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Abstract
This study explores the efficacy of our novel and personalized brain–computer interface (BCI) therapy, in enhancing hand movement 
recovery among stroke survivors. Stroke often results in impaired motor function, posing significant challenges in daily activities and 
leading to considerable societal and economic burdens. Traditional physical and occupational therapies have shown limitations in 
facilitating satisfactory recovery for many patients. In response, our study investigates the potential of motor imagery–based BCIs 
(MI-BCIs) as an alternative intervention. In this study, MI-BCIs translate imagined hand movements into actions using a 
combination of scalp-recorded electrical brain activity and signal processing algorithms. Our prior research on MI-BCIs, which 
emphasizes the benefits of proprioceptive feedback over traditional visual feedback and the importance of customizing the delay 
between brain activation and passive hand movement, led to the development of RehabSwift therapy. In this study, we recruited 
12 chronic-stage stroke survivors to assess the effectiveness of our solution. The primary outcome measure was the Fugl-Meyer 
upper extremity (FMA-UE) assessment, complemented by secondary measures including the action research arm test, reaction 
time, unilateral neglect, spasticity, grip and pinch strength, goal attainment scale, and FMA-UE sensation. Our findings indicate a 
remarkable improvement in hand movement and a clinically significant reduction in poststroke arm and hand impairment 
following 18 sessions of neurofeedback training. The effects persisted for at least 4 weeks posttreatment. These results underscore 
the potential of MI-BCIs, particularly our solution, as a prospective tool in stroke rehabilitation, offering a personalized and 
adaptable approach to neurofeedback training.
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Significance Statement

Stroke survivors often struggle with significant motor function impairments, affecting daily activities and imposing socioeconomic 
challenges. In this study, we utilized RehabSwift, a novel neurofeedback system designed for stroke rehabilitation. Compared with 
equivalent solutions worldwide, our solution offers a unique advantage due to its highly customizable neurofeedback protocols, 
which can be tailored specifically to an individual’s recovery needs. This personalization is supported by our findings, which demon
strate significant improvements in motor and sensory functions among participants. Our technology, having received regulatory ap
proval from the Therapeutic Goods Administration in Australia, is now available in commercial settings, offering a robust tool for 
therapists and patients alike on the challenging journey of stroke recovery.
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Introduction
Stroke is a leading cause of long-term disability, often resulting in 
impaired motor functions, particularly in the hand (1–4). Despite 
receiving conventional therapy, almost 50% of stroke survivors 
experience long-term disability (5). Poststroke impairments result 
in substantial individual, societal, and economic burdens, accord
ing to the World Stroke Organization (6).

Traditional rehabilitation methods have shown limited success 
in achieving full recovery, necessitating innovative approaches 
(7). Brain–computer interface (BCI) technology has emerged as a 
promising avenue for enhancing hand function after stroke (8–17).

Motor imagery–based BCIs (MI-BCIs) translate a user’s imag
ined hand movements into actual actions on a screen or via 
a robotic hand, using a combination of electrical brain activity 
recorded from the scalp and signal processing algorithms. While 
there is promising evidence regarding the potential benefits of 
MI-BCIs for poststroke movement recovery (18–20), further re
search is needed to establish their reliability and efficacy as a 
standard therapeutic approach (21, 22).

Our previous work has highlighted the advantages of proprio
ceptive feedback over traditional visual feedback (23) and under
scored the critical role of customizing the delay between brain 
activation and passive hand movement (24). Building on these 
positive findings, we achieved significant improvement in hand 
movement in a stroke patient after just 10 therapy sessions (25). 
Leveraging these prior results, we developed a novel BCI system 
that customizes the optimal site (channel), the spectral frequency 
within the beta band (16–30 Hz), and the frequency of feedback re
ceived during motor imagery (MI) performance.

The present study aims to assess the effectiveness of our in
novative BCI therapy, in a cohort of chronic stroke survivors for 
hand movement recovery. We hypothesized that 18 sessions of 
our personalized neurofeedback training would lead to a clinically 
significant reduction in poststroke arm and hand impairment, 
with effects persisting for at least 4 weeks.

Results
Our study recruited chronic stroke survivors from South Australia 
during 2020–2021, focusing on individuals with stable poststroke 
conditions and impaired motor capabilities specifically of the 
hand. Participants underwent personalized neurofeedback training, 
which targeted specific electroencephalogram (EEG) channels and 
frequency bands tailored to their neurophysiological profiles. 

Training sessions were conducted three times weekly over 6 weeks, 
using a customized EEG cap and feedback system to engage MI and 
relaxation phases, which were adjusted based on the individual’s 
performance and reaction times. Outcome measures, including mo
tor function and sensory feedback performance, were assessed at 
baseline, immediately postintervention, and during a 4- to 6-week 
follow-up to evaluate the lasting impacts of the training. A more de
tailed explanation of the study design may be seen in the Materials 
and Methods section.

Participants
For this study, we screened 25 prospective participants to obtain a 
sample of 12 stroke patients; 13 candidates did not meet the inclu
sion/exclusion criteria. Table 1 summarizes the attributes of the 
12 participants included in the trial.

