population (Additional file 1: Figure S1).
Based on the Manhattan plot for earlobe color, we ob-
served a total of 282 significantly associated SNPs span-
ning from 50.13 to 5251 Mb (~2.38 Mb) on
chromosome Z (P value<9.81x1077) in the sexually
mature hens (Fig. 1 and Additional file 2: Table S1). The
linkage disequilibrium plot (Additional file 3: Figure S2)
showed the detected SNP markers were strongly linked
in a haplotype block. Moreover, in this ~2.38 spanning,
twenty-three genes were found related to earlobe color
phenotype, including sixteen annotated genes and seven
anonymous genes: PAM, SLCO4C1, ST8SIA4, FAM174A,
CHDI1, RGMB, RIOK2, LIXI1, LNPEP, SHB, RNF38,
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TRIM14, NANS, CLTA, GNE, CPLX1, LOC107052343,
LOCI107052344,  LOCI107052345,  LOC101752070,
LOC107052346, LOCI100857660 and LOCI101752249.
The sixteen annotated genes and their functions were
displayed in Table 1.

Additionally, a total of four autosomal regions with 6
SNPs were suggestive significantly related to white/red
earlobe in chicken (1.95x 107°) (Fig. 1 and Additional
file 4: Table S2), of which two on chromosome 2 (one
with 2 SNPs and the other one with 1 isolated SNP)
(67.19 Mb ~ 67.21 Mb), one on chromosome 5 (1 iso-
lated SNP), and one on chromosome 7 (2 SNPs)
(10.09 Mb ~ 10.12 Mb).

Discussion

The aims of this study were to identify and estimate the
genomic regions responsible for white/red earlobe in
Rhode Island Red chickens, and to locate positional can-
didate genes association with color earlobe by using a
600 K SNP panel for genotyping. In a brief, a total of
282 genome significantly SNP markers on chromosome
Z were detected in this study, which corresponded to
sixteen known genes and seven anonymous genes.

Gene SLCO4CI (solute carrier organic anion trans-
porter family member 4C1) was identified for earlobe
color within an average of 101 kb of twenty-five the
genome-wide significant SNPs (Additional file 2: Table
S1). This plausible positional candidate gene, SLCO4C1,
may have its special function in earlobe color formation
as it is among numerous significant SNPs that in linkage
disequilibrium (LD) building up to a QTL peak.

Candidate gene, SLCO4CI1, belongs to the organic
anion transporting polypeptide (OATP) family. Re-
searchers have demonstrated that OATP family had the
function of transportation of the amphipathic organic
compounds, like bile salt in mammals [10, 11]. The
component of bile salt, biliverdin, can be deposited to
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Table 1 Summary description of genes in ~2.38 Mb region on chromosome Z

Gene Full Name Location Length  Number Functions
(bp)® (bp)*  (SNP)°
PAM Peptidylglycine alpha-amidating 50,043,929 - 128892 7 Catalyze neuroendocrine peptides to active alpha-
monooxygenase 50,172,820 amidated products [17, 30], type 2 diabetes [13].
SLCOA4CT Solute carrier organic anion 50256470- 26818 2 Transport estrone 3-sulfate [31].
transporter family member 4C1 50,283,287
ST8SIA4 ST8 alpha-N-acetyl-neuraminide 50,646,216~ 53476 0 Modulator of the adhesive properties of neural cell
alpha-2,8-sialyltransferase 4 50,699,691 adhesion molecule [16].
LOC107052343 NA 50,802,139- 6,684 0 NA
50,808,822
FAM174A Family with sequence similarity 174  50,808,437- 13800 0 NA
member A 50,822,236
CHD1 Chromodomain helicase DNA 51,274,317- 48421 0 Disease related [12, 32, 33, 34].
binding protein 1 51,322,737
RGMB Repulsive guidance molecule family 51,334306- 15685 0 Angiogenesis [35], breast cancer [14].
member b 51,349,990
RIOK2 RIO kinase 2 51,538,065~ 12026 0 Mitotic progression [36], cytoplasmic maturation [18].
51,550,090
LIXT Limb and CNS expressed 1 51,552,825~ 28284 0 Fat signaling, marker for cerebral structures [19, 37].
51,581,108
LNPEP Leucyl/cystinyl aminopeptidase 51,598,066— 53338 13 Vasopressin clearance and serum sodium regulation [38],
51,651,403 associated with psoriasis [39].
LOC107052344 NA 51,667,644— 7,678 1 NA
51,675,321
SHB Src homology 2 domain containing 51,704,167- 73385 14 Regulates cell motility [40, 41].
adaptor protein B 51,777,551
LOC107052345 NA 51,759,503— 7479 4 NA
51,766,981
RNF38 Ring finger protein 38 51,958739- 34286 9 Disease related [15, 42].
51,993,024
LOC101752070 NA 51,999,295- 3,732 0 NA
52,003,026
TRIM14 Tripartite motif containing 14 52,003,922— 7436 3 A mediator in the immune response against viral infection
52,011,357 (431
NANS N-acetylneuraminic acid synthase 52,013,130- 8,895 3 Change expression in response to androgen [44].
52,022,024
CLTA Clathrin light chain A 52,040,355- 14804 2 Main structural component of the lattice-type cytoplasmic
52,055,158 face of coated pits and vesicles [22, 23].
GNE Glucosamine (UDP-N-acetyl)-2- 52,058958- 37220 10 GNE myopathy [45], regulator of sialic acid synthesis [46].
epimerase 52,096,177
LOC107052346 NA 52,149,755— 25813 9 NA
52,175,567
LOC100857660 NA 52,178,755- 26477 6 NA
52,205,231
CPLX1 Complexin 1 52,264,659~ 104,140 18 Synaptic vesicle exocytosis, bind syntaxin, part of the SNAP
52,368,798 receptor [21, 47, 48].
LOC101752249 NA 52471803~ 11653 2 NA
52,483,455

