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ABSTRACT The veined rapa whelk (Rapana venosa) is widely consumed in China. Nevertheless, it preys on
oceanic bivalves, thereby reducing this resource worldwide. Its larval metamorphosis comprises a transition from
pelagic to benthic form, which involves considerable physiological and structural changes and has vital roles in its
natural populations and commercial breeding. Thus, understanding the endogenous microRNAs (miRNAs) that
drive metamorphosis is of great interest. This is the first study to use high-throughput sequencing to examine the
alterations in miRNA expression that occur during metamorphosis in a marine gastropod. A total of 195 differ-
entially expressed miRNAs were obtained. Sixty-five of these were expressed during the transition from pre-
competent to competent larvae. Thirty-three of these were upregulated and the others were downregulated.
Another 123 miRNAs were expressed during the transition from competent to postlarvae. Ninety-six of these
were upregulated and the remaining 27 were downregulated. The expression of miR-276-y, miR-100-x, miR-183-x,
and miR-263-x showed a >100-fold change during development, while the miR-242-x and novel-m0052-3p
expression levels changed over 3000-fold. Putative target gene coexpression, gene ontology, and pathway
analyses suggest that these miRNAs play important parts in cell proliferation, migration, apoptosis, metabolic
regulation, and energy absorption. Twenty miRNAs and their target genes involved in ingestion, digestion,
cytoskeleton, cell adhesion, and apoptosis were identified. Nine of them were analyzed with real-time polymer-
ase chain reaction (PCR), which showed an inverse correlation between the miRNAs and their relative expression
levels. Our data elucidate the role of miRNAs in R. venosa metamorphic transition and serve as a solid basis for
further investigations into regulatory mechanisms of gastropod metamorphosis.
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Molluscs are biphasic, and metamorphosis is a vital developmental event
in their life cycle (Huan et al. 2015). In evolutionary terms, animal
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metamorphosis is crucial because it apparently developed indepen-
dently in different clades (Hadfield 2000). Competent larvae require a
suitable attachment site for metamorphosis, and an unfavorable sub-
strate may be fatal (Bishop et al. 2006). Metamorphosis occurs in a
relatively short time (generally <48 hr) but is accompanied by high
mortality (Huan et al. 2015). Therefore, premetamorphosis recruitment
and postmetamorphosis survival control mollusc population dynamics
(Chandramouli ef al. 2014). Metamorphosis determines extensive mor-
phological and behavioral changes such as velum degradation and re-
absorption, foot proliferation and elongation, and the initiation of rapid
secondary shell growth. Thus, elucidating molluscan metamorphic tran-
sition attracts considerable theoretical interest among marine biologists.

The rapa whelk, Rapana venosa, a mollusc, is widely consumed
in China. Efforts involving its commercial aquaculture have been
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undertaken by many enterprises since 1992 owing to its economic
importance (Yuan 1992). However, large-scale aquaculture of this spe-
cies has been hampered by difficulties with larval culture during meta-
morphosis. Moreover, wild veined rapa whelk resources have been
declining in China owing to increasing fishing activity. This whelk is
considered an invasive species beyond the western Pacific Ocean as a
result of unintended world-wide transportation, and it heavily threat-
ens the biomass of local bivalves (Yuan 1992). It was first recorded as an
invasive species in the Black Sea during the 1940s (Drapkin 1963). Since
then, primarily owing to unintended global transport, R. venosa has
become extremely pervasive and has extended its range to Quiberon
Bay, France (Mann et al. 2004); Chesapeake Bay (Harding and Mann
1999); Rio de la Plata between Uruguay and Argentina (Pastorino et al.
2000); and The Netherlands’ coastal waters (Nieweg et al. 2005). Its
prevalence heavily disrupts native trophic structure and damages en-
demic bivalve resources. Metamorphosis may control population dy-
namics; therefore, understanding its mechanism may be useful for
aquaculture, resource restoration, and preventing biological invasion
of R. venosa.

