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Tumor cells have an increased nutritional demand for amino acids (AAs) to satisfy their

rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are

of great importance for imaging tumors using positron emission tomography (PET).

Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs,

the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers

target protein synthesis or amino acid (AA) transport, and their uptake mechanism mainly

involves AA transport. AA PET tracers have been widely used in clinical settings to

image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small

cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the

fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their

clinical applications.

Keywords: positron-emitting AAs, carbon-11, fluorine-18, positron emission tomography, imaging, tumors

INTRODUTION

Positron emission tomography (PET) can provide noninvasive molecular, functional andmetabolic
information. Thus, it is playing an increasingly important role in the diagnosis and staging
of tumors, image-guided therapy planning, and treatment monitoring. 2-18F-fluoro-2-deoxy-D-
glucose (18F-FDG) is a commonly used tracer for PET imaging. Based on the increased rate of
glucose transport and glycolysis, the uptake of 18F-FDG in tumors cells is greater than that in
normal cells. 18F-FDG has provided valuable information about tumors diagnosing, staging, and
prognosis after surgery and therapy, but it has some limitations. On the one hand, due to the
high uptake of 18F-FDG in the normal brain, it is difficult to obtain images with adequate contrast
compared to primary or metastatic brain tumors (Zhao et al., 2014). On the other hand, some
tumors, such as neuroendocrine tumors, renal cell carcinoma, prostate cancer and hepatocellular
carcinoma, show low or nonspecific uptake, which may lead to false negative or positive results
(Powles et al., 2007; Rioja et al., 2010; Bouchelouche and Choyke, 2015). Additionally, 18F-FDG
PET is ambiguous for differentiating tumor from inflammation (Rau et al., 2002; Tang et al., 2003).

Besides glucose, certain AAs also serve as increasing energy sources and anabolic precursors
for tumors. Positron nuclide-labeled AA tracers can overcome limitations of 18F-FDG for tumors
imaging, and give information about AA metabolism in tumor. The uptake of AA PET tracers
in the normal brain is significantly less than that of 18F-FDG, but the uptake of them in tumor
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is high. Thus, images with adequate contrast can be obtained
using AA PET tracers for primary and metastatic brain tumors.
Also, some AA PET tracers have an advantage over 18F-FDG
in the differentiation of tumor from inflammation (Rau et al.,
2002; Tang et al., 2003; Stober et al., 2006). It was reported that
O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) and (S-11C-methyl)-
L-methionine (11C-MET) have a significantly higher uptake
in tumor cells than that in inflammatory cells. This different
appearance can be contributed to major AAs transporter system
L (Stober et al., 2006). They can also differentiate recurrent
brain tumors from pseudo-progression or radiation necrosis
among patients after surgery and radiotherapy (Niyazi et al.,
2012; Galldiks et al., 2015a,b). In addition, some AA PET tracers
with relatively little renal excretion can accurately detect prostate
cancer and show high specificity and sensitivity, superior to
18F-FDG (Toth et al., 2005; Jana and Blaufox, 2006). Last,
18F-FDG is a nonspecific substrate for neuroendocrine tumors,
but a few AA PET tracers are substrates of the enzyme
aromatic AA decarboxylase (AADC), which are specific for
neuroendocrine tumors imaging, such as 3,4-dihydroxy-6-18F-
fluoro-L-phenylalanine (18F-FDOPA) and 5-hydroxy-L-[β-11C]
tryptophan (11C-HTP) (Jager et al., 2008; Oberg and Castellano,
2011). This review focuses on the fundamental concepts of AAs
and the uptake mechanism of AAs, AA PET tracers and their
clinical applications.

FUNDAMENTAL CONCEPTS AND UPTAKE
MECHANISMS OF AAS

L-AAs, as essential small-molecule nutrient substances, are
crucial for maintaining cell growth and nitrogen balance.
Their biological functions are involved in metabolism, protein
synthesis, cell signaling transduction, regulating gene expression.
They are also precursors for the synthesis of hormones,
neurotransmitter, and nitrogenous substances. L-AAs are
commonly found in proteins and are either obtained from
intracellular protein recycling or are transported into the cell
from the extracellular surroundings (Stryer, 1995).

The transporters mediate AA transport across plasma
membranes in mammals and are divided into several “systems.”
The systems present various transporting mechanisms,
including dependence on sodium and independence on
sodium, tissue expression patterns, substrate specificity
and sensitivity to pH or hormones (Utsunomiya-Tate
et al., 1996; Castagna et al., 1997). Cells possess different
transport systems in their plasma membranes, consisting
of generally existed transport systems (such as systems A,
ASC, L, y+ and XAG− , XC− ), and tissue-specific transport
systems (such as systems B0, and b0,+) (Palacin et al., 1998).
Here, we focus on describing their general features and
transport mechanism of AAs, as shown in Table 1 and
Figure 1.

System A is Na+-dependent transporter for serving mainly
small aliphatic AAs, such as serine, alanine, and glutamine.
It is a member of the solute carrier 38 (SLC38) gene family.
Three subtypes of system A have been isolated: sodium-coupled

neutral AA transporter 1 (SNAT1), 2, and 4. SNAT 3 and 5
belong to the system N (glutamine preferring) AA transport
family, which is also a member of the SLC38 gene family (Broer,
2014). System A and system N are all directly concentrative
and function essentially with a monodirectional efflux. System
A transports AAs with the N-methyl group and N-methyl
aminoisobutyric acid (MeAIB) is a specific inhibitor that can
inhibit system A transport activity due to competitive saturation
effects. Meanwhile, the activity of transporters is affected bymany
factors (Shotwell et al., 1983). The activity of system A is sensitive
to pH alterations, highly down-regulated by acidic extracellular
surroundings, and up-regulated by glucagon, insulin, and growth
factors (Castagna et al., 1997).

