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Metal ions are vital to metabolism, as they can act as cofactors on
enzymes and thus modulate individual enzymatic reactions. Al-
though many enzymes have been reported to interact with metal
ions, the quantitative relationships between metal ions and me-
tabolism are lacking. Here, we reconstructed a genome-scale met-
abolic model of the yeast Saccharomyces cerevisiae to account for
proteome constraints and enzyme cofactors such as metal ions,
named CofactorYeast. The model is able to estimate abundances
of metal ions binding on enzymes in cells under various conditions,
which are comparable to measured metal ion contents in biomass.
In addition, the model predicts distinct metabolic flux distributions
in response to reduced levels of various metal ions in the medium.
Specifically, the model reproduces changes upon iron deficiency in
metabolic and gene expression levels, which could be interpreted
by optimization principles (i.e., yeast optimizes iron utilization
based on metabolic network and enzyme kinetics rather than pref-
erentially targeting iron to specific enzymes or pathways). At last,
we show the potential of using the model for understanding cell
factories that harbor heterologous iron-containing enzymes to
synthesize high-value compounds such as p-coumaric acid. Overall,
the model demonstrates the dependence of enzymes on metal
ions and links metal ions to metabolism on a genome scale.

constraint-based model | Saccharomyces cerevisiae | proteome constraint |
metabolic engineering | resource allocation

Metabolism plays a key role in all cellular processes. To
maintain metabolic activities, cells take up nutrients from

the environment, including macronutrients and minerals. Mac-
ronutrients such as carbohydrates and amino acids are primary
substrates of metabolic reactions to provide energy and precur-
sors for other biological processes. Many minerals (e.g., metal
ions) are essential but appear to be less related with metabolism
as they do not directly participate in metabolic reactions as either
substrates or products. Instead, they serve as cofactors on en-
zymes to ensure proper function. The BRENDA database (1)
summarizes experimental evidence of metal ions being stimula-
tory or even essential for ion-containing enzyme activities. Al-
though many individual enzymes have been experimentally identified
to interact with metal ions (2, 3), there is a lack of quantitative re-
lationships between metal ions and metabolism from a holistic
perspective.
Predicting cellular behavior with quantitative models is of

particular interest (4), which could hopefully aid in uncovering
the mechanisms and driving forces by which cells adapt to per-
turbations (e.g., reduced availability of metal ions). Genome-
scale metabolic models (GEMs) together with constraint-based
approaches enable predicting the optimal state of cells subject to
external and internal constraints based on optimization princi-
ples (5, 6). Using GEMs as a framework, many other biological
processes than metabolism have been mathematically described,
especially protein synthesis processes (7–9). The integration of
protein synthesis with metabolism allows for imposing proteome
constraints by enzyme kinetics, which has shown wider applica-
tions, such as predictions of protein levels (7, 10) and proteome

allocation (9, 11). Given that enzyme kinetics could be affected
by metal ion availability, it will be possible to apply proteome-
constrained frameworks to establish quantitative relationships
between metal ions and metabolism.
Besides serving as an important cell factory, the yeast Sac-

charomyces cerevisiae has shown to be a powerful model organ-
ism for experimentally investigating metal ions (12, 13) and could
also infer targets on metal ion–related diseases in humans based
on homology (14). In addition, a wealth of information of metal
ions has been accumulated for S. cerevisiae [e.g., a large number
of yeast proteins have been identified as iron-containing (15) and
zinc-containing (16) proteins]. Therefore, yeast would also be a
promising model organism to mathematically explore the effect
of metal ions on metabolism.
Here, we present a mathematical framework that integrates

protein synthesis and incorporation of enzyme cofactors into a
GEM of the yeast S. cerevisiae and name the resulting model
CofactorYeast. We show the model’s capability of estimating abun-
dances of metal ions binding on enzymes, capturing representative
proteins of distinct metal ions, and simulating metabolic re-
sponses upon reduced availability of metal ions, especially iron.
At last, we illustrate its application in metabolic engineering of
yeast for producing para-coumaric acid (also called p-hydroxycinnamic
acid [p-HCA]), which could be dependent on optimal iron and
proteome allocation.