NA not available
2 Source: Reference Gallus_gallus-5.0 primary assembly (NCBI)
® The number of genome significant SNPs located in gene

form blue eggshell [12]. Wang et al. [12] reported in  remains unknown, earlobes color was occurred due to
chicken SLCO1B3 was in response to blue eggshell color  purine base deposition or mixture of different pigments
formation via transferring biliverdin. Although the mol-  [6]. In practical, breeders believed some relations exist
ecule transfer mechanism of earlobe color formation between earlobe and eggshell color, which might be
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caused by the close association of the determining genes
on the chromosome or single factor that controls the
pigmentation of both egg and earlobe [7].

Thus, based on the current results, pigments depos-
ition to form earlobe color, as well as the relations be-
tween earlobe and eggshell color, it is reasonable for us
to speculate SLCO4C1 may play an important role in the
formation of earlobe color. Future validation of this as-
sumption of SLCO4C1 gene function is warranted in
chicken.

Besides the crucial positional candidate gene
SLCO4C1, other candidate genes located in this
~2.38 Mb region have various functions (Table 1). For
example, RNF38, CHD1, PAM, RGMB, LNPEP, RNF38,
TRIMI14 and GNE were detected to be associated with
diseases [12-15]. ST8SIA4, PAM, RIOK2, LNPEP, LIXI,
SHB, TRIM14 and GNE have been discovered to be im-
portant in regulating the life process [16—20]. NANS can
change expression in response to androgen. CPLX1 and
RIOK?2 were correlated with cytoplasmic maturation [18]
or synaptic vesicle exocytosis [21]. CLTA was found as-
sociated with cytoplasmic face of coated pits [22] and
vesicles progress [23]. Currently, the mechanism under-
lying earlobe color is almost unknown and few litera-
tures support these candidate genes were directly in
response to earlobe color. However, the GWAS results
in this study may provide a clue for researcher to iden-
tify the relationship between these candidate genes and
earlobe color. Further validation experiment of these
genes was needed to perform.

Compared to our findings, Wragg et al. [9] has found
7 SNPs significantly associated with white/red earlobe
color in various breeds via GWAS. In the study of
Wragg et al., two SNPs (rs14170217 and rs14170463)
were located on chromosome 2 at region 41.69 Mb and
41.89 Mb, respectively [9], which were ~25.5 Mb and
~25.3 Mb, respectively, downstream of our suggestive
significantly SNPs (rs315420052 and rs313803643). The
SNPs, rs14170217 and rs14170463, in Wragg et al. study
were in the intron of genes, ATP2C1 and MRPL3, re-
spectively. In our study, both rs315420052 and
rs313803643 were in the intron of gene GMDS. Another
SNP, rs14762712, on chromosome Z at 32.08 Mb in
Wragg et al. study [9] was also in intron in BNC2 that
important to pigment pattern formation. In summary, all
detected significant SNPs in Wragg et al. study were in
the intron area of genes. Only BNC2 was more related
to earlobe color, which is not found in our study.

Several reasons made the different results between
ours and Wragg et al. study. Firstly, Wragg et al. use
traditional breeds, Kenyan, Ethiopian, and Chilean vil-
lage chickens to perform association analysis. Secondly,
the phenotypic traits in Wragg et al. study were not only
earlobe but yellow skin, oocyan, rose comb, and duplex
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comb. Thirdly, the experimental population birds almost
have been post-prune in earlobe color in Wragg’s study.
Moreover, compared to Wragg’s materials, our inbreed-
ing population has a different phenotype in earlobe
(Additional file 5: Figure S3) but a consistent genetic
background, which is a good choice to perform GWAS.
Also, GWAS always show different results in different
populations [24]. Taken together, it is not surprise to ob-
tain different results from ours and Wragg et al. study.
However, both Wragg et al. and our study showed poly-
genic and sex-linked inheritance pattern determined ear-
lobe color although different breeds were used in
different studies.