The ASC system is Na+-dependent exchanger capable of
mediating net influx or efflux, with substrates (L-alanine,
L-serine, L-cysteine, and L-glutamine) and a member of solute
the carrier family 1(SLC1) (Castagna et al., 1997). Two subtypes
have been isolated: ASC-Type AA transporter 1 (ASCT1)
and ASC-Type AA transporter 2 (ASCT2). ASCT2 utilizes an
intracellular gradient of AAs, efflux of intracellular AAs in
exchange for extracellular AAs. Glutamine is a key substrate
of ASCT2 with important roles in tumor metabolism (Fuchs
et al., 2007). ASCT2 is over-expressed in many human tumor
cell lines including hepatocellular carcinoma, prostate, breast,
glioma, and colon tumor cell lines (Li et al., 2003; Fuchs and
Bode, 2005). L-γ-glutamyl-p-nitroanilide (GPNA) is used as a
specific inhibitor of ASCT2 transporter activity (Schulte et al.,
2015). The activity of system ASC is pH-insensitive within a
range of pH 5.65–8.2 (Fuchs and Bode, 2005; Kanai et al.,
2013).

The Na+-independent system L is the major route that takes
up branched and aromatic AAs from the extracellular space, such
as phenylalanine, isoleucine, tryptophan, valine, methionine and
histidine (Castagna et al., 1997). Four subtypes of system L have
been isolated: L-type AA transporters 1 (LAT1), LAT2, LAT3, and
LAT4. LAT1 and LAT2 are members of the SLC7 gene family,
while LAT3 and LAT4 are members of the SLC43 gene family.
LAT1 and LAT2 possess “4F2 light chains” containing 12 putative
membrane-spanning domains, which covalently bind a type-
II membrane glycoprotein heavy chain (4F2hc) with disulfide
bridges to produce a functional heterodimeric transporter. LAT3
and LAT4, without 4F2hc, facilitate the transport of AAs (Fuchs
and Bode, 2005; Aiko et al., 2014). System L plays an important
role for AAs crossing the placenta barrier and the blood-brain
barrier (Christensen, 1990). 2-amino-2-norbornane-carboxylic
acid (BCH) is a specific inhibitor for system L transporter activity
(Palacin et al., 1998; Babu et al., 2003).

The cationic AA transporters include systems B0,+, y+, and
y+L, and the anionic AA transporters contain systems XAG− and
XC− . Systems B, B0, B0,+ y+, and y+L are related Na+-dependent
transporter systems. They mediate the absorption of branched-
chain, aliphatic and aromatic AAs. Systems B and B0 are tissue-
specific transport systems and present in renal proximal tubular
and intestinal epithelial brush-border membranes. Both systems
are more broadly specific for neutral AAs than systems A and
ASC. System y+ transporters are members of the SLC7 gene
family. Four subtypes, CAT-1, CAT-2 (A and B), CAT-3, and
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TABLE 1 | Summary of AA transporters.

Transporter Gene name System and mechanism of transport Substrate Inhibitors/blockers

SNAT1 SLC38A1 Na+-dependent system A, concentrative Small neutral AAs MeAIB

SNAT2 SLC38A2

SNAT4 SLC38A4

ASCT1 SLC1A4 Na+-dependent system ASC, exchange

ASCT2 *SLC1A5 L-Ala, L-Cys, L-Gln,

L-Ser, L-Thr

L-γ-glutamyl-p-nitroanilide

(GPNA) Esslinger et al., 2005;

Schulte et al., 2015

Benzylserine Jager et al., 2008,

Glupnitroanilide Bhutia et al.,

2015

GLYT1, GLYT2 SLC6 Na+-dependent system G Gly, Sar

SN1, SN2 SLC38 Na+-dependent system N, concentrative Gln, Asn, His

Taut SLC6 Na+-dependent β-system β-Ala, Tau

LAT1 *SLC7A5 Na+-independent system L, Exchange, heterodimer with

4F2hc

Large neutral L-AAs BCH

Rosilio et al., 2015

LAT2 SLC7A8

LAT3 SLC43A1 Na+-independent system L, Facilitated BCH, N-ethylmaleimide

Ogihara et al., 2015

LAT4 SLC43A2

Asc-1 Asc-2 SLC7 Na+-independent system asc Ala, Ser, Thr, Cys

TAT1 SLC16 Na+-independent system T Aromatic AAs

ATB0,+ *SLC6A14 System B0,+,Na+ and Cl−, concentrative Neutral and basic AAs α-Methyl-L-Trp Bhutia et al.,

2015

CAT-1 SLC7A1 Na+-independent system y+, Facilitated Lysine, histidine,

arginine

N-ethylmaleimide Nel et al., 2012

CAT-2A/2B SLC7A2

CAT-3 SLC7A3

y+LAT1 SLC7A7 Na+-independent system y+L,exchange heterodimer

with 4F2hc

Cationic, large neutral

AAs

BCH selective inhibitor

y+LAT2 SLC7A6

BAT1/b0, +AT•rBAT SLC7 System b0,+, Exchange, heterodimer with

D2/rBAT/NBAT

Cationic, large neutral

AAs

BCH

EAAT1 SLC1A1 System XAG− , Na+ cotransport and K+ counter

transport

Glutamate, aspartate The phorbol ester 12-myristate

13-acetate (TPA, 0-1000 nM)