Significance

Metal ions are essential to all living cells, as they can serve as
cofactors of enzymes to drive catalysis of biochemical reac-
tions. We present a constraint-based model of yeast that re-
lates metabolism with metal ions via enzymes. The model is
able to capture responses of metabolism and gene expression
upon iron depletion, suggesting that yeast cells allocate iron
resource in the way abiding to optimization principles. Inter-
estingly, the model predicts up-regulation of several iron-
containing enzymes that coincide with experiments, which
raises the possibility that the decrease in activity due to limited
iron could be compensated by elevated enzyme abundance.
Moreover, the model paves the way for guiding biosynthesis
of high-value compounds (e.g., p-coumaric acid) that relies on
iron-containing enzymes.
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Results
Integration of Enzyme Cofactors with Proteome-Constrained Model.
We constructed the model CofactorYeast based on a consensus
GEM of S. cerevisiae Yeast8 (17) (Fig. 1A). Firstly, we expanded
the metabolic part by adding iron-sulfur cluster (ISC) synthesis
reactions as well as transport and exchange reactions of metal
ions (Dataset S1). To account for enzyme synthesis in the model,
we formulated translation reactions with amino acids as sub-
strates and adenosine triphosphate as energy cost. Subsequently,
we added cofactor binding reactions for the proteins that contain
cofactors, which required collecting information about cofactors
binding to enzymes with a high coverage. Accordingly, we gen-
erated a comprehensive dataset of cofactor information for S.
cerevisiae (Dataset S2) based on databases, including PDBe (18),
BRENDA, and UniProt (19), and the literature. We focused on
eight metal ions and iron-containing compounds (i.e., heme and
ISCs) as cofactors (Fig. 1A), although others (e.g., vitamins) are
also available in the dataset, and they can therefore easily be
integrated in future studies. From our dataset, we see that zinc is
the most widely used metal ion that serves as a protein cofactor
across the yeast proteome as it is present in more than 10% of
the total of about 6,000 proteins, followed by magnesium (9%)
and iron (2%) (SI Appendix, Fig. S1A). These three minerals are
also the top three most widely used metal ions that bind on meta-
bolic proteins, among which magnesium accounts for the most with
binding to more than 150 enzymes (SI Appendix, Fig. S1B).
Considering the cases in the BRENDA database that an en-

zyme would have a basal level of activity without metal ions rather
than being completely inactive, we introduced a flexible parameter
θ to adjust the turnover rate based on the binding state (i.e., the
enzyme would have the maximal turnover rate if it is bound with
all metal ions while a reduced value without binding of the metal
ions) (Fig. 1A). This is, however, not applicable to heme and ISCs,
as these compounds are essential for enzyme activity and stability
(20–22) (i.e., an enzyme would not function if it loses them).
In addition to the basic constraints used in normal GEMs [e.g.,

bounds on reaction rates and stoichiometric balance (23)], we
adopted coupling constraints (8) to relate metabolic reaction rates
with enzyme synthesis rates according to enzyme kinetics and steady-
state assumption (Fig. 1B), which enables imposing proteome con-
straints. With proteome constraints, the model is able to predict
growth rates on diverse carbon sources and the Crabtree effect of
S. cerevisiae (SI Appendix, Fig. S2), which have also been pre-
dicted by other models with protein or enzyme constraints (10,
24, 25). Furthermore, the integration of cofactors enables ex-
ploring the combined effect of proteome constraints and cofac-
tor availability on metabolism.

Prediction of Metal Ion Abundance and Usage. We used the model
to simulate aerobic growth on different carbon, nitrogen, phos-
phorus, and sulfur sources. Among the simulations, we only se-
lected true positives (116 simulations) [i.e., simulated growth is
consistently observed on Biolog plates (17)] to estimate abun-
dances of metal ions binding on enzymes. We found that the
model is capable of predicting varying abundances of bound metal
ions under diverse conditions (Fig. 2A). This cannot be achieved
by normal GEMs, which would predict a constant metal ion
composition for any conditions, as metal ions in these models are
integrated into the biomass equation with fixed coefficients (17).
To evaluate the simulations, we collected experimentally mea-
sured metal ion compositions under different culture conditions
(Dataset S3). Although these culture conditions do not involve
all simulated conditions, they account for distinct metabolic states
(e.g., growth on different carbon sources and culture media)
(Dataset S3). We can see that the ranges of simulated abundances
of some metal ions, such as copper, iron, manganese, and zinc,
overlap with the ranges of measurements (Fig. 2A), showing that
the model performs well in predicting metal ion levels. It should
be noted that the simulated values are mostly lower than the
measured data, which is due to the fact that the model only pre-
dicts bound metal ions while measurements might also account for
free forms. Still, we found that potassium and sodium show much
lower simulated abundances than the measured data (Fig. 2A).
This is likely due to the fact that these two metal ions cannot only
act as cofactors on enzymes but also participate in other biological
processes beyond the model scope (e.g., maintenance of mem-
brane potential and osmotic stress) (12).
We also used the simulated fluxes to estimate metal ion usage