Performance measures
Behavioral changes were monitored using Fugl-Meyer upper ex
tremity (FMA-UE (26)) motor assessment as the primary outcome 
measure. We also used the action research arm test (ARAT) (27), 
the reaction time of the affected and intact hands, unilateral neg
lect (28), spasticity (29), grip and pinch strength of the affected 
hand, goal attainment scale (GAS) (30), and FMA-UE sensation 
(26) as the seconday outcome measures. Note that the last four 
secondary tests were added after the first cohort of participants 
underwent the study and reported gaining outcomes in their sen
sory functions and hand strength. As a result, we added FMA-UE 
sensation, grip strength, pinch strength, and GAS tools. 
Therefore, for these four tests, the sample size was smaller than 
12. For details of the tests, see the Supplementary Information.

The results of the study are demonstrated in Fig. 1, and Table 2
summarizes reports of the outcome measures, the sample 
size, the average value measured at pre- and posttraining and 
follow-up sessions, and the P-values of the statistical analysis. 
Considering the categorical nature of the scales, no average 
was calculated for the GAS. Also, reaction time measurement 
(RTM) came into the picture only during the 18 training sessions, 
and no measurement of reaction time was recorded during the 
follow-up session.

Primary outcome
BCI neurofeedback significantly improved FMA-UE motor scores 
at posttraining (45.08) and follow-up (46.17) compared with base
line (36.75) measurement (F(1.352, 14.87) = 20.02, P = 0.0002). The 

Table 1. Study participants’ characteristics.

Participants Age 
(year)

Gender Type of stroke Time poststroke Affected body side Handedness

P1 76 M Ischemic 9 years Left Right
P2 68 M Hemorrhagic 6 years Left Right
P3 57 F Hemorrhagic 6 years Right Right
P4 51 F Ischemic 9 months Right Left
P5 75 M Ischemic 1.5 years Left Left
P6 59 F Hemorrhagic 9 years Right Right
P7 54 M Hemorrhagic 2 years Right Right
P8 72 M Hemorrhagic 2 years Right Left
P9 68 M Ischemic 2 years Left Right
P10 37 F Hemorrhagic 6.5 years Left Right
P11 31 F Hemorrhagic 1 year Right Right
P12 59 F Hemorrhagic 41 years Left Right
Median/ 
summary

59 6 males 
6 females

4 ischemic 
8 hemorrhagic

4 years 6 left 
6 right

3 left 
9 right
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post hoc t test confirmed significant improvements at both 
posttraining (t(11) = 4.771, P = 0.0012) and follow-up (t(11) = 4.704, 
P = 0.0013), suggesting that neurofeedback training improved 

upper limb movement and lasted over a month. As listed in 
Table 3, the level of improvement was clinically significant for 9 
of 12 participants (75%).
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Study Results

Fig. 1. Participant assessment outcomes before, after, and 4–6 weeks after completing biofeedback training. The upper and lower sides of the boxes show 
25 and 75% quartiles, and the whiskers depict the minimum and maximum of the data. The mean value for the normally distributed data is the 
horizontal line drawn between the 25 and the 75% quartiles. The asterisk and two asterisks denotes statistically significant differences with P-value <0.05 
and P-value <0.01, respectively. ns: nonsignificant differences; MAS, Modified Ashworth Scale.
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Secondary outcomes
BCI neurofeedback training also significantly improved the ARAT 
scores from 22.75 at baseline to 28.08 and 29.17 at posttraining 
and follow-up (F(1.738, 19.11) = 6.569, P = 0.0086). The post hoc t 
test indicated significant improvements at both posttraining 
(t(11) = 3.218, P = 0.0151) and follow-up (t(11) = 2.876, P = 0.0274).

The Friedman test of the Modified Ashworth Scale showed no 
significant change in muscle stiffness in the arms (χ2(2) = 0.400, 
P = 0.8187). In contrast, the Catherine Bergego scores improved 
from pretraining (6.88) to posttraining (2.25) and at follow-up 
(2.13) measurement (Friedman test: χ2(2) = 12.78, P = 0.0014), sug
gesting significantly fewer neglect symptoms. The post hoc 
Dunn’s z test indicated significant improvements at both post
training (z = 2.625, P = 0.0173) and follow-up (z = 2.625, P = 0.0173).

Neurofeedback training also significantly reduced the reaction 
time for the affected hand across the weeks, demonstrating that 
training enhanced the integration of sensory and motor functions 
(F(1.941, 21.35) = 3.945, P = 0.0359). Week 1: 654 ms; week 6: 541 ms. 
The post hoc t test indicated significant improvements for week 5 
(t(11) = 3.699, P = 0.0174) and week 6 (t(11) = 3.419, P = 0.0283). In con
trast, neurofeedback training had no significant effect on the intact 
hand’s reaction time (week 1: 396 ms vs. week 6: 353 ms; F(2.867, 
31.54) = 1.934, P = 0.1464).

The grip strength of the affected hand improved throughout 
training from 8.22 kg at baseline to 10.73 and 12.18 kg at posttrain
ing and follow-up, respectively (F(1.316, 9.213) = 13.75, P = 0.0032). 
The post hoc t test indicated significant improvements at both 
posttraining (t(7) = 2.565, P = 0.0373) and follow-up (t(7) = 5.264, 
P = 0.0023) compared with the baseline.