Pan et al., 1995a

GLT-1(EAAT2) SLC1A2

GLAST (EAAT3) SLC1A3

EAAT4 SLC1A6

EAAT5 SLC1A7

xCT *SLC7A11 System XC− , Na+-independent, but Cl− dependent

glutamate/cysteine exchange, heterodimer with4F2hc

Glutamate/cystine Sulfasalazine, Erastin, Sorafenib

(S)-4-Carboxyphenyl glycine

Bhutia et al., 2015

L-a-aminoadipate

Lewerenz et al., 2013

*Low-level expression in normal tissues, but up-regulated expression in many human tumors.

AAs, amino acids; MeAIB, N-methyl aminoisobutyric acid; BCH, 2-amino-endo-bicyclo[2,2,1]heptane-2-carboxylic acid.
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FIGURE 1 | A principle scheme of the metabolic pathways and substrates accounting for the intracellular uptake of key clinical amino acids PET tracers for imaging

tumor metabolism. Positron nuclide-labeled amino acids are shown in red colored words. AA, amino acid; ASCT, L-alanine, L-serine, cysteine transporter; ASCT2,

ASC-type amino acid transporter 2 (SLC1A5); Gln, glutamine; Glu, glutamate; LAT1, L-type amino acid transporter 1 (SLC7A5); SNAT, system A amino acid

transporter; EAAT, Excitatory amino acid transporters; xCT, a light chain of anionic amino acid transporter system XC− (SLC7A11); TCA, tricarboxylic acid cycle.

CAT-4, have been recognized from a subfamily of the SLC7 gene
family. CAT-1 is a exchanger targeting unessential AAs, and the
action of CAT-4 remains unknown (Hammermann et al., 2001).
System y+ transports cationic AAs and some neutral AAs, such as
lysine and arginine, resulting in electrogenic transport (Castagna
et al., 1997; Palacin et al., 1998). System y+L transporters are
members of the SLC7 gene family as well. Two subtypes (y+LAT1
and y+LAT2) have been identified, and they create heterodimers
with the 4F2hc glycoprotein to be functional AA transporters,
such as the LAT1 and LAT2 transporters from system L. System
y+L serves large neutral and cationic AAs with an exchange
mechanism. ATB0,+ belongs to the SLC6 gene family and serves
cationic and neutral AAs in the presence of sodium and chloride.
b0,+AT belongs to the SLC7 gene family, which constitutes a
functional heterodimer with the glycoprotein D2/rBAT/NBAT
and serves cationic and neutral AAs via an exchange mechanism
in the absence of sodium (Torrents et al., 1998; Hammermann
et al., 2001).

System XC− is Na+-independent and Cl−-dependent
heterodimeric AA transporter (Baker et al., 2002; Lewerenz

et al., 2012, 2013), an obligate, electroneutral, cysteine/glutamate
antiporter, exchanges extracellular cystine for intracellular
glutamate (Lo et al., 2008; Lewerenz et al., 2012). It is composed
of a subunit xCT light chain and a subunit 4F2 heavy chain
(4F2hc). xCT is a member of SLC7, member 11 (SLC7A11), and
phosphorylation of xCT can modulate the activity of system XC−

(Baker et al., 2002; Lo et al., 2008; Lewerenz et al., 2012). It is
not only a potential target for therapy but also a potential PET
biomarker for imaging the system XC− activity of cancer and
other diseases (Lo et al., 2008; Reissner and Kalivas, 2010; Koglin
et al., 2011).

System XAG− is Na+-dependent and K+-dependent and
transports acidic AAs, such as glutamate and aspartate (Dall’Asta
et al., 1983; Pan et al., 1995b). Excitatory AA transporters EAAT1
(GLAST), EAAT2 (GLT-1), EAAT3 (EAAC1), and EAAT4 are
members of the system XAG− AA transport family (Howell
et al., 2001) and are neuronal/epithelial high affinity glutamate
transporters (Yin et al., 2014). They are encoded by the SLC1A1,
SLC1A2, SLC1A3, SLC1A6, SLC1A7, respectively (Kanai et al.,
2013; Bianchi et al., 2014).
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The transporter systemsmentioned above are the main targets
for AA metabolism PET imaging of tumors (Jager et al., 2001).
Tumor cells utilize more AAs compared with normal cells to
satisfy their rapid proliferation and invasion demands. And
studies indicated that the expression of AA transporters is higher
in tumor cells than that in normal tissue, especially LAT1,
ASCT2, xCT, and ATB0,+ and so on (Karunakaran et al., 2011;
Toyoda et al., 2014; Schulte et al., 2015). Both ASCT2 and LAT1
are upregulated three-fold in the most of cancerous tissues. LAT1
has been proven to be associated with tumor growth (Kaira et al.,
2013), for example 11C-MET, 18F-FET, and 18F-FDOPA are the
most widely used AA PET tracers for imaging brain tumors.
System A and cationic or anionic AA transporters are over-
expressed in dividing cells in certain human cancers (Bussolati
et al., 1996). Many examples are showed in Table 2. Tumor cell
accumulation of AA PET tracers mainly depends on the rate and
mechanism of AAs transport. Based on the over-expression of
AA transporters, the uptake of AA PET tracers in tumor cells is
greater than that in normal cells (Mossine et al., 2016).