of each protein in the 116 simulations, which would show the
allocation of metal ions under diverse conditions. The box plots
(Fig. 2B) display the top five proteins that account for the
greatest fraction of each metal ion, based on the median across
simulations. We can see that the model is able to capture repre-
sentative metal ion-containing proteins in S. cerevisiae (Fig. 2B)
[e.g., copper-dependent cytochrome c oxidase (COX) (12), iron-
containing proteins involved in amino acid pathway (27), the most
abundant zinc-containing proteins including Fba1, Adh1, and
Met6 (16)]. Taken together, these evaluations show a good per-
formance of the model in terms of predicting metal ions with
proteome constraints.

Metabolic Responses to Reduced Availability of Metal Ions. To in-
vestigate the effect of metal ion limitation on metabolism, we
used the model to predict metabolic responses to reduced uptake
rates of eight metal ions. We first simulated growth at unlimited

BA

Fig. 1. Overview of the model CofactorYeast. (A) Scope of the model. In addition to metabolism, the model accounts for synthesis of iron-sulfur (Fe-S)
clusters, translation, and cofactor binding processes. In this study, the enzyme cofactors include eight metal ions, ISCs, and heme. Notably, the parameter θ can
be used to decrease turnover rates for the enzymes losing cofactors. (B) Coupling constraint. The mathematical relationship between metabolic reaction rates
and enzyme synthesis rates can be established based on reaction rate equation with the steady-state assumption. Vmet, metabolic reaction rate; kcat, turnover
rate; [E], enzyme concentration; f(M), a function of metabolite concentrations; Vsyn, enzyme synthesis rate; Vdil, enzyme dilution rate; μ, growth rate; kmax, the
maximal turnover rate.
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conditions as the reference state, where all metal ions were ex-
actly sufficient. By doing so, we obtained the reference uptake
rates of all metal ions, referred to as 100% uptake. Subsequently,
we simulated growth by reducing the uptake rate of each metal
ion proportionally while maintaining the other metal ions unlimited.
As expected, the reduced uptake of metal ions resulted in decreased
growth rates (SI Appendix, Fig. S3). The simulations suggest that
these metal ions are essential for growth, and some are in line with
experimental observations [e.g., decreased growth was observed with
reduced availability of iron (28), zinc (29), and magnesium (30)].
We further compared the metabolic responses to reduced

availability among metal ions. To do so, we performed principal
component analysis (PCA) on simulated metabolic flux distribu-
tions by gradually decreasing uptake rates of various metal ions.
From the PCA plots, we found clear variabilities in the simulated
flux distributions upon limitation of various metal ions (Fig. 3),
suggesting that the metal ions affect growth by adjusting various
metabolic pathways. Furthermore, we integrated into PCA plots
the simulated flux distributions in response to reduced uptake of
other nutrients, including glucose, phosphate, ammonium, and
sulfate, as well as oxygen (Fig. 3). By comparing all the flux distri-
butions, we found that limitation of a few metal ions behaves similarly
with limitation of other nutrients and oxygen. First, limitation of
manganese and zinc displayed a similar response with glucose limi-
tation, which could coincide with the major effect of those metal ions
on glycolytic enzymes. For example, the activity of zinc-containing
protein Fba1 was greatly reduced in zinc deficient conditions (16).
Second, copper deficient simulations are in part overlapping with
oxygen limitation (Fig. 3), which could be due to the role of copper in
the electron transport chain (ETC) [e.g., COX (12)]. Third, iron
limitation is similar to sulfate limitation (Fig. 3). This is due to the
requirement for both iron and sulfur for the biosynthesis of ISCs,
which are predominant iron-containing compounds in iron deficient
conditions (31). Altogether, the model enables to predict distinct
metabolic changes upon reduced availability of metal ions.