The 3-point pinch strength of the affected hand, which is im
portant for daily tasks, significantly increased throughout the 
study by about 26% (pretraining: 4.46 kg; posttraining: 5.57 kg; 
follow-up: 6.03 kg; F(1.301, 9.110) = 7.836, P = 0.0161). The post 
hoc t test indicated significant improvements at both posttraining 
(t(7) = 2.872, P = 0.0473) and follow-up (t(7) = 2.971, P = 0.0411).

The Friedman test of FMA-UE sensation revealed significant 
differences between measurements (pretraining: 7.57 vs. posttrain
ing: 9.71 vs. follow-up: 9.28; χ2(2) = 10.80, P = 0.0041). Post hoc 
Dunn’s z test indicated significant improvements at posttraining 
(z = 2.405, P = 0.0323) that were still present at follow-up (z = 2.405, 
P = 0.0323) compared with the baseline.

Considering the subjective nature of the GAS, we used a quali
tative approach rather than statistical analysis. Participants had 
various levels of success in achieving their personal goals through 
the training, with 60% meeting or even exceeding their expecta
tions. Out of 10 participants who reported their level of goal 
achievement, 40% reached their goals somewhat less than ex
pected, 40% met expectations, and 20% exceeded expectations.

The effect sizes
Figure 2 illustrates the calculated effect sizes for the outcomes fol
lowing neurofeedback training. Specifically, for grip, pinch, and the 
ARAT, we observed small effect sizes ranging from 0.2 to 0.5. In con
trast, medium effect sizes, between 0.5 and 0.8, were noted for re
action time (affected hand), neglect, FMA-UE motor, and FMA-UE 
sensation. These effect sizes provide a quantitative measure of 
the intervention’s impact across various functional domains.

Table 2. Summary of average values for outcome measures and their corresponding P-values.

Outcome measure Primary or secondary Sample size Pre Post Follow-up P-values

FMA-UE motor (66) Primary 12 36.75 45.08 46.17 0.0002
ARAT (57) Secondary 12 22.75 28.08 29.17 0.0086
Modified Ashworth (0–4) Secondary 12 1.16 1.25 1.25 0.8187
Neglect (30) Secondary 12 6.88 2.25 2.13 0.0014
Reaction time affected (ms) Secondary 12 654 541 N/A 0.0359
Reaction time intact (ms) Secondary 12 396 353 N/A 0.1464
Grip (kg) Secondary 8 8.22 10.73 12.18 0.0032
Pinch (kg) Secondary 8 4.46 5.57 6.03 0.0161
FMA-UE sensation (12) Secondary 7 7.57 9.71 9.28 0.0041
Goal attainment score (−2 to +2) Secondary 10 N/A N/A N/A N/A

The P-values for outcome measures that revealed statistically significant differences are shown in bold. N/A, not applicable.

Table 3. Individual FMA-UE assessment test results measured before and after the neurofeedback training and at the follow-up session 
4–6 weeks after finishing the program.

Subjects FMA-UE motor Pre- vs. postimprovement Clinically significant?

Pre Post Follow-up

P1 31 37 38 6 Yes
P2 34 47 47 13 Yes
P3 29 36 38 7 Yes
P4 34 54 52 20 Yes
P5 40 54 58 14 Yes
P6 18 24 33 6 Yes
P7 52 52 52 0 No
P8 45 55 52 10 Yes
P9 31 33 32 2 No
P10 55 56 54 1 No
P11 39 46 48 7 Yes
P12 33 47 50 14 Yes
Average 36.75 45.08 46.17 8.33 9 yes/3 no
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Discussion
Stroke often results in debilitating motor impairments, the most 
common being upper limb involvement (31), which impact an in
dividual’s quality of life and independence. Despite completing 
conventional therapies, a significant number of stroke survivors 
face ongoing difficulties in regaining full motor function. This 
study sought to address this challenge by investigating the effect
iveness of our personalized BCI therapy in facilitating hand move
ment recovery among chronic stroke survivors.

Our findings support the hypothesis that 18 sessions of person
alized neurofeedback training can lead to a clinically significant 
reduction in poststroke arm and hand impairment, with effects 
persisting for at least 4 weeks. The primary outcome measure, 
the FMA-UE assessment, demonstrated a substantial improve
ment in reducing motor impairment. This is a noteworthy 
achievement, as the FMA-UE assessment is widely regarded as a 
gold standard for evaluating upper extremity motor function fol
lowing stroke (22). The observed improvements surpass the 
threshold for minimal clinically significant difference (32), for 
75% of the participants, emphasizing the practical relevance of 
our findings (32).

Moreover, the secondary outcome measures further support the 
positive impact of our solution. The ARAT, which assesses upper 
limb function through various functional tasks, exhibited signifi
cant improvements. These improvements exceeded the clinically 
significant threshold (33), indicating meaningful changes in pa
tients’ ability to perform daily activities. Grip and pinch strength as
sessments, crucial for activities of daily living, both demonstrated 
substantial increases, further underscoring the potential of the 
studied solution to enhance functional outcomes.