Conclusions

This study has revealed 282 genome significantly SNPs
spanning ~2.38 Mb region on chromosome Z associated
with earlobe color in Rhode Island Red chickens, corre-
sponding to twenty-three genes. The genomic regions
that we identified contain twenty-three genes with func-
tions that suggest a role in response to earlobe color
and, thus, these genes are both positional and functional
candidates. Notably, among these twenty-three genes,
SLCO4C1 may play critical roles in the formation of
white/red earlobe color. Taken together, the candidate
genes findings herein can help elucidate the genomic
architecture of response to white/red earlobe and pro-
vide a new insight on mechanisms underlying earlobe
color in Rhode Island Red chickens and other breeds.

Methods

Animals and phenotypic data

A total of 78 adult females Rhode Island Red chicken
(20 weeks) were selected herein including 30 with red or
predominantly red earlobe and 48 with white or pre-
dominantly white earlobe to perform GWAS (Fig. 2). In
Rhode Island Red chicken, earlobe color trait is sex-
linked. Males mainly had red earlobe whereas female
had four grades of earlobe color: red, predominately red,
white, and predominately white (Additional file 5: Figure
S3). Animals have different phenotypes with a consistent
genetic background is a good choice to do GWAS.
Therefore, we chose sexually mature female chickens as
experimental material to identify the genomic architec-
ture of response to earlobe color in this study. In this ex-
perimental population, predominately red (Additional
file 5: Figure S3b) or predominately white (Additional
file 5: Figure S3c) is shown that red or white color over-
spread the majority of the earlobe surface. Blood sam-
ples were collected by standard venipuncture from a
Rhode Island Red chicken population maintained at a
commercial breeding farm in Beijing, China.
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Fig. 2 Rhode Island Red chicken hens with the white or red earlobe color. a Red earlobe chicken, (b) white earlobe chicken.

Genotyping and quality control

Genomic DNA was extracted by standard phenol/
chloroform method and genotyped with 600 K Affyme-
trix Axiom Chicken Genotyping Array (Affymetrix, Inc.
Santa Clara, CA, USA). Affymetrix Power Tools v1.16.0
(APT) software was then used for quality control and
genotype calling. Specifically, only samples with dish
quality control (DQC) >0.82 and call rate>97 % were
used for subsequent analysis. After sample quality con-
trol analysis, the mean concordance rate was 99.7 %.

The classical multidimensional scaling (MDS) analysis
was used to detect population structure in PLINK v1.09
software [25]. By computing identical by state (IBS)
scores for unlinked SNPs with r* < 0.2 and using multidi-
mensional scaling, a total of 78 samples were identified
to involve in further analysis. Projection onto the two
multidimensional scaling axes is shown in Additional file
1: Figure S1.

SNPs were removed with a minor allele frequency <
5 % in all samples (n =135,166), or a P value of deviation
from HardyWeinberg equilibrium (Pywe) <1 x 107 in
controls (n =444). Ultimately, a total of 78 individuals
and 370,106 SNPs were kept for the following associ-
ation analysis.

Statistical analysis

To test the association of each SNP with earlobe
color, we used the basic case/control association ana-
lysis according to the manual of PLINK (v1.09). All
qualified SNPs were subjected to the linkage disequi-
librium via the --indep-pairwise 25 5 0.2 commend
(PLINK) to generate a pruned subset of 50,946 link-
age equilibrium SNPs.

The Bonferroni adjustment is a widely used method
for correcting multiple hypothesis testing. Given the cor-
relation between SNPs in linkage disequilibrium, the
traditional Bonferroni adjustment appears to be overly
conservative which key assumption is that all tests are
independent [26]. Herein, the sum of independent
blocks plus singleton markers was used to define the
number of independent statistical tests [27, 28]. With
this approach, 50,946 independent tests were suggested
to determine the P value threshold. Hence, the genome-
wide significant and suggestive P values were 9.81 x 10~"
(0.05/50946) and 1.95 x 10> (1/50946), respectively. The
Manhattan plot of genome wide P values of association
analysis was created by self-developed R programming
codes. To further location candidate region that affect
trait, we performed linkage disequilibrium (LD) analysis
with genome significantly SNPs in Haploview software
(v4.2) [29].

Additional files

Additional file 1: Figure S1. Sample structure evaluated by the top
two MDS components. (1) White earlobe chicken, (2) red earlobe chicken.
(JPG 319 kb)

Additional file 2: Table S1. The information for SNPs significantly
associated with earlobe color in Rhode Island Red chickens. (DOCX 37 kb)

Additional file 3: Figure S2. Linkage disequilibrium (r2) plot association
with white/red earlobe color. (PNG 2459 kb)

Additional file 4: Table S2. Suggestive SNPs associated with the
earlobe color phenotype in Rhode Island Red chickens. (DOC 240 kb)

Additional file 5: Figure S3. Rhode Island Red chicken hens with
different earlobe color. (a) Red earlobe chicken, (b) predominately red
earlobe chicken, (c) predominately white earlobe chicken, (d) white
earlobe chicken. (JPG 131 kb)
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