Proteome and Iron Reallocation upon Iron Deficiency. In order to
explore further the predictive power of the model, we decided to
focus on the role of iron. We did this for several reasons. First,

iron is one of the most widely used metal ions (SI Appendix, Fig.
S1). Second, iron plays irreplaceable roles in many cellular
processes, especially energy metabolism, due to its special ability
to donate and accept electrons. Third, iron has various forms be-
sides the ionic state, such as heme and ISCs, which are synthesized
with the involvement of metabolic pathways. Altogether, iron is of
particular interest, and accordingly there are more published studies
and datasets of iron than the other metal ions (13), which could be
used to test our model predictions.
Here, we focused on response of S. cerevisiae upon iron defi-

ciency. It was reported that yeast cells exhibited a 20% increase
in doubling time upon iron deficiency (28). This corresponds to the
simulation with reducing the iron uptake to 50% of the reference,
which showed ∼80% of the reference growth rate (SI Appendix, Fig.
S3). We therefore selected iron uptake to be at 50% of the uptake at
unlimited conditions as representing iron deficient conditions in our
simulations. In addition, we used various θ values ranging from 0 to
0.9 to assess the impact of the parameter θ on simulation results.
In terms of metabolic level, the simulations showed that iron

deficiency led to decreased growth while increased glucose up-
take and ethanol and glycerol production (Fig. 4A), indicating an
elevated glycolytic flux and cytosolic reduced form of nicotinamide
adenine dinucleotide accumulation. The predictions are consistent
with metabolomics measurements of iron deficient cells that show
elevated glycolytic intermediates associated with increased flux
through this pathway (28) and that the glycerol production rate
was increased by iron starvation (32). Notably, the changes in
exchange rates and growth rates for different θ values are much
lower than the changes between conditions of iron deficiency and
unlimited conditions (reference case) (Fig. 4A). This shows that
the parameter θ has little effect on the simulated metabolic level.
To explore molecular mechanisms on how iron affects me-

tabolism, we used the model to predict changes in gene expres-
sion levels based on protein abundances upon iron deficiency, which
were compared with measured transcriptional responses (28, 33, 34).
We found that the model captured key changes in agreement with
measurements, including down-regulation of enzymes in the ETC,
the tricarboxylic acid (TCA) cycle, heme biosynthesis, amino acid
metabolism, and ergosterol biosynthesis (Fig. 4B), suggesting that
yeast cells liberate iron resource by reducing the level of iron-
containing enzymes. Notably, the predicted down-regulations seem

A

B

Fig. 2. Abundance and usage of metal ions. (A) Simulated abundances of
metal ions that bind on enzymes of cells under 116 conditions compared
with measured metal ion contents of cells from various studies (Dataset S3).
A single cell dry weight of 13 pg (26) was used to convert cell weight to cell
count. (B) Proteins that account for high usage of each metal ion across the
116 simulated conditions.

Fig. 3. PCA of flux distributions under reduced availability of eight metal
ions, four nutrients, and oxygen. Each dot represents a simulated flux dis-
tribution. The dots in the same color (except gray) represent the flux dis-
tributions of changed uptake rates of a certain metal ion, nutrient, or
oxygen, which were from 100 to 5% of the optimum, represented by dot
size (i.e., 100% corresponds to the largest while 5% the smallest). In each
subplot, the flux distributions of the metal ion of interest are marked in
black, while gray dots represent the other metal ions.
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to be conserved for different θ values (Fig. 4B). However, the
predicted expression changes of two proteins (i.e., Erg25 and Ole1)
are dependent on the parameter θ (Fig. 4B). We found that the
model, with some nonzero values of the parameter θ, predicted up-
regulation of these proteins (Fig. 4B), which is consistent with
measured increase in their transcript or protein levels upon iron
limitation (33–35). In addition, we found that these proteins showed
decreased iron usage when up-regulated (Fig. 4C). This indicates that
the model optimizes iron utilization at the expense of proteome re-
source upon iron deficiency. Taken together, the model identified
two types of responses upon iron deficiency (i.e., down-regulate iron-
containing proteins to liberate and spare iron and up-regulate iron-
containing proteins to compensate for the decreased activity caused
by low iron).
To identify key iron-containing proteins on growth upon iron de-