Our study also considered RTMs for the affected and intact 
hands, because reaction times in acute stroke patients are associ
ated with longer term cognitive outcomes (34, 35). Information pro
cessing speed manifested by reaction time significantly correlates to 
functional outcomes over and above age, depression, and the 
Barthel index (36). Administering transcranial magnetic stimulation 
to the motor cortex of the lesioned hemisphere resulted in reaction 
time delays in the contralateral paretic hand correlated well with 
functional recovery, which reflects the correlation between reaction 
time of the paretic hand and the level of recovery (37). Our results re
vealed a significant reduction in reaction time for the affected hand, 
highlighting enhanced processing of sensory information and motor 
execution. This outcome holds particular importance, as it suggests 
that personalized neurofeedback training not only aids in motor 
recovery but also enhances the efficiency of sensory-motor 

integration—an aspect often compromised following stroke. The 
patterns of sensory and motor recovery after stroke are not the 
same but interrelate, and the sensory deficit level may affect motor 
recovery (38).

The Modified Ashworth Scale, used to assess muscle spasticity, 
did not yield significant differences across time points. This could 
suggest that our method primarily influences motor function ra
ther than directly impacting muscle tone.

A recent study by Bassolino et al. (39) highlights significant dis
tortions in body and peripersonal space representations among 
chronic stroke patients. They also found that such misrepresenta
tions are often exacerbated by lesions in regions such as the su
perior frontal gyrus and parietal operculum (39). These findings 
underscore the complexity of neural recovery and the necessity 
for tailored rehabilitation approaches. Our system addresses 
these challenges by integrating targeted neurofeedback and pro
prioceptive feedback, aiming to rectify the impaired sensory- 
motor integration and enhance limb and space perception. This 
approach suggests potential improvements in how peripersonal 
space and body dimensions are perceived and interacted with, 
thereby enhancing overall rehabilitation outcomes.

Furthermore, the altered feelings of embodiment and agency 
reported by Bassolino et al. emphasize the importance of these 
factors in patients’ adaptation to life poststroke. Our incorpor
ation of real-time proprioceptive feedback is particularly relevant 
here, as it seeks to restore a sense of agency and ownership over 
affected limbs. By fostering a more accurate body representation 
and enhancing the feeling of embodiment, our system may influ
ence the physical and psychological recovery processes. The re
sults showed improvements on the Catherine Bergego scale. The 
observed improvements may be related to addressing the intri
cate dynamics of body representation, personal agency, and en
hanced perceptual-cognitive mechanisms through personalized 
neurofeedback.

The GAS provided qualitative insights into patients’ perceived 
achievements. While not quantitatively examined, it is worth not
ing that a substantial portion of participants reported reaching 
their set goals, with some even exceeding their expectations. 
These self-reported achievements highlight the subjectively per
ceived value of this novel approach in facilitating personal goal at
tainment during the rehabilitation process.

The analysis of effect sizes for the neurofeedback training out
comes offers insightful observations. The primary measure, the 
FMA-UE motor, along with three secondary measures, demon
strated medium effect sizes, indicative of a moderate impact of 
the intervention. Meanwhile, the remaining secondary measures 
exhibited small effect sizes. Crucially, all evaluated outcome 
measures presented nontrivial effect sizes, suggesting that the 
neurofeedback training exerted a measurable and meaningful in
fluence across different aspects of motor and sensory recovery.

Comparing our findings with previous research, several parallels 
and distinctions emerge. Similar to prior studies (8–11, 15, 20), our 
results confirm the beneficial effects of neurofeedback training on 
motor recovery poststroke. Particularly, our findings regarding the 
enhancement of motor function mirror those reported in previous 
studies (11, 40, 41). However, our study extends those findings by 
demonstrating that customized neurofeedback training, which tai
lors feedback update intervals (FUIs) and modalities to individual 
patients’ neurophysiological profiles, can lead to significant im
provements in areas like sensory feedback and neglect, which 
have been less extensively covered in earlier studies.

Notably, while the use of Laplacian configurations and EEG signal 
processing techniques, such as event-related desynchronization 

Fig. 2. Demonstrating the effect sizes of the neurofeedback training. For 
grip, pinch, and ARAT, we observed small effect sizes (0.2–0.5) and for 
reaction time, neglect, FMA-UE motor, and FMA sensation, there were 
medium effect sizes (0.5–0.8).
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(ERD), in our solution is well-established in the field, our approach 
differentiates itself through the integration of these techniques 
into a real-time, adaptive neurofeedback system. Unlike many con
ventional systems that utilize fixed settings for all users, our system 
customizes the detection of ERD tailored to the individual’s affected 
brain areas, adjusts in real-time based on ongoing session feedback 
and through progressive tune-up of the FUIs according to the user’s 
performance in prior sessions. This adaptive approach is an innova
tive departure from more static methods typically used in clinical 
settings. Our strategy allows for more precise and effective modula
tion of neurofeedback, potentially increasing the therapeutic out
comes of the training.

The mechanisms underlying our solution’s effectiveness likely 
involve the combination of personalized neurofeedback training— 
where the optimal electrode and the frequency within the beta 
band were selected—and real-time proprioceptive feedback with 
the optimal FUI. Our previous research emphasized the advantage 
of proprioceptive feedback over traditional visual feedback (23). 
Proprioceptive feedback is crucial in reestablishing sensorimotor 
integration, enabling patients to better connect their mental inten
tions to physical movements.