AA PET TRACERS

Most AA PET tracers are labeled with positron radionuclides
11C and 18F. Theoretically, almost all AAs be labeled with 11C,
however, their short half-life (20min, 100% of beta positron
decay) is not suitable for delayed PET imaging. To overcome
this shortcoming of 11C and to facilitate the utility of AA
PET tracers in hospitals without on-site cyclotron and labeling
equipment, a series of 18F labeled AAs (half-life of 110min,
97% of beta positron decay) were developed (Mossine et al.,
2016). Based on that AAs have a common molecular formula
[R-CH-(NH2)-COOH], with a carboxylic acid group (-COOH),
an amino group (-NH2) linking to the alpha-carbon atom
(-CH-), and branched-chain group (-R). Thus, 11C and 18F
labeled AAs are divided into [1-11C] AAs ([1-11C]AAs), alpha-
C labeled AAs (alpha-C labeled AAs), labeled branched-chain
AAs (branched-chain AAs), and N-substituted labeled AAs
(N-substituted labeled AAs), which include natural and non-
natural AAs.

Labeled natural AAs associated with structure-changed
and structure-unchanged labeled AAs. Structure-unchanged
labeled natural AAs, such as [1-11C] AAs and 11C-Met,
do not chemically change the structure of AAs and can
maintain the prototype structure and the fundamental
pharmacodynamics and pharmacokinetics characteristics of
AAs. So, they are mainly incorporated into protein synthesis,
with minor AA transport. On the contrary, structure-changed
labeled AAs (such as 18F-FET, (S-11C-methyl)-L-cysteine) do
chemically change the structure of AAs, which are slightly
incorporated into protein synthesis. Like structure-changed
labeled AAs, labeled non-natural AAs (such as 18F-FDOPA,
11C-HTP) are mainly involved into AA transport. Most
important 11C- and 18F-labeled AA tracers are shown in
Table 2.

[1-11C]AAs have 11C-labeled at the alpha-carboxylate
(-COOH) position, [1-11C]-labeled natural AAs such as L-[1-
11C]-leucine (11C-Leu) (Veronese et al., 2012), L-[1-11C]tyrosine

(11C-Tyr) (de Boer et al., 2003), L-[1-11C]phenylalanine (11C-
Phe) (Lebarre et al., 1991) and L-[1-11C]methionine (11C-Met)
(Ishiwata et al., 1988) are mainly incorporated into protein
synthesis, and can be used to measure the rates of the
protein synthesis. [1-11C]-labeled non-natural AAs, such as
carboxyl-11C-1-α-aminoisobutyric acid (11C-AIB), carboxyl-
11C-1-aminocyclopentanecarboxylic acid (11C-ACPC), and
carboxyl-11C-1-aminocyclopentane carboxylic acid (11C-
ACBC), etc., are not incorporated into protein synthesis and
have been used for imaging of tumor AA transport in several
studies (Washburn et al., 1978; De Vis et al., 1987).

Labeled alpha-carbon AAs have radiolabeled at alpha-
carbon (-CH-) position of AAs, which are rarely reported.
α-[11C-methyl]-L-tryptophan (11C-AMT) and α-[11C-methyl]-
aminoisobutyric acid (11CH3-AIB) are typical examples that have
been used for tumors imaging by measuring the rate of AA
transport (Juhasz et al., 2011).

Labeled branched-chain AAs have radiolabeled at branched-
chain group (-R) of AAs. Labeled branched-chain natural AAs
with unchanged structure are rare, for example (S-[11C]methyl)-
L-methionine (11C-MET). Most labeled branched-chain natural
AAs are changed into different structure labeled AAs from
natural AAs, such as 18F-FET, 2-18F-fluoro-L-tyrosine (2-FTYR),
6-18F-L-m-tyrosine (18F-FMT), O-(3-18F-fluoropropyl)-L-
tyrosine (18F-FPT), 2-18F-L-phenylalanine, cis-18F-fluoroproline
(cis-Fpro), (4S)-4-(3-18F-fluoropropyl)-L-glutamate (BAY
94-9392,18F-FSPG), (2S,4R)-4-18F-L-glutamate (BAY85-8050,
4F-GLU), L-(5-11C)-glutamine, (2S,4R)-4-18F-L-glutamine
(18F-(2S,4R)4F-GLN), (2S,4S)-4-(3-18F-fluoropropyl) glutamine
(18F-FPGln), and (S-11C-methyl)-L-cysteine (11C-MCYS)
(Deng et al., 2011; Huang et al., 2015). Labeled branched-chain
non-natural AAs include labeled branched-chain D-AAs and
labeled branched-chain L-non-natural AAs. The former includes
D-11C-fluoromethyltyrosine, D-18F-fluoromethyltyrosine (18F-
D-FMT) (Burger et al., 2014) and (S-11C-methyl)-D-cysteine
(11C-DMCYS) (Huang et al., 2015). The latter includes 3-18F-α-
methyltyrosine (18F-FAMT), 1-amino-3-18F-fluorocyclobutane-
1-carboxylic acid (18F-FACBC), 3-O-methyl-6-18F-L-3,
4-dihydroxyphenylalanine (18F-OMFD), (S)-2-amino-3-[1-
(2-18F-fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid
(18F-AFETP), 3-18F-2-methyl-2-(methylamino)propanoic acid
(18F-MeFAMP), 3,4-dihydroxy-6-18F-L-phenylalanine (18F-
FDOPA), anti-1-amino-2-18F-fluorocyclopentane-1-carboxylic
acid (anti-2-18F-FACPC), 5-18F-L-aminosuberic acid (18F-FASu),
11C-HTP, L-[β-11C]DOPA (11C-DOPA), L-[β-11C] dopamine,
and 18F-fluoropropyl-L-tryptophan (18F-FPTP) (Jager et al.,
2001; McConathy and Goodman, 2008; McConathy et al., 2012;
He et al., 2013; Huang and McConathy, 2013b; Webster et al.,
2014). Among these, 18F-FAMT, 18F-FET, 18F-D-FMT, 2-FTYR,
18F-FDOPA, 18F-FMT, 18F-Cis-FPro, 18F-OMFD, 18F-FACBC,
18F-FACPC, 11C-HTP, 11C-DOPA, BAY 94-9392, BAY85-8050
and 18F-(2S, 4R)4F-GLN have been used in clinical PET imaging
of tumors. Most of labeled branched-chain non-natural AAs are
involved in AA transport and a few are incorporated into protein
synthesis. However, 2-FTYR and 18F-Cis-Fpro are involved in
AA transport and protein synthesis (Jager et al., 2001; Laverman
et al., 2002).
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TABLE 2 | Uptake mechanism and clinical application of important AA PET tracers for tumors imaging.