There are few published reports on R. venosa metamorphosis. A
previous study described morphological changes that R. venosa un-
dergoes in the metamorphosis process; the study also indicated that
during this process, the diet of R. venosa shifts from phytophagous to
carnivorous (Pan et al. 2013). Metamorphosis inducers for this species
were also investigated, and it was found that acetylcholine chloride and
calcium chloride (CaCl,) were effective and had low toxicity (Yang et al.
2015), suggesting that these compounds may be promising in artificial
aquaculture. A comprehensive transcriptome database of R. venosa has
been constructed from precompetent, competent, and postlarvae (Song
et al. 2016¢), and it forms a baseline for future studies on gene/protein
activity associated with metamorphosis. Transcriptomic and proteomic
analyses of R. venosa metamorphosis identified differentially expressed
genes/proteins. This finding indicates that there are multiple processes
involved in its metamorphic transition, especially ingestion and diges-
tion, cytoskeleton and cell adhesion, stress response and immunity, and
tissue-specific development (Song et al. 2016b,d). The metabolic pro-
files of competent and postlarval stages of R. venosa were examined by
gas chromatography-mass spectrometry (GC—MS). The analysis de-
tected 53 metabolites whose concentrations differed before and after
metamorphosis. They are indicative of the changes in energy metabo-
lism and cell signaling that occur during metamorphosis (Song et al.
2016a). Nevertheless, since microRNAs (miRNAs) participate in RNA
silencing and post-transcriptional gene expression regulation (Ambros
2004; Bartel 2004), miRNA data are required to provide further con-
crete support for conclusions drawn from the transcriptome/proteome
data.

The miRNAs are short (~22 nt) and noncoding and have been
implicated in cell differentiation, proliferation, migration, and apopto-
sis. They downregulate the expression of target genes by binding to
their 3’ untranslated regions (UTRs) (Sun et al. 2017). Metamorphosis
is essential for developmental and evolutionary success. Nevertheless,
the mechanism by which miRNAs regulate this process remains to be
determined. Over the past 10 yr, several studies have been conducted
on this aspect in insects, fish, and amphibians. A mutation was found
that eliminates let-7 and miR-125 and leads to widespread defects
during the metamorphosis of the insects Blattella germanica and Dro-
sophila melanogaster (Caygill and Johnston 2008; Mercedes et al. 2012;
Sempere et al. 2002). When anti-miR-100 depleted miR-100 in the last
instar of the hemimetabolan insect B. germanica, the adult wings were
slightly smaller than those of the wild type. They also presented with
partial fusion of the cross-veins in the anterior remigium and abnormal
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bifurcations of those in the posterior remigium. The depletion of let-7
elicited the same adult wing vein pattern malformations (Rubio and
Belles 2013). The MiR-2 family regulates B. germanica metamorphosis
by controlling the juvenile hormone signaling pathway (Lozano et al.
2015). In the holometabolan D. melanogaster, miR-9a-mutants showed
wing margin defects and a few ectopic sensory organs (Li et al. 2006),
and in a later study, miR-9 was found to prevent apoptosis during wing
development (Bejarano et al. 2010). In the Japanese flounder (Paralich-
thys olivaceus), the expression patterns of 197 miRNAs during meta-
morphosis were analyzed, and a later study showed that the decrease in
miR-17 upregulated Cdc42 during metamorphosis (Zhang et al. 2016).
In the amphibian Xenopus tropicalis and in fish, expression-profiling
miRNAs at metamorphosis were identified. The miR-133 played an
important part in skeletal muscle development during metamorphosis
(Zhang et al. 2016). Molluscs include the largest marine phylum, and
comprise ~23% of the total marine organisms. Metamorphosis is the
most important developmental event in the molluscan life cycle; how-
ever, the characterization and roles of miRNAs in molluscan meta-
morphosis have not been determined to date.

The purpose of the present study was to elucidate the endogenous
miRNAs that drive metamorphosis in the veined rapa whelk R. venosa.
By sequencing on the Illumina HiSeq 2500 platform, we compared the
global expression profiles of small RNAs in precompetent larvae (pre-
CL), competent larvae (CL), and postlarvae (PL). In previous studies,
we investigated the mRNA global expression profile of whelk meta-
morphosis (Song et al. 2016d); therefore, in the present study we per-
formed a differentially expressed miRNA-mRNA correlation analysis to
elucidate miRNA regulation in whelk metamorphosis. These findings
will provide new insights into gastropod metamorphosis and facilitate
investigation of miRNA function in a biphasic life cycle in the future.