Additionally, customizing the delay between brain activation 
and passive hand movement (24, 25) is another key feature of 
our personalized neurofeedback solution. This customization al
lows for a personalized and adaptive training experience, ensur
ing the therapy aligns with each patient’s unique needs and 
capabilities. This adaptability likely contributes to the observed 
improvements, as it tailors the training to the individual’s current 
state of recovery.

In addition to its scientific efficacy, our system holds substantial 
promise from an industrial and commercial perspective. The devel
opment of this technology represents a significant advancement in 
neurofeedback technologies for stroke rehabilitation, with several 
key factors including: (i) validation of the market demand for novel 
stroke rehabilitation solutions; (ii) fostering collaboration between 
the industry and academia on goal-oriented collaborative research 
in neurotechnology; and (iii) commercial availability of the solution 
following the approval by Therapeutic Goods Administration in 
Australia.

In considering the accessibility of our system, it is important to 
acknowledge that it is designed primarily for clinical use rather 
than for at-home therapy. This distinction stems from several fac
tors that affect its practical deployment outside of professional 
healthcare settings, including cost-effectiveness, size and port
ability, and the advantages of the clinical settings in delivering 
the service. Consequently, while this solution demonstrates sub
stantial potential in enhancing stroke rehabilitation outcomes, 
its current implementation is best suited for use in clinical set
tings. Future developments may focus on reducing the cost and 
size to make such technologies more accessible for home use.

Limitations and future directions
Despite the promising results, this study has several limitations. 
First, the sample size was relatively small, which may limit the 
generalizability of our findings. Future research should involve 
larger cohorts to further validate the efficacy of our proposed 
method. Additionally, the absence of a control group restricts 
our ability to attribute the observed improvements solely to 
the studied technology. Another potential confounder could be 
concurrent conventional therapy at home. A randomized con
trolled trial would provide stronger evidence of the therapy’s 
effectiveness.

We also acknowledge issues regarding the repeatability of neu
rofeedback training sessions and the cross-subject variability in 
experience, engagement, and understanding. We recognize these 
as intrinsic challenges within neurofeedback training and propose 
future research on the development of methods to further reduce 
session variability and adaptation of training to individual vari
ability in engagement and cognitive capacity.

Furthermore, the follow-up period was limited to 4 to 6 weeks 
after the completion of training sessions. Extending the follow-up 
period to assess the longevity of the observed improvements 
would enhance the understanding of our system’s long-term 
effects. Future investigations could study the effects of a more in
tensive neurofeedback training program on recovery outcomes, 
particularly concerning the number of sessions and the program 
duration.

Materials and methods
We recruited South Australian chronic stroke survivors from the 
community between 2020 and 2021. Patients were included if 
they (i) were at least 6 months poststroke and in a stable condi
tion; (ii) had impaired motor capabilities in their affected arm de
termined by an ARAT score of <45 out of 57; (iii) had intact 
cognitive functions determined by the mini-mental state examin
ation score to be >26 out of 30; (iv) were independently mobile— 
with or without a walking aid; (v) had no excessive tone in their 
arm and hand muscles determined by the Modified Ashworth 
test score to be <3 out of 4; (vi) could perform vivid MI—by screen
ing their ability to generate discriminable MI vs. rest EEG signals; 
(vii) had an (almost) intact sense of proprioception—by screening 
their blind judgment of comparing the size of seven polystyrene 
balls (42) with >50% accuracy; and (viii) fully understood and com
prehended auditory instructions in plain English to perform MI.

Study candidates were excluded if they (i) had comorbidities 
such as arthritis in the hands/fingers of their affected side that 
could interfere with the neurofeedback training, (ii) could not ful
fill the visit attendance requirements, or (iii) had significant visual 
or hearing impairment that impeded their ability in receiving 
auditory and/or visual instructions.

Study design
In this study, we investigated: (i) whether personalized neurofeed
back training—where factors such as selected electrodes, fre
quency bands, and the FUI were adjusted according to 
individuals’ biometric attributes—impacts the recovery of arm 
and hand functions following stroke and (ii) whether the effects 
of this customization on the recovery outcomes persist for at least 
4 weeks after finishing the program. Therefore, the assessments 
were implemented before intervention, postintervention and dur
ing 4–6 weeks postintervention. The tests were implemented for 
each participant in the assessment weeks (weeks 1 and 8). In the 
intervention weeks (weeks 2–7), BCI training sessions were con
ducted on Monday, Wednesday, and Friday. Then, in the follow- 
up weeks, performance indices were measured again within 4 to 
6 weeks after their last neurofeedback training session to investi
gate how long potential changes lasted. Note that the study 
participants were not admitted to hospitals and lived in their 
homes and bringing them back to the laboratory for the follow-up 
test precisely 4 weeks after finishing the trials was not practical. 
Therefore, we set a 3-week window (4–6 weeks after the trials) to 
be able to record the follow-up measurements for the partici
pants. The design schedule is presented in Table 4.
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The study conformed to principles outlined in the Declaration 
of Helsinki and was approved by the local human ethics commit
tee of the University of Adelaide and the Central Adelaide Local 
Health Network. All participants gave written informed consent 
to participate in the study, and all data were de-identified.