Tracer Labeling position Mechanism and transporter Application

11C-Leu, 11C-Tyr, 11C-Phe [1-11C] COOH Protein synthesis Brain tumors, in vivo protein synthesis rate
11C-AIB, 11C-Met System A transport Sarcoma, melanoma Lebarre et al., 1991;

de Boer et al., 2003; Veronese et al.,

2012; Nishii et al., 2013

11CH3-AIB Labeled α-carbon System A transport Head and neck cancer
11CH3-AMT Glioma Juhasz et al., 2011

11C-HTP, 11C-DOPA Labeled branched-chain System L transport Neuroendocrine tumors Toumpanakis

et al., 2014
11C-MET* System L (LAT1) transport/protein

synthesis

Brain tumors and prostate cancer

Ceyssens et al., 2006; Jana and Blaufox,

2006
11C-MCYS System L, ASC and B0,+

transport

Brain tumors Deng et al., 2011; Huang

et al., 2015
18F-FDOPA* System L (LAT1) transport Brain tumors, neuroendocrine tumors
18F-OMFD System L (LAT1) transport Brain tumors Gulyas and Halldin, 2012
18F-FET* System L transport Brain tumors Mossine et al., 2016
18F-FMT System L (LAT1) transport Brain tumors
18F-FGln System L transport Brain tumors Gulyas and Halldin, 2012

8F-2S,4S-FSPG (BAY 94-9392) System L and ASC transport Hepatocellular carcinoma, in non-small cell

lung cancer Chopra, 2004

BAY 85-8050 System XC− transport Healthy volunteers Smolarz et al., 2013b
18F-FAMT System XC− and XAG− transport Head and neck cancer, lung cancer

Miyakubo et al., 2007
18F-FACBC, 18F-FACPC System L transport Prostate cancer Schuster et al., 2011

11C-MeAIB N-substituted labeled System A transport Head and neck cancer Sutinen et al., 2003
18F-Cis-FPro Labeled branched-chain/

N-substituted labeled

System A and system B0+

transport/protein synthesis

Head and neck cancer, pulmonary, and

mediastinal mass Stoffels et al., 2008

*The most widely used AAs PET tracers in clinical settings.

N-substituted labeled AAs have radiolabeled at -NH2

group of AAs. α-[N-methyl-11C]-methylaminoisobutyric
acid (11C-MeAIB) and α-(N-[1-11C]acetyl)-aminoisobutyric
acid (Prenant et al., 1996) are N-substituted labeled non-
natural AAs targeting transport system A. 11C-MeAIB has
been used for clinical PET imaging of tumor (Sutinen
et al., 2003). Although several N-substituted labeled natural
AAs, such as p-18F-fluorohippurate (18F-PFH) as a glycine
analog, have been reported, their transport mechanisms
remain unknown (Awasthi et al., 2011). N-substituted labeled
natural AAs targeting different AA transport systems, such
as N-(2-18F-fluoropropionyl)-L-methionine (18F-FPMET),
N-(2-18F-fluoropropionyl)-L-glutamic acid (18F-FPGLU), N-(2-
11C-methyl)-L-glutamic acid (11C-MGLU), were first reported
by our research group (Hu et al., 2013, 2014). 18F-FPGLU is a
potential AA PET tracer for tumor imaging and can be used for
clinical tumor imaging in the near future. Our studies showed
that 18F-FPGLU is mainly transported via XAG− and XC− (shown
in Figure 1) (Hu et al., 2014; Tang et al., 2015).