MATERIALS AND METHODS
Sampling

Parent R. venosa were collected from their naturally growing areas in
Laizhou Bay, China (37°11'4.78"N, 119°41'3.75"E). Parent culture,
spawning, larval incubation, and rearing were performed at the Blue
Ocean (Laizhou, Shandong, China) according to previously published
methods (Pan et al. 2013). Planktonic larvae were cultured in 2.5 X 4 X
1.2 m cement pools at 23.5-25.8° and a density of 0.3/ml. Isochrysis
galbana, Chlorella vulgaris, and Platymonas subcordiformis were pooled
and provided as a daily diet (2 x 10° cells/ml, two times) to the pelagic
larvae. Samples from the precompetent larval (three spiral-whorls)
stage, the competent larval (four spiral-whorls) stage, and the postlarval
(juvenile) stage were collected as three biological replicates, each of
which consisted of 40-100 individuals. The samples were inspected
under a microscope to ensure that >95% of the individuals were de-
velopmentally synchronized. Each replicate was then rinsed with double-
distilled H,O and flash-frozen in liquid nitrogen until use.

Library construction and sequencing

Total RNA was extracted from an individual intestine using the RNeasyMini
Kit (Qiagen, Germantown, MD) according to the manufacturer’s in-
structions. The quality and concentration of RNA were measured using
a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wal-
tham, MA). RNA molecules in the size range of 18-30 nt were enriched
by polyacrylamide gel electrophoresis (PAGE). The 3’ adapters were
added and the 36-44 nt RNAs were enriched. The 5" adapters were
then ligated to the RNAs as well. The ligation products were reverse-
transcribed by polymerase chain reaction (PCR) amplification. The
140-160-bp PCR products were enriched to generate a cDNA library
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The 3" UTRs from the rapa whelk transcriptome assembly (Song et al.
2016¢,d) were used as a reference database to predict the target genes
with RNA hybrid v. 2.1.2, svm_light v. 6.01, Miranda v. 3.3a, and
TargetScan v. 7.0. The targeting criteria were: (1) no mismatch is
allowed between 2 and 8 nt on the 5" end; (2) the G-U matching
number cannot be >3; and (3) the minimum free energy (MFE) of
the miRNA/target duplex should be >75% of the MFE of the miRNA
bound to its perfect complement. The target genes of differentially
expressed miRNAs were mapped to the gene ontology (GO) database
(http://www.geneontology.org/) and the KEGG (Kyoto Encyclopedia
of Genes and Genomes; http://www.genome.jp/kegg/) pathways
for GO and KEGG analyses. GO and pathway terms with P = 0.05
(Bonferroni’s correction) were considered statistically significant. The
differentially expressed mRNA identified in a previous study (Song
et al. 2016d) and the differentially expressed miRNAs were integrated
to analyze the key miRNA-target pairs. Only the inversely correlated
miRNA-target pairs with MFE = —18 were screened.

Data availability

Raw sequencing data were submitted to the GEO (Gene Expression
Omnibus) database with accession No. GSE102631. Supplemental
materials include the details of primers for qPCR assays (Table S1),
the differentially expressed miRNAs during metamorphosis develop-
ment (Table S2), and miRNA-target pairs of differentially expressed
miRNAs (Table S3).

RESULTS

MicroRNA library construction

To identify the miRNAs differentially expressed during metamorphosis
in rapa whelk, nine small RNA libraries (precompetent larvae: Pre-CL 1,
Pre-CL 2, and Pre-CL 3; competent larvae: CL 1, CL 2, and CL 3;
postlarvae: PL 1, PL 2, and PL 3) were constructed using Illumina
sequencing. A dataset consisting of ~85,000,000 reads (ranging from
8,235,539 to 10,159,366 among the samples) was obtained after trim-
ming the adapter sequences (Table 1). A BLAST run against the NCBI
GenBank, the RepeatMasker, and the Rfam database identified 19,494
(8.75%) to 18,982 (11.77%) unique small RNAs as rRNA, 229 (0.11%)

4002 | H.Songetal.

mup

115 m down

Figure 1 Differentially expressed
miRNAs between groups.