Neurofeedback training setup
We used a 21-channel Mitsar EEG amplifier, containing 21 uni
polar and four bipolar channels and a custom-built 11-channel 
EEG cap (Medical Computer Systems) that covered the sensori
motor cortex of the ipsilesional brain was used for data acquisi
tion. The 11 channels in the left-sided cap that were used for 
those with right-hand hemiparesis included F3, FC5, FC3, FC1, C5, 
C3, C1, CP5, CP3, CP1, and P3 channels. The right-sided cap used 
for those with left-hand hemiparesis, included F4, FC2, FC4, FC6, 
C2, C4, C6, CP2, CP4, CP6, and P4 channels. According to the partic
ipants’ screening session results, a selected channel and a small 
Laplacian configuration of EEG channels centered around it, and 
its optimum frequency within 16–30 Hz were chosen for the train
ing session. The selected channel was one of the three central 
channels that, depending on the affected side, were FC3/4, C3/4, 
and CP3/4. The optimum frequency of the selected channel for 
each participant was the 2-Hz frequency bin within 16–30 Hz, 
which maximized the difference in the average spectral power 
for the MI vs. relaxation trials recorded during the screening ses
sion. Further details of the channels and frequency bin selection 
of the screening session may be seen in our prior study (25). To 
cope with the real-time constraints of the BCI system with very 
short FUIs, only five EEG channels (one central and four neigh
boring channels) were used to record EEG signals during training 
sessions. The AFz and FCz channels were used as the ground 
and reference channels, respectively. The impedance between 
the scalp and recording electrodes was kept below 20 kΩ. The 
sampling frequency was set to 250 Hz. A band-pass filter with 
corner frequencies set to 0.1 and 48 Hz and a 50-Hz notch filter 
were applied to remove the direct current (DC) offset and nonre
lated high-frequency elements.

Our system uses proprietary software (IntelliTime, RehabSwift 
Pty Ltd, Adelaide, South Australia) that includes three modules for 
RTM, screening, and neurofeedback training and was used for 
screening, measuring reaction times, and running the neurofeed
back training sessions.

To provide proprioceptive feedback, we used a pair of orthoses 
(one for each hand) designed and developed by RehabSwift Pty Ltd 
to passively extend four fingers (Pro-Rehab, RehabSwift Pty Ltd). 
One orthosis was associated with the participant’s MI of their af
fected hand to provide proprioceptive feedback during MI. The 
other orthosis, which was not involved with the patient’s hand, 

provided visual feedback via observation of the orthosis exten
sion during relaxation trials. The angle of the orthosis was con
trolled via a servomotor, which received commands from a 
servo controller module. The servo controller module was oper
ated by IntelliTime, and the servomotors were operated accord
ingly. Figure 3 illustrates the setup for the BCI training session.

Time course of training sessions
Each training session included 8 runs, comprising 20 trials with 10 
MI of finger extension of the affected hand and 10 relaxation trials, 
ordered randomly. Each trial started with an auditory command at 
t = 0 s, followed by another auditory cue at t = 3 s. It instructed the 
patient to perform relaxation or MI of their affected hands’ finger 
extension. After 1 s of MI/relaxation performance, feedback provi
sion started and was updated at every predetermined FUI value 
for each session (see below). At t = 7 s, the trial finished, and after 
a 2- to 4-s intertrial interval, the subsequent trial started. Figure 4
illustrates the time course of neurofeedback training sessions.

The FUI calculation
We aimed to investigate whether personalized neurofeedback 
training, by customization of factors such as the target site for 
neurofeedback, frequency bands, and the adjustment of FUI, im
pacts the recovery of arm and hand motor functions after stroke. 
Our system’s proprietary algorithm adapts the FUI throughout the 
neurofeedback sessions. This algorithm is designed to optimize 
reinforcement and Hebbian learning in a structured manner, 
with initial and final FUI values determined by the reaction times 
of both the intact and affected sides.

Importantly, the reaction time of the affected side establishes the 
FUI for the initial session, which could be as long as 1,500 ms. In sub
sequent sessions, the FUI is adjusted, considering various factors, 
such as BCI performance accuracy in previous sessions, the history 
of reaction times, and the measured reaction time on the training 
day. Readers can refer to RehabSwift’s filed patent (43).

Table 4. Schedule of the BCI training and RTM.

Monday Tuesday Wednesday Thursday Friday

Week 1 Pretraining assessments
Week 2 RTM + BCI — RTM + BCI — RTM + BCI
Week 3 RTM + BCI — RTM + BCI — RTM + BCI
Week 4 RTM + BCI — RTM + BCI — RTM + BCI
Week 5 RTM + BCI — RTM + BCI — RTM + BCI
Week 6 RTM + BCI — RTM + BCI — RTM + BCI
Week 7 RTM + BCI — RTM + BCI — RTM + BCI
Week 8 Posttraining assessments
Weeks 

11–13
Follow-up assessments

Fig. 3. A setup of the neurofeedback training sessions for a typical 
participant whose right side is affected by stroke. (a) The EEG cap records 
EEG signals. (b) The EEG amplifier receives and amplifies the EEG signals 
and then sends them to a laptop PC for processing. (c) The PC processes 
the EEG signals and accordingly commands the orthoses. (d) The right 
orthosis provides proprioceptive feedback during MI. (e) The free-running 
left orthosis provides visual feedback during relaxation. Note that for 
participants with an affected left side, their left hand would be engaged 
with the left orthosis instead. PC, personal computer.
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Signal processing
The IntelliTime software employs an autoregressive (AR) model 
for the detection of ERD (44), which is a measure commonly 
used to detect changes in brain state during MI tasks. This ap
proach allows for the detection of spectral power decreases in 
the beta frequency band (16–30 Hz), indicative of increased cor
tical activity. Compared with Fourier-based methods, the AR 
model provides enhanced temporal resolution, which is critical 
in real-time neurofeedback systems.