CLINICAL APPLICATIONS

AA PET tracers were first used to measure the rate of protein
synthesis in vivo (Vaalburg et al., 1992; Ishiwata et al., 1993;

Paans et al., 1996). For example, 11C-labeled natural AAs, such
as L-leucine, L-methionine, L-phenylalanine and L-tyrosine, are
used to measure the protein synthesis rate since they incorporate
into proteins or wash out with decarboxylation and oxidation
(Ishiwata et al., 1996; Langen et al., 2006). Nowadays, AA
transports seem to be more important than protein synthesis for
the imaging of tumor metabolism in vivo (Ploessl et al., 2012;
Lewis et al., 2015). A wide range of 11C and 18F AAs have been
developed as PET tracers for clinical tumor imaging, as shown
in Table 2 and Figure 2. The established AA tracers are used for
imaging of brain tumors, neuroendocrine tumors, and prostate
cancer, and other tumors.

Brain Tumor
Though 18F-FDG has been used in PET imaging of brain tumors,
there exists weaknesses as mentioned (Olivero et al., 1995;
Suchorska et al., 2014; Zhao et al., 2014; Tomura et al., 2015).
AA PET tracers can overcome its limitations and provide a
better description of tumor boundaries, which is important for
surgical interventions, targeting biopsies, and radiation therapy
(Suchorska et al., 2014). And 18F-FDG has been replaced by AA
PET tracers or its analogs in clinical settings. The most widely
used AA PET tracers are 11C-MET, 18F-FET, and 18F-FDOPA
(Gulyas and Halldin, 2012; Wang et al., 2014).
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FIGURE 2 | The chemical formula of amino acid PET tracers commonly used for clinical tumor imaging.
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FIGURE 3 | Images (Axial) of a 45-year-old man with a history of attempted resection of World Health Organization (WHO) grade glioma. (A) Subsequent new

abnormal enhancing lesion (arrow) on Magnetic resonance (MRI). (B) 18F-FDG PET imaging illustrated patching-shaped hypormetabolism in the right temporal lobe

(arrow). (C) 11C-MCYS PET imaging showed a patching-shaped hyperrmetabolism lesion (arrow), which was predominant high-grade tumor recurrence confirmed on

histopathology. This figure is reproduced with permission from Deng et al. (2011), Figure 5 © by the Society of Journal of Nuclear Medicine Imaging, Inc.

FIGURE 4 | Images of a patient with recurrent glioma of World Health

Organization (WHO) grade II oligodendrocytoma histologyon the background

of WHO grade III anaplastic astrocytoma on initial diagnosis. Axial 18F-FDG

(top), 18F-FET (bottom) fused PET/CT (left) and lateral maximum intensity

projection images (right). 18F-FET imaging illustrated that the recurrent tumor

in the right frontal lobe (cross-hairs) was better visualized and defined, and had

a much lower brain uptake background to allow a good tumor-background

contrast. This figure is reproduced with permission from Lau et al. (2010),

Figure 4 © by the Society of Journal of Clinical Neuroscience, Inc.

Compared to 18F-FDG, the superior diagnostic accuracy
of 11C-MET has been demonstrated in detecting, grading,
delineating and searching recurrences, prediction of prognosis
and evaluation of response to treatment (Nariai et al., 2005; Van
Laere et al., 2005; Ceyssens et al., 2006; Galldiks et al., 2006).
However, the sensitivity of 11C-MET was lower in the studies
with high proportions of low-grade glioma (Hatakeyama et al.,
2008; Glaudemans et al., 2013), which is the most universal
type of primary brain tumor. Moreover, there is not yet enough
evidence about grading glioma, and its use in differentiating
tumor recurrences from radiation necrosis is controversial (Ishii

et al., 1993; Sonoda et al., 1998; Nakagawa et al., 2002; Tsuyuguchi
et al., 2004; Minamimoto et al., 2015). 11C-MCYS, a new AA
PET tracer for tumor imaging, is reported that it, as analog of
11C-MET, appeared to have potential value as a tumor PET-
imaging tracer (Figure 3) (Deng et al., 2011; Huang et al.,
2015).

18F-FET and 18F-FDOPA are derivatives of 18F-labeled L-
phenylalanine and L-tyrosine, which target system L transporters
to detect brain tumors. 18F-FET provides both good-contrast
PET images of brain tumors (Figure 4) (Langen et al., 2006;
Lau et al., 2010; Dunet et al., 2012) and valuable information
about differentiating low-grade from high-grade tumor (Popperl
et al., 2007; Dunet et al., 2012; Jansen et al., 2015). Dynamic
18F-FET examinations show high diagnostic accuracy in patients
with suspected tumor progression or recurrence in clinical
settings (Lau et al., 2010; Dunet et al., 2012). 18F-FET also can
differentiate recurrent brain tumor from pseudoprogression and
radiation necrosis (Niyazi et al., 2012; Galldiks et al., 2015a,b).
Additionally, 18F-FET has a lower uptake by inflammatory cells
than 11C-MET or 18F-FDG and it clearly delineates tumors
from inflammation (Gulyas and Halldin, 2012; Nedergaard et al.,
2014).

18F-FDOPA is an analog of L-dopa, and 18F-OMFD is a
major metabolite of 18F-FDOPA (Beuthien-Baumann et al.,
2003; Gulyas and Halldin, 2012). 18F-FDOPA has been used to
investigate the activity of aromatic L-AA decarboxylase and to
evaluate the dopaminergic system functioning in brain tumors
and neuroendocrine tumors. 18F-FDOPA has been used for
detecting primary, metastatic and recurrent brain tumors, and
provides valuable information on the delineation of tumor
volume, the determination of proliferative activities and grading
(Figure 5) (Chen et al., 2006; Fueger et al., 2010; Pafundi et al.,
2013; Juhász et al., 2014). The uptake of 18F-FDOPA correlates
with the glioma grade, thus it plays an important role for
managing patients in clinical settings (Fueger et al., 2010; Walter
et al., 2012; Pafundi et al., 2013).