39

Pre-CL vs PL

to 635 (0.19%) as snRNA, 28 (0.01%) to 68 (0.03%) as snoRNA, and
1284 (0.62%) to 3619 (1.12%) as tRNA (Table 1). After removing these
small RNAs, the remaining RNAs were further analyzed to identify
rapa whelk miRNAs against miRBase v. 21.0. A total of 19,878
(12.33%), 20,976 (11.31%), and 18,263 (9.69%) unique known miRNAs
were sought in precompetent larvae, 21,033 (9.44%), 17,913 (9.51%),
and 16,210 (7.85%) in competent larvae, and 20,573 (6.36%), 24,996
(7.57%), and 22,325 (6.56%) in postlarvae. There were 212 (0.13%),
211 (0.11%), and 209 (0.11%) unique novel miRNAs found in precom-
petent larvae, 192 (0.09%), 191 (0.10%), and 181 (0.09%) in competent
larvae, and 173 (0.05%), 205 (0.06%), and 207 (0.06%) in postlarvae.

Different expression profiles of miRNAs

The differentially expressed miRNAs were identified by ¢-test with a fold
change >2 and P < 0.05. A total of 195 miRNAs were obtained, in-
cluding 33 upregulated and 32 downregulated during the transition
from precompetent to competent larvae, and 96 upregulated and
27 downregulated during metamorphosis (Figure 1 and Table S2).
Table 2 lists 39 differentially expressed miRNAs with the following
criteria: average TPM >10 (in nine samples), log,Ratio >2 or <—2
and P < 0.01 for =1 comparison among the groups. Eleven miRNAs
showed a >20-fold difference in gene expression for =1 comparison
among the groups. These molecules included miR-242-x, novel-
m0052-3p, miR-276-y, miR-100-x, miR-183-x, miR-263-x, miR-99-x,
miR-37-y, miR-36-y, miR-1175-y, and miR-125-x. These may have
important roles in regulating metamorphosis-associated gene expres-
sion. Specifically, miR-276-y, miR-100-x, miR-183-x, and miR-263-x
showed a >100-fold change, while miR-242-x and novel-m0052-3p
expression levels showed a >3000-fold change.

GO and KEGG pathway enrichment of miRNA

target genes

The putative target genes of differentially expressed miRNAs were iden-
tified using TargetScan software based on rapa whelk transcriptome
libraries (Song et al. 2016¢). GO analysis was then used to predict enriched
functional groups (P < 0.05) (Figure 2). “Cellular process (10,917 genes),”
“metabolic process (9669 genes),” and “single-organism process
(8590 genes)” were the top three enriched items in the biological process,
whereas “binding (10,297 genes),” “catalytic activity (8104 genes),” and
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Table 2 Thirty-nine differentially expressed miRNAs with the following criteria: average TPM >10 (in nine samples), log2Ratio >2 or <-2