The maximum entropy method (45) was utilized to establish 
the AR model for the EEG data. Employing a 16th-order AR model, 
our system estimated the spectral power for the most recent 
500 ms. The estimated power was calculated at subject-specific 
frequencies within the selected 2-Hz frequency bin of the beta 
band and electrode positions identified during the screening ses
sion. To reduce false positives in the classifier, it implemented 
the following normalization process: (i) spectral power data 
from the last 18 s of both imagery and relaxation trials (equally 
represented) were buffered and continuously updated; (ii) the 
average and SD of this buffered data were calculated; (iii) each 
spectral power measurement derived from the AR model was nor
malized by subtracting the buffer’s average and then dividing by 
the buffer’s SD; (iv) a negative normalized spectral power indi
cated ERD, while positive values suggested relaxation. After 
each FUI, the target orthosis incrementally extended the affected 
hand’s four fingers, if an ERD was detected. For relaxation trials, 
however, the absence of ERD incrementally extended the other 
orthosis and provided relaxation trials with visual feedback 

through observation of the orthosis extension. The total exten
sion/flexion range of the orthosis was 90°, and the extension angle 
of the orthoses after each FUI was set using the following formula:

α = 90 × FUI/3,000 

where α is the angle of extension, FUI is the FUI, and 3,000 is the 
duration of the MI performance with real-time sensory feedback 
in milliseconds. For instance, an FUI of 500 ms results in 15° of 
orthosis extension at each of the six FUIs.

Statistical analysis
Power calculations were performed based on the requirement that 
effects were assessed at the 5% alpha level with 80% statistical 
power. There is a consensus that for chronic stroke survivors, a min
imum increase of 5.25 in their FMA-UE score is required for the ther
apy to be considered clinically meaningful (32). Therefore, the 
primary endpoint of the treatment was determined to be an average 
increase of 5.25 points in FMA-UE scores; the SD was assumed to 
be 4 points based on evidence from the available literature (22). In 
the absence of information concerning the magnitude of the correl
ation between pre- and posttreatment scores, a worst-case scenario 
was adopted whereby the correlation was set to zero. Under these 
assumptions, the study required a sample of 12 stroke survivors.

For each of the outcome measures, we compared the scores re
corded at three time points: (i) before taking part in the study, (ii) 
right after finishing the trials, and (iii) 4–6 weeks after completion. 
To assess the effect of neurofeedback training, we employed 
repeated measures of one-way ANOVA (RM-ANOVA) or its 

Fig. 4. An illustration of the time course of each neurofeedback training session. Each session encompasses 8 runs, and each run includes 20 trials. Each 
trial starts with a ready preparation cue at t = 0 s, followed by another command right/left/relax at t = 3 s that guides the participant to perform relaxation 
or MI of their affected side finger extension. After 1 s of MI/relaxation performance, feedback provision starts and updates recurrently according to each 
session’s FUI value. At t = 7 s, the trial finishes, and after an intertrial interval of 2–4 s (t = 9–11 s), the subsequent trial starts. Prop, proprioceptive; Vis, 
visual.
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non-parametric equivalent, the Friedman test, when the assump
tions of ANOVA were not met. RM-ANOVA necessitates the satis
faction of two assumptions: linearity and sphericity. Given 
our relatively small sample size, we initially conducted a visual 
examination using the normal Q–Q plot to evaluate linearity. If 
no significant outliers were identified, we verified the linearity as
sumption using the Shapiro–Wilk test for each pre-, post-, and 
follow-up measurements. We applied the Greenhouse–Geisser 
method for testing and correction if the sphericity assumption 
was violated. This method calculates an epsilon value, which 
equals 1 only when the sphericity assumption holds. In instances 
of sphericity violation, the epsilon value falls between 1 and 
1/(k − 1), where k represents the degrees of freedom of time, which 
was 3 in our study. In Prism 10, the Greenhouse−Giesser’s correc
tion is implemented by multiplying the epsilon value with the 
degrees of freedom used in calculating the RM-ANOVA’s F-value.

For post hoc analysis following RM-ANOVA, in the event of a 
statistically significant treatment effect (F-statistic), we con
ducted pairwise comparisons between pre vs. post and pre vs. 
follow-up using the Sidak test to correct for multiple comparisons. 
Similarly, if the Friedman statistic demonstrated statistically sig
nificant differences, we performed a pairwise post hoc analysis 
comparing pre vs. post and pre vs. follow-up using Dunn’s pair
wise z test and corrected for multiple comparisons.

An exception was made for the RTMs for both the affected and 
the intact hands, where we had six groups of weekly average 
RTMs. Instead of comparing pre vs. post and pre vs. follow-up, 
we compared data from week 1 as the benchmark with each of 
the following 5 weeks (weeks 2–6).