There are several AA PET tracers of imaging
glutaminolysis, such as L-[5-11C]-glutamine (Qu et al.,
2012) 4-18F-(2S,4R)-fluoroglutamine (18F-FGln) (Lieberman
et al., 2011), and (2S,4S)-4-(3-18F-fluoro-propyl)glutamine
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FIGURE 5 | (A) Images of a newly diagnosed glioblastoma. (B) Images of a newly diagnosed World Health Organization grade II oligodendroglioma. Magnetic

resonance (left), 18F-FDG PET (middle), and 18F-FDOPA PET (right). 18F-FDOPA PET imaging illustrated significantly better visualized and defined tumor with

adequate contrast. This figure is reproduced with permission from Chen et al. (2006), Figure 2 © by the Society of Journal of Nuclear Medicine Imaging, Inc.

(18F-FPGln) (Lewis et al., 2015). Study showed that high uptake
of 18F-FGln in glioma, and 18F-FGln may be a helpful tracer for
glioma imaging (Venneti et al., 2015).

Neuroendocrine Tumors
Neuroendocrine tumors (NETs) are a heterogeneous group of
neoplasms from cells of the endocrine and nervous systems.
Identifying the accurate location of primary tumors and
metastases are essential for the treatment of NETs. 18F-
FDG is a nonspecific tracer for NETs, and its uptake is
always low in well-differentiated NETs (Huang and McConathy,
2013b).

Knowledge about NETs uptake amine precursors led to the
development of 11C-HTP and 18F-FDOPA.11C-HTP is useful
for detecting small tumors and early recurrences, however,
the 20-min half-life of 11C limits the wide clinical use of
11C-HTP (Oberg and Castellano, 2011; Toumpanakis et al.,
2014).

NETs increase activity of L-DOPA decarboxylase, so they show
a high accumulation of 18FDOPA (Jager et al., 2008). 18F-FDOPA
is a favorable AA tracer for diagnosing NETs with high accuracy,
such as pheochromocytomas (Figure 6) (Wong et al., 2011),
pancreatic pheochromocytoma and insulinomas, and for staging
carcinoids (Koopmans et al., 2006; Timmers et al., 2007; Huang
and McConathy, 2013b). Additionally, 18F-FDOPA is a highly
sensitive marker in patients with functional carcinoid tumors and

has low sensitivity for malignant NETs, such as medullary thyroid
cancer and pancreatic islet cell tumors (Weisbrod et al., 2012).

One study compared 11C-HTP PET and 18F-FDOPA PET
in patients with gastrointestinal-NET and pancreatic-NET. 18F-
FDOPA was found to be more sensitive than 11C-HTP (98
vs. 89%, respectively) for gastrointestinal-NET. However, for
pancreatic-NET, the result was opposite (80 vs. 96%, respectively)
(Orlefors et al., 1998; Toumpanakis et al., 2014).

Prostate Cancers
Prostate cancer is a complex and biologically heterogeneous
tumor, which is the second leading cause of cancer-related death
in the United States and Europe (Huang andMcConathy, 2013b).
18F-FDG is not an adequate tracer for differentiating prostate
cancer, benign hyperplasia lesion and normal prostate (Picchio
et al., 2015), and it is not useful for initial staging and is of
limited utility in the clinical setting of biochemical failure after
prior definitive therapy for primary cancer (Jadvar, 2016). 11C-
MET is a helpful tracer for imaging the prostate in patients with
increased PSA levels (Toth et al., 2005; Jana and Blaufox, 2006).
Short dynamic scanning limits the wide clinical use of 11C-MET
for imaging prostate cancer.

18F-FACBC, an L-leucine analog, is a valuable tracer in the
assessment of prostate cancer. Due to its low urinary excretion
after injection (Figure 7), it has advantages in the imaging
of prostate cancer (Schuster et al., 2007, 2011; Huang and
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FIGURE 6 | 18F-FDOPA PET imaging illustrated a solitary left phaeochromocytoma. Left, coronal CT image; mid left, coronal PET image; mid right, coronal fused

PET/CT image; right, maximum intensity projection image. This figure is reproduced with permission from Wong et al. (2011), Figure 9 © by the Society of Journal of

Nuclear Medicine Imaging, Inc.

McConathy, 2013b; Picchio et al., 2015). Prostate cancer, within
the prostate or in pelvic lymph node metastases, can be detected
using 18F-FACBC with high sensitivity and specificity (Schuster
et al., 2011; Castellucci and Jadvar, 2012). The vitro uptake studies
demonstrate that 18F-FACBC is transported by LAT1 and ASCT2
in prostate cancer cell lines (Oka et al., 2012). More studies are
needed to evaluate this radiotracer in the clinical management of
men with prostate cancer (Schuster et al., 2011). 18F-FACPC, as
an analog of 18F-FACBC, is a helpful tracer for imaging prostate
cancer, but 18F-FACPC is not a good tracer for imaging pelvic
lymph node metastases compared to 18F-FACBC (Savir-Baruch
et al., 2011).

Other Tumors
In maxillofacial tumors, the sensitivity of 18F-FAMT is higher
than that of 18F-FDG, demonstrating that the accurate diagnosis
of maxillofacial tumors is possible with 18F-FAMT (Miyakubo
et al., 2007).