and P < 0.01 for 21 comparison among groups

Average TPM log2_FC (CL/ log2_FC log2_FC (PL/

miRNA 1D Pre-CL cL PL Pre_CL) P-value (PL/CL) P-value Pre_CL) P-value
miR-242-x 119470.55 63690.16 30.01 —-0.91 0.0051 —-11.05 0.0001 —-11.96 0.0001
novel-m0052-3p 8.17 0.01 36.61 —-9.67 0.0001 11.84 0 2.16 0.0222
miR-276-y 44.03 0.16 36.21 -8.14 0.0078 7.85 0.006 -0.28 0.9293
miR-100-x 59.29 23.12 39724 —-1.36 0.0538 7.42 0.0002 6.07 0
miR-183-x 51432.32 40226.25 406.83 -0.35 0.0222 —6.63 0 —-6.98 0
miR-263-x 57623.55 41416.09 513.61 -0.48 0.0218 -6.33 0 —6.81 0
miR-99-x 31.73 9.45 634.7 -1.75 0.0785 6.07 0 4.32 0.0015
miR-37-y 409.54 933.54 23.69 1.19 0.0589 -5.3 0 —4.11 0.0019
miR-36-y 413.61 935.84 24.25 1.18 0.0588 -5.27 0 —-4.09 0.0018
miR-1175-y 460.92 435.07 11573.59 —0.08 0.8908 4.73 0.0001 4.65 0.0013
miR-125-x 13.51 5.46 132.68 -1.31 0.5297 4.6 0.0023 3.3 0.0221
miR-92-x 67.63 54.31 3.39 -0.32 0.3449 —4 0 —-4.32 0.0001
miR-133-y 52.35 91.6 815.97 0.81 0.1242 3.16 0.0007 3.96 0.0007
novel-m0073-3p 31.68 9.14 2.31 -1.79 0.0016 —-1.98 0.0067 —-3.77 0.0009
miR-133-z 372.85 582.47  4506.23 0.64 0.2365 2.95 0.0013 3.6 0.0023
miR-278-y 1107.12 2621.61 13402.72 1.24 0.0105 2.35 0.0001 3.6 0.0002
miR-3968-y 35.22 10.92 3.16 —-1.69 0.2069 -1.79 0.0032 —3.48 0.023
miR-283-x 489.56 141.62 45.95 -1.79 0.0283 -1.62 0.0004 —-3.41 0.0025
miR-1175-x 76.6 45.92 455.17 -0.74 0.3242 3.31 0 2.57 0.0062
miR-124-y 40.89 171.68 388.62 2.07 0.0004 1.18 0.002 3.25 0
miR-1992-y 75.28 45.45 429.55 -0.73 0.6242 3.24 0.0001 2.51 0.0203
miR-9-y 20.04 15.01 132.39 -0.42 0.8649 3.14 0.0003 2.72 0.0162
miR-1986-y 8.86 3.05 25.27 —1.54 0.0618 3.05 0.0004 1.51 0.027
miR-182-x 46.86 21.07 156.48 —-1.15 0.3974 2.89 0.0098 1.74 0.0782
novel-m0121-3p 10.19 9.77 68.41 —0.06 0.9767 2.81 0.0007 2.75 0.0036
miR-317-y 115.92 104.18 731.78 -0.15 0.8325 2.81 0.0001 2.66 0.0179
miR-2478-y 1619.2 542.04 262.74 —-1.58 0.3887 —-1.04 0.0096 —2.62 0.1104
let-7-y 8.32 20.49 46.93 1.3 0.0053 1.2 0.0009 2.5 0.0004
miR-190-x 167.59 226.25 936.13 0.43 0.2449 2.05 0 2.48 0.0032
miR-206-y 57.9 142.27 300.9 1.3 0.0052 1.08 0.0038 2.38 0.0001
miR-216-x 43564.02 25139.85 9272.06 -0.79 0.0012 —1.44 0.0001 —-2.23 0.0001
miR-745-y 909.71 285.74 1339.7 —-1.67 0.0449 2.23 0.0001 0.56 0.253
miR-281-x 337.71 258.01 1190.95 -0.39 0.0169 2.21 0.0001 1.82 0.0004
miR-278-z 31.68 86.43 141.08 1.45 0.0042 0.71 0.0009 2.15 0.0008
miR-219-x 17.75 7.81 34.07 -1.18 0.4123 2.13 0.0002 0.94 0.1942
miR-277-y 4.52 6.77 19.63 0.58 0.1424 1.54 0.0046 2.12 0.0082
miR-1-z 13128.8  27828.43 54391.53 1.08 0.0017 0.97 0.0016 2.05 0
miR-981-y 3915.01 7628.17 15993.92 0.96 0.0032 1.07 0.0026 2.03 0.0003
miR-278-x 7.45 17.63 30.16 1.24 0.0021 0.77 0.0083 2.02 0.0001

“transporter activity (1732 genes)” participated in molecular function.
“Cell (6406 genes),” “cell part (6406 genes),” “membrane (5487 genes),”
“organelle (4219 genes),” and “macromolecular complex (4059 genes)”
were highly represented in the cellular component categories.

Enriched metabolic and signal transduction pathways were identi-
fied and are listed in Figure 3. Eight significantly enriched pathways for
target genes (Q < 0.05) involved in “INF signalling pathway,” “SNARE
interactions in vesicular transport,” “Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis,” “Nicotinate and nicotinamide metabo-
lism,” “Ubiquitin-mediated proteolysis,” “Phosphonate and phosphi-
nate metabolism,” “Pyrimidine metabolism,” and “Sulphur relay system”
were screened (Figure 3).