ficiency, we performed a sensitivity analysis. For each iron-containing

protein in the model, we assumed it to be a non-iron-containing
protein (i.e., it does not contain any iron, ISC, or heme but can
operate at the maximal turnover rate) and then simulated again
iron deficiency using 50% iron uptake. The simulations show
that if Lys4, homoaconitase, was not an iron-containing protein,
the growth would not be affected even with 50% iron uptake
(Fig. 4D), suggesting that Lys4 might dominate iron utilization,
which could be attributed by its essential role in amino acid bio-
synthesis carrying high fluxes and inclusion of four iron atoms per
protein copy as a 4Fe-4S cluster. This might be in line with the
finding that Lys4 is present in excess in iron replete cells (28),
which could allow for rapid adaption to iron depletion. In addi-
tion, the analysis identified other proteins (e.g., Ole1, Leu1, and
Ilv3), which would recover growth slightly if assumed to be a
non-iron-containing protein (Fig. 4D). The result (Fig. 4D) sug-
gests the essential impact of those iron-containing proteins on
growth, and most of them were regulated upon iron deficiency
(Fig. 4B). Therefore, the analysis shows that these iron-containing
proteins might be sensitive to iron availability and accordingly
regulated upon iron limitation.
Considering the vital role in iron utilization of Lys4, which

participates in lysine biosynthesis, we expected that addition of
lysine to the medium could relieve iron deficiency. To test this,
we performed reduced cost analysis of uptake of each amino acid
for growth under both unlimited and limited iron conditions,
which was calculated as increase in growth rate over increase in
amino acid uptake rate. We found that lysine exhibited the
highest reduced cost toward growth with limited iron uptake
(Fig. 4E), meaning that lysine is more important than other
amino acids upon iron deficiency, although this does not hold
when iron is in excess (Fig. 4E).

Metabolic Engineering of p-HCA upon Iron Availability. There is
much interest in expressing complex plant biosynthetic pathways
in yeast with the objective to enable scalable production of plant
natural products that are difficult to source from nature. Many
different plant pathways have thus been expressed in yeast [e.g.,
biosynthesis of opioids (36), cannabinoids (37), and tropane al-
kaloids (38)]. In line with this, it was recently demonstrated that
p-HCA, a bioactive plant compound serving as precursor for
many commercially valuable chemicals, could be produced by S.
cerevisiae through the introduction of heterologous enzymes from
Arabidopsis thaliana (39). Among them, the cinnamic acid hydrox-
ylase, as a plant cytochrome P450, requires heme as its enzyme
cofactor. We therefore evaluated whether the model could be
used to gain insight into potential strategies for optimization of
the pathway and, in particular, how there will be competition
between iron usage for enzymes in this pathway and endogenous
enzymes required for growth.
Based on the original study (39), we introduced the p-HCA

production pathway in our model for simulating the starting
strain QL01, which includes a phenylalanine ammonia lyase, a
cinnamic acid hydroxylase and a cytochrome P450 reductase from
A. thaliana. Additionally, we collected information about the en-
zymes, including sequences, cofactor usage, and turnover rates
(Dataset S4). With the model, we investigated the combined
effect of growth and iron availability on p-HCA production. To
do so, we maximized the production rate of p-HCA by changing
simultaneously growth rate and the upper bound (UB) of iron
uptake rate. As expected, growth is an essential factor with its
decrease leading to improved p-HCA production at any iron up-
take rate (Fig. 5A), which is caused by a trade-off between growth
and p-HCA production due to carbon source and proteome re-
source allocation. On the other hand, we found that at most of the
simulated growth rates p-HCA production rate started to decline
once the UB of iron uptake rate was below a certain value
(Fig. 5A), indicating that iron could limit p-HCA production if it is
insufficient.