We also measured the pre- vs. posttraining effect size for tests 
that showed significant changes. Considering the small sample 
size, we used Hedge’s corrected version of Cohen’s d (46), which 
reduces the effect size for small samples.

We conducted all statistical analyses using GraphPad Prism 10 
software except for calculating the effect sizes for which we used 
Microsoft Excel 2019.

Conclusion
This study presents compelling evidence for the efficacy of a novel 
BCI therapy in promoting hand movement recovery among stroke 
survivors. Our findings demonstrate significant improvements in 
motor function, functional tasks, grip and pinch strength, reac
tion time, and neglect symptoms. These outcomes hold clinical 
relevance, surpassing clinically significant thresholds and reflect
ing measurable changes in patients’ lives. The subjectively re
ported goal achievements further underscore the practical value 
of the studied solution.

While further research with larger sample sizes and rigorous 
controls is warranted, our study provides an important step to
wards harnessing the potential of BCIs in stroke rehabilitation. 
Our method offers a personalized and adaptable approach to neu
rofeedback training, addressing the unique needs of individual 
patients. With ongoing research to explore and refine its innova
tive therapy, it holds the promise of becoming an important tool 
in the rehabilitation toolkit, ultimately improving stroke survi
vors’ lives and enhancing their recovery journey.
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4 Gündüz OH, Toprak CŞ. 2019. Hand function in stroke. In: 
Duruöz M, editor. Hand function: a practical guide to assessment. 
Cham (Switzerland): Springer. p. 125–135.

5 Winters C, van Wegen EEH, Daffertshofer A, Kwakkel G. 2015. 
Generalizability of the proportional recovery model for the upper 
extremity after an ischemic stroke. Neurorehabil Neural Repair. 29: 
614–622.

6 Feigin VL, et al. 2022. World Stroke Organization (WSO): global 
stroke fact sheet 2022. Int J Stroke. 17:18–29.

7 Kollen B, Kwakkel G, Lindeman E. 2006. Functional recovery after 
stroke: a review of current developments in stroke rehabilitation 
research. Rev Recent Clin Trials. 1:75–80.

8 Pichiorri F, et al. 2015. Brain–computer interface boosts motor im
agery practice during stroke recovery. Ann Neurol. 77:851–865.

9 Ang KK, et al. 2014. Brain-computer interface-based robotic end 
effector system for wrist and hand rehabilitation: results of a 
three-armed randomized controlled trial for chronic stroke. 
Front Neuroeng. 7:30.

10 Frolov AA, et al. 2017. Post-stroke rehabilitation training with a 
motor-imagery-based brain-computer interface (BCI)-controlled 
hand exoskeleton: a randomized controlled multicenter trial. 
Front Neurosci. 11:400.

11 Ramos-Murguialday A, et al. 2013. Brain–machine interface in 
chronic stroke rehabilitation: a controlled study. Ann Neurol. 74: 
100–108.

12 Buch E, et al. 2008. Think to move: a neuromagnetic brain- 
computer interface (BCI) system for chronic stroke. Stroke. 39: 
910–917.

Darvishi et al. | 9

http://academic.oup.com/cid/article-lookup/doi/10.1093/pnexus/pgae240#supplementary-data
https://doi.org/10.6084/m9.figshare.25997992


13 Caria A, et al. 2011. Chronic stroke recovery after combined BCI 

training and physiotherapy: a case report. Psychophysiology. 48: 

578–582.
14 Ang KK, et al. 2011. A large clinical study on the ability of stroke 

patients to use an EEG-based motor imagery brain-computer 

interface. Clin EEG Neurosci. 42:253–258.
15 Broetz D, et al. 2010. Combination of brain-computer interface 

training and goal-directed physical therapy in chronic stroke: a 

case report. Neurorehabil Neural Repair. 24:674–679.
16 Shindo K, et al. 2011. Effects of neurofeedback training with an 

electroencephalogram-based brain-computer interface for 

hand paralysis in patients with chronic stroke: a preliminary 

case series study. J Rehabil Med. 43:951–957.
17 Daly JJ, et al. 2009. Feasibility of a new application of noninvasive 

brain computer interface (BCI): a case study of training for recov

ery of volitional motor control after stroke. J Neurol Phys Ther. 33: 

203–211.
18 Ang KK, et al. 2015. A randomized controlled trial of EEG-based 

motor imagery brain-computer interface robotic rehabilitation 

for stroke. Clin EEG Neurosci. 46:310–320.
19 Belardinelli P, Laer L, Ortiz E, Braun C, Gharabaghi A. 2017. 

Plasticity of premotor cortico-muscular coherence in severely 

impaired stroke patients with hand paralysis. Neuroimage Clin. 

14:726–733.
20 Kasashima-Shindo Y, et al. 2015. Brain-computer interface train

ing combined with transcranial direct current stimulation in pa

tients with chronic severe hemiparesis: proof of concept study. J 

Rehabil Med. 47:318–324.
21 Guggenberger R, Heringhaus M, Gharabaghi A. 2020. 

Brain-machine neurofeedback: robotics or electrical stimula

tion? Front Bioeng Biotechnol. 8:639.
22 Cervera MA, et al. 2018. Brain-computer interfaces for post- 

stroke motor rehabilitation: a meta-analysis. Ann Clin Transl 