Selection of miRNA-target pairs and qPCR validation

The aforementioned mRNA expression profiling data from the same
metamorphosis sampling stages (Song et al. 2016¢) were used to perform
association analyses along with the current miRNA profiling. The differ-
entially expressed miRNAs detected in the present study were used to
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select the miRNA-target pairs expressed in metamorphosis (Table S3).
The miRNAs negatively regulate the expression of their target mRNAs
either by translation inhibition or by mRNA degradation. In previous
studies (Song et al. 2016b,c), the mRNAs/proteins involved in “ingestion
and digestion,” “cytoskeleton and cell adhesion,” and “apoptosis” were
thought to have important roles in driving metamorphosis. We identified
20 key miRNA-target pairs potentially implicated in these aspects of
whelk metamorphosis (Table 3). For example, in “ingestion and diges-
tion,” we found that let-7-y potentially regulates the SARP-19 precursor,
conotoxin Cl14.12, and the exoglucanase XynX genes. Therefore, a single
miRNA may regulate multiple target genes during metamorphosis. The
miR-1175-x targets the cysteine-rich secretory protein gene, and miR-
2001-x targets endo-1,4-B-xylanase. The gene miR-71-x regulates the
B-1,4-xylanase and membrane metalloendopeptidase-like 1 genes. In
“cytoskeleton and cell adhesion,” tektin-3, dynein heavy chain 8 (axone-
mal), and dynein intermediate chain 2 (ciliary), all of which are the main
structures of velum cilia, were regulated by miR-5106-y, miR-87-y, and
miR-315-%, respectively. Novel-m0020-5p determines the expression of
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were consistent with the overall trend in high-throughput sequencing.
For each of the nine pairs, there was an inverse correlation between the
expression levels of miRNA and miRNA. For example, the let-7-y
miRNA decreased during the transition from precompetent to post-
larval, whereas its target mRNAs (c112229_gl SARP-19 precursor,
c124801_g1 Conotoxin Cl14.12, and ¢150903_g1 Exoglucanase XynX)
significantly increased.

DISCUSSION
In this study, we investigated the miRNA expression profile during the
metamorphosis of the rapa whelk using high-throughput sequencing. In
total, nine libraries were constructed and 85,000,000 reads were obtained.
These results will augment information on the small RNA genome of rapa
whelk and provide a basis for miRNA regulation during metamorphosis.
A total of 195 miRNAs was significantly differentially expressed among
three larval stages (precompetent, competent, and postlarval stages) and
targeted thousands of genes. This result was expected since metamor-
phosis is the most complicated developmental event of the life cycle and
entails considerable structural, physiological, and behavioral changes.
To obtain an insight into the possible functions of the differentially
expressed miRNAs involved in metamorphosis, we performed GO and
KEGG pathway enrichment analyses on their predicted target genes.
The significantly enriched GO terms “biological adhesion,” “cell aggre-
gation,” “cellular component organisation or biogenesis,” “localisation,”
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“developmental process,” “signalling,” “immune system,” and “response
to stimulus” are primarily associated with development, gene expression,
immunity, and the cell cycle. Metamorphosis is a complex process and
includes tissue remodeling, cell migration, differentiation, proliferation,
and others (Jackson et al. 2005). A total of eight significantly enriched
pathways were observed. The “INF signalling” pathways were enriched
because they trigger apoptosis, and old organs such as the velum are
degenerated by programmed cell death. “SNARE interactions in vesicu-
lar transport” were enriched because the nervous system mediates meta-
morphosis in many marine invertebrates (Voronezhskaya 2004;
Gifondorwa and Leise 2006) and SNARE participates in vesicle
docking, priming, fusion, and the synchronization of neurotrans-
mitter release into the synaptic cleft during neurosecretion (Shi et al.
2011). SNAREs also play a crucial part in the autophagy required for
velum degradation and reabsorption during molluscan metamor-
phosis. “Nicotinate and nicotinamide metabolism,” “Ubiquitin me-
diated proteolysis,” “Phosphonate and phosphinate metabolism,”
“Pyrimidine metabolism,” and “Sulphur relay system” were also
affected because of the tissue remodeling and energy redistribu-
tion that occur during metamorphosis.