BA

C D

E

Fig. 4. Simulations of iron deficiency. (A) Simulated growth rates and ex-
change fluxes with various θ values for 50% iron uptake compared with the
reference. (B) Experimentally measured differential expression compared
with simulations upon 50% reduction in iron uptake with various θ values.
The color of the enzyme name represents measured differential expression
upon iron deficiency (i.e., blue means measured down-regulation and red
up-regulation). Heatmap represents simulated differential expression based
on predicted protein abundances. Complex abbreviations: QCR, ubiquinol
cytochrome-c reductase; SDH, succinate dehydrogenase. (C) Iron usage of
Erg25 and Ole1 with various θ values. (D) Sensitivity analysis of iron-
containing proteins with 50% iron uptake and θ value of 0.5. (E) Reduced
cost analysis of amino acid uptake for growth under unlimited and 50% iron
uptake conditions with θ value of 0.5. Color represents the reduced cost
value. A higher value indicates a greater impact of an increase in the amino
acid uptake on growth rate.
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To validate the simulations, we carried out batch fermenta-
tions by growing the p-HCA producing strain QL01 in iron limited
media, which was achieved by the addition of bathophenanthro-
line disulfonate, a chelator of Fe2+ ions (31), at different con-
centrations, including 0 μM (unlimited), 50 μM (mildly limited),
and 100 μM (severely limited). We determined biomass and
p-HCA concentrations after 12 h and 20 h and found that they
both decreased upon iron limitation (SI Appendix, Fig. S4). No-
tably, we found that the p-HCA yield on biomass was significantly
decreased upon severe iron limitation (Fig. 5B), suggesting that
strain capability of synthesizing p-HCA is also weakened. This
means that biomass formation could have a higher priority for
utilizing iron than p-HCA synthesis. Accordingly, we demon-
strated that iron is essential for p-HCA production, which can
support our model simulations.
Furthermore, we used the model to estimate iron allocation

with changing growth and iron uptake rates. For a fixed UB of
iron uptake rate, it is obvious that the majority of iron is allo-
cated to biomass formation pathways, including the enzymes
Lys4, Ole1, Leu1, and Ilv3 as well as the p-HCA production pathway

(Fig. 5C) and that p-HCA production rate relies highly on the
amount of iron allocated to the p-HCA pathway (Fig. 5C). For a
fixed growth rate, once the iron uptake becomes limiting, we can
see the first reallocation of iron resource from the ETC to the
p-HCA production when it is maximized (Fig. 5D), meaning that
ETC could be sacrificed to save iron consumption, which ap-
pears to be a similar strategy with the down-regulation of the
ETC in wild-type strains upon iron deficiency (28, 33, 34). With
more limited iron uptake, we can see another reallocation of iron
resource from p-HCA to biomass production (Fig. 5D), sug-
gesting the priority of iron utilization for biomass formation by
fixing the growth rate.
Taken together, the model is able to predict the influence of

iron on biosynthesis of p-HCA in yeast, which could be due to
optimal allocation of iron resource among native and heterolo-
gous pathways. This suggests that integration of metal ions with
proteome-constrained metabolic model would provide a prom-
ising framework, with the aid of advanced computational tools
(40), to understand and optimize cell factories in the field of
metabolic engineering.

Discussion
Here, we integrated metal ions as enzyme cofactors within a
GEM of S. cerevisiae, resulting in the mathematical model
CofactorYeast. We formulated cofactor binding reactions by
adding metal ions onto enzymes with stoichiometric information.
Accordingly, the abundance of each metal ion is represented by
the abundances of individual metabolic enzymes that contain the
metal ion. The model was able to estimate total abundances of
metal ions that are consistent with experimental data (Fig. 2A),
suggesting the assumption to be reasonable. As the first step, this
proves that we establish a quantitative relationship between metal
ions and metabolism. Next, we used the model to predict meta-
bolic states with changed uptake rates of various metal ions,
resulting in distinct metabolic responses (Fig. 3). Therefore, we
demonstrate that with the bottom-up integration of metal ions the
model could describe the effect of metal ions on metabolism from
a holistic perspective.
In particular, the model is capable of capturing metabolic

responses upon iron deficiency (Fig. 4). Interestingly, with a 50%
reduction in the iron uptake rate, there is only an about 20%
reduction in growth rate (Fig. 4A), indicating that the model
appears to maximize biomass yield on iron once iron becomes
limiting as can be seen analogously in iron-limited chemostat
growth of Escherichia coli (41). To this end, the model finds two
main strategies to optimize iron utilization, including 1) down-
regulation of iron-containing enzymes in the ETC and TCA
cycle (Fig. 4B) and 2) up-regulation of Erg25 and Ole1 (Fig. 4B),
which are key iron containing enzymes required for lipid biosyn-
thesis. Both of the strategies are consistent with experimental
observations (33–35). The first strategy results in a shift from
iron-dependent to iron-independent energy-producing pathways
(i.e., from respiration to fermentation) (Fig. 4 A and B). We thus
show in this study that iron cost of enzymes could be another
factor leading to the shift between the two energy-producing
pathways, while we showed previously that such a shift could
also be caused by the protein cost of enzymes (25). The second
strategy shows the possibility that iron could be saved at the cost
of proteome resource even though the proteome is also con-
strained in fast-growing cells (8), suggesting that iron might be more
limiting than the proteome resource at the simulated conditions.
Taken together, we demonstrate with the model that optimal re-
source allocation is able to explain cellular behavior upon iron
deficiency.
From a modeling point of view, we propose the modeling