Head and neck cancer can be imaged with 11C-MeAIB. 11C-
MeAIB shows active and rapid transport into tumor tissues
and salivary glands (Sutinen et al., 2003). 11C-MeAIB is also
helpful in the differential diagnosis of pulmonary andmediastinal
mass lesions (Nishii et al., 2013). 18F-D-FMT (BAY 86-9596),

a derivative of 18F-labeled tyrosine and is transported via the
system L transporter 1 (LAT-1), showed a lower sensitivity but
higher specificity for 18F-D-FMT than 18F-FDG in patients with
NSCLC and head and neck squamous cell cancer and (Burger
et al., 2014).

4-borono-2-18F-fluoro-phenylalanine (18F-FBPA) was
developed to predict 10B concentrations, presumably after
administration of boron-containing drug for neutron-capture
therapy (BNCT) (Wang et al., 2004; Menichetti et al., 2009; Tani
et al., 2014). Studies showed that 18F-FBPA, was transported by
system L, could evaluate BPA uptake in tumors for screening
candidates for BNCT (Havu-Auren et al., 2007; Menichetti et al.,
2009; Yoshimoto et al., 2013). However, the inconsistent result
was showed that 18F-FDG might be an effective tracer prior to
18F-FBPA for screening patients with head and neck cancer for
treatment with BNCT (Tani et al., 2014; Kobayashi et al., 2016).

CONCLUSION AND PROSPECTS

AA PET tracers can overcome the shortcomings of 18F-FDG
and provide more information for imaging tumors. Uptake
mechanism of AA PET tracers involves protein synthesis or AA
transport. For PET imaging, AA transport tracers appear more
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FIGURE 7 | 18F-FACBC PET images of a 71-year-old man with biopsy-proven prostate bed recurrence. (A) Coronal PET and (B) coronal fused PET/CT image

illustrated the recurrent tumor extending toward left seminal vesicle (arrow in A). (C) Maximum-intensity-projection image at 20min illustrated high uptake in prostate

bed (arrow) with little bladder excretion (arrowhead). This figure is reproduced with permission from Schuster et al. (2007), Figure 4 © by the Society of Journal of

Nuclear Medicine, Inc.

valuable than protein synthesis tracers in clinical applications.
Targeting AA transporter system A, ASC, L and XC− , have been
used in the clinical imaging of the biological behaviors of various
tumors. Transporter system L has been a major focus of tracer
development for imaging tumors (such as 11C-MET, 18F-FET,
18F-FDOPA) and has also led to several AA tracers that are
effective for imaging neuroendocrine tumors (18F-FDOPA) and
prostate cancer (18F-FACBC) (Huang and McConathy, 2013a).
18F-FSPG (BAY 94-9392), which is specific for system XC−

transporters (Koglin et al., 2011; Smolarz et al., 2013a), has been
used for imaging patients with hepatocellular carcinoma (Baek
et al., 2013), NSCLC (Smolarz et al., 2013a) and breast cancer
(Chopra, 2004; Baek et al., 2012). Recently, new 18F-labeled
branched-chain AAs have been developed that target cationic
AA transporter and excitatory AA transporters XAG− , which are
potential targets of AA PET tracers for tumor imaging. O-2((2-
[(18)F]fluoroethyl)methylamino)ethyltyrosine (18F-FMAET) is
specific for cationic AA transporter (Chiotellis et al., 2014). BAY
85-8050, a glutamate derivative, is specific for transport system
XC− and systems XAG− , which is used to study healthy volunteers
(Krasikova et al., 2011; Ploessl et al., 2012).

Besides branched-chain AAs, novelN-substituted labeled AAs
and AA mimetics, have also been developed. 18F-FPGLU is N-
methylsubstitutebeled amino glutamic acid as a potential AA
tracer for PET imaging of transporter XAG− and XC− in tumor,
and can be used for clinical tumor imaging in the near future. 18F-
Phe-BF3 (an exotic replacement of the carboxylate with -BF3) is a
new class of AA mimetics-boramino acid tracer for PET imaging
of transporter LAT1 in tumor, with specific accumulation in
U87MG xenografts and low uptake in normal brain and an
inflammatory region (Liu et al., 2015). Also, synthesis of novel
AAs with conformationally constrained side chains will lead to
developing a series of new radiolabeled AAmimetics for imaging
disease, with good prospect (Mollica et al., 2010, 2012; Stefanucci
et al., 2011; Way et al., 2014).

Novel radiolabeling techniques are developing for
radiosynthesis of AA PET tracers, resulting in routine high-dose
production of AA tracers for clinical PET imaging. Recently, the
no-carrier-added (NCA) enantioselective synthesis using a chiral
phase-transfer catalyst has been used for automated synthesis of
NCA 18F-FDOPA with the Curie Level (Libert et al., 2013), and
simple and efficient two-step synthesis of 18F-FDOPA with short
synthesis times can supply adequate radioactivity for clinical
imaging (Tredwell et al., 2014). Thus, 18F-FDOPA is easily
available and will become widely used AA PET tracer for the
detection of brain tumors, neuroendocrine tumors, Parkinson’s
disease (PD), and mental illness (Darcourt et al., 2014; Eggers
et al., 2014; Li et al., 2014). Simple and practical click reaction
and 68Ga labeling methods are also used for preparing new AA
tracers for imaging tumors, which will further boost translational
application of AA tracers in clinics.
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