Table 2 lists 39 differentially expressed miRNAs with striking changes.
The miR-242-x expression level steadily decreases as precompetent larvae
develop into postlarvae. Its expression level decreased by >3000 fold after
metamorphosis. Therefore, the miR-242 family may have important roles
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Table 3 Coexpression of 20 key miRNA-targets

Average miRNA TPM Target Average mRNA FPKM
No. miRNA ID Pre-CL cL PL Gene ID Pre-CL cL PL Description
Ingestion and Digestion

1 let-7-y 8.32 20.49 46.93 112229 g1 252.36 53.19 5.87 SARP-19 precursor

2 let-7-y 8.32 20.49 46.93 c124801_g1 914435 2226.16 0.13 Conotoxin Cl14.12

3 let-7-y 8.32 20.49 46.93 ¢150903_g1 69.11 2.64 1.59 Exoglucanase XynX

4+ miR-1175-x 76.60 45.92 455.17  c119967_g1 19.39 22.63 1.05 Cysteine-rich secretory
protein

5+ miR-2001-x 87.40 171.07 278.07  c154241_g2 10.27 1.79 0.02 Endo-1,4-B-xylanase A

6 miR-87-y 1480.69 1819.61 498230 c124801_g1 914435 2226.16 0.13 Conotoxin Cl14.12

7* miR-981-y 3915.01 762817  15993.92 c137870_g1  1261.55 85.35 0.10 Endoglucanase E-4

8 miR-71-x 121833.40 97302.93 49293.23 ¢156029_g2 1.99 445 63.30 B-1,4-xylanase

miR-67-y 12508.03 20376.51 41820.76 c156902_g1 29.13 6.93 1.45 a-amylase 1

10 miR-71-x 121833.40 97302.93 49293.23 ¢152193_g1 0.28 15.99  554.55 Membrane metallo-

endopeptidase-like 1
Cytoskeleton and Cell Adhesion

A miR-5106-y 0.68 0.99 15.98 ¢155866_g1 833.87 12239  14.16 Tektin-3

12 miR-87-y 1480.69 1819.61 4982.30 ¢157287_g2 69.54 17.99 5.1 Dynein heavy chain 8,
axonemal

13 miR-315-x 25652.61 30702.55 93369.63 c154991_g1 87.45 11.55 3.14 Dynein intermediate
chain 2, ciliary

14 miR-283-x 489.56 141.62 45.95 c137644_g1 1.61 13.81  28.09 Collagen a-5(VI) chain

15+ miR-263-x 57623.55 41416.09 513.61  c146951_g1 46.76 47.94 8248 Src substrate cortactin

Apoptosis
16 novel-m0020-5p 33.74 15.18 10.35 ¢151900_g1 4.23 4.61  10.52 Apoptosis 2 inhibitor
17 = miR-276-y 44.03 0.16 36.21  c135194_g1 0.78 254 125 Caspase-3
Others

18 * miR-92-x 67.63 54.31 3.39  c140109_g1 0.00 31.07 50.53 Ependymin

19 miR-183-x 51432.32  40226.25 406.83  c66957_g1 940  416.76 1585.15 m7GpppN-mRNA
hydrolase

20 miR-216-x 43564.02  25139.85 9272.06  c105989_g1 76.77 128.87 237.52 Cyclin-I

Pairs with asterisks were further analyzed by real-time PCR.