framework of yeast that accounts for enzyme synthesis and en-
zyme cofactor integration for metabolic catalysts. Recently, the
GEM of the yeast S. cerevisiae was extended to include iron

A B

C

D

Fig. 5. Iron-dependent biosynthesis of p-HCA. (A) p-HCA production rate
changes with various growth rates and UBs of iron uptake. (B) Shake-flask
cultures with addition of bathophenanthroline disulfonate (BPS) were
sampled at 12 h and 20 h for determining p-HCA yield on biomass. Statistical
analysis was performed by using Student’s t test (two-tailed; two-sample
unequal variance; n.s. (not significant): P ≥ 0.05; *: 0.01 ≤ P < 0.05; **: P <
0.01). All data represent the mean of n = 3 biologically independent sam-
ples, and error bars show SDs. (C) Iron usage of key proteins and pathways
changes with various growth rates at a fixed UB of iron uptake rate. (D) Iron
usage of key proteins and pathways changes with various UBs of iron uptake
at a fixed growth rate.
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metabolism, permitting estimation of iron requirements roughly
based on metabolic fluxes (42). This model would be less explicit
due to the lack of proteome constraints and enzyme kinetics, while
our framework takes the advantage of the proteome-constrained
concept and is accordingly able to account for constraints of both
the proteome and metal ions. In addition, given the accurate
predictions as a proteome-constrained model (SI Appendix, Fig.
S2), the model is suitable to be extended by adding synthesis of
machineries such as ribosome in gene expression processes,
leading to a more explicit model (7–9). Notably, in this framework
we introduced the parameter θ to adjust activity of enzymes losing
metal ions. Although it remains to be proven whether or not every
enzyme would maintain a basal nonzero activity once it loses
metal ions, we showed in simulations that the exchange rates and
most enzyme levels are conserved across θ values (Fig. 4 A and B).
However, we did observe up-regulation of the iron-containing
enzymes Erg25 and Ole1 only by adjusting θ values (Fig. 4B),
which is consistent with experimental observations (33–35), il-
lustrating the necessity of introducing the parameter θ. More-
over, the parameter θ could hopefully be used for modeling
other processes that function on enzyme activity (e.g., for de-
scribing the effect of protein phosphorylation on enzyme activity)
(43). Therefore, given the mathematical relationship between
protein phosphorylation and activity (44, 45), our framework
together with the parameter θ could integrate protein phos-
phorylation in future studies.
While our model is able to predict cellular responses to metal

ion limitation, it is also possible to account for metal toxicity
upon extremely high levels in the environment. The metal ion
with toxic levels could bind to noncognate sites in metal-
loenzymes (46) to preclude the binding of the correct metal ion

and therefore inhibit the activity (12). This can be formulated in
the current framework by assuming that the toxic metal ion can
bind on a set of enzymes to inhibit activity, which, however, re-
quires more information. In addition, interchangeability among
metal ions might also happen even in normal media where all
metal ions are in sufficient but nontoxic levels, and this could
also be readily formulated with available information.
In conclusion, we develop the model CofactorYeast by linking

metal ions to metabolic enzymes with proteome constraints,
which allows for quantitative and systematic investigation of re-
lationship between metal ions and genome-scale metabolism.
We show that the model with optimization principles is capable
of interpreting metabolic remodeling upon iron deficiency and
describing iron-dependent production of p-HCA by yeast. We
expect that the model will also be used as a framework for
analysis of omics data such as ionomics (47).

Materials and Methods
All the materials and methods are detailed in SI Appendix, including con-
struction of CofactorYeast, simulations of CofactorYeast and simulations of
p-HCA production, which were performed in MATLAB with the COBRA
toolbox (48), and experimental validations.

Data Availability. The model and codes are available at https://github.com/
SysBioChalmers/CofactorYeast. All other study data are included in the ar-
ticle and/or supporting information.
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