in rapa whelk metamorphosis. In Caenorhabditis elegans, miR-242 and
miR-793 target the Argonaute protein ALG-1, which controls the RNA
interference process involved in developmental timing (Grishok et al.
2001). The expression level of novel-m0052-3p in precompetent larvae
remained at an average TPM of 8.17. On the other hand, the average
TPM decreased to 0.01 in the competent larvae and rose sharply to
36.61 in the postlarvae. The function of this miRNA remains as yet un-
known and, to our knowledge, no relevant studies on it have been pub-
lished to date. The TPM level of miR-100-x in the precompetent larvae was
59.29. It decreased to 23.12 in the competent larvae but sharply increased to
3974.4 after metamorphosis. There was a similar trend for miR-125-x. Both
miR-100 and miR-125 are believed to participate in cell migration. Low
levels of miR-100 and miR-125 may promote hepatocellular carcinoma
metastasis (Rubio and Belles 2013). Rapa whelk metamorphosis is accom-
panied by high levels of cell death, proliferation, and tissue remodeling, thus
involving the expression of pro-cancer genes, which may regulate cell pro-
liferation and migration. In most insect species, miR-100 clusters with
miR-125 in the same primary transcript. These two miRNAs are involved
in developmental timing in C. elegans and D. melanogaster (Rubio and
Belles 2013). In the cockroach B. germanica, depletion of miR-100 with
specific anti-miRNAs in the last instar nymph may reduce adult wing size
(Rubio and Belles 2013). In the fruit fly D. melanogaster, miR-125 extends
the lifespan by repressing chinmo in adult brains. Since their concentrations
significantly change during rapa whelk development, the functions of these
miRNAs in this species are of great interest. In R. venosa, miR-9-y was
found at a low level (15.01 TPM) in competent larvae but rose to a high
level (132.39 TPM) in postlarvae. It may prevent programmed cell death
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during wing development in Drosophila metamorphosis by repressing
Drosophila LIM-only (Bejarano et al. 2010). This function may explain
our finding that the miR-9 expression level was low in competent larvae.
This developmental stage involves considerable amounts of programmed
cell death because the velum must degenerate. Therefore, the levels
of miR-9 must be high after metamorphosis in order to suppress
further apoptosis.

As stated in previous studies (Song et al. 2016b,c), the mRNAs/
proteins involved in ingestion and digestion, cytoskeleton and cell ad-
hesion, and apoptosis may also have important roles in driving meta-
morphosis. Twenty key miRNA-target pairs implicated in these
processes were identified, and nine of them were further studied by
real-time PCR. Both high-throughput sequencing and real-time PCR
showed that the let-7-y expression level continuously increased during
metamorphosis, whereas those of its target miRNAs like SARP-19,
conotoxin, and exoglucanase continuously declined. The SARP-19
gene was expressed highly in the gastropod larval digestive gland and
was sensitive to metamorphic cues (He et al. 2014). Conotoxin is a
group of neurotoxic peptides isolated from Conus venom. High con-
otoxin levels in R. venosa pelagic larvae indicated that this life stage in
R. venosa is homologous with that of Conus. In the rapa whelk, how-
ever, it degenerated after metamorphosis (Song et al. 2016d). Exoglu-
canase, an important digestive enzyme in whelk pelagic larvae, sharply
decreased when the whelk become carnivorous after metamorphosis.
The digestion-related genes were negatively regulated by let-7-y, which
implies that let-7 participates in digestive system changes during whelk
metamorphosis. The let-7 miRNA also participates in metamorphosis
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in many other animals. In Drosophila, for example, the loss of let-7 and
miR-125 may delay the terminal cell-cycle exit in the wing and the
maturation of neuromuscular junctions (NMJs) in the adult abdominal
muscles. The maturation rate of abdominal NMJs was governed by
let-7 during metamorphosis by regulating the expression of the ab gene
(Caygill and Johnston 2008). In the silkworm Bombyx mori, let-7 reg-
ulates molting and metamorphosis. Decreased let-7 expression in the
silkworm could increase the expression of its target genes FTZ-FI1 and
Eip74EF (key regulatory factors in the ecdysone pathway) and cause
developmental arrest during the larval-larval and larval-pupal transi-
tions (Ling et al. 2014). The development-related miR-276 may inhibit
apoptosis in shrimp hemocytes (Yang et al. 2012). In this study, miR-
276 was found to be significantly downregulated in competent larvae,
whereas the caspase-3 gene was upregulated. Therefore, miR-276
may regulate apoptosis by targeting the caspase-3 gene. Coexpression
studies of key miRNA targets revealed their potential roles in whelk
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metamorphosis, but the mechanisms by which these miRNAs regulate
this developmental process have not been fully explored yet.

In conclusion, the present study provides the first global view of the
changes in miRNA that occur during rapa whelk metamorphosis. A total
of 195 miRNAs were significantly differentially expressed and their
target mRNAs were identified. These molecules are responsible for
morphological and functional changes in organs. Some miRNAs in-
volved in ingestion and digestion, cytoskeleton and cell adhesion, and
apoptosis during metamorphosis are of great interest and were listed
and validated by real-time PCR. These results will provide a basis for
understanding the molecular mechanisms involved in the regulation of
gastropod metamorphosis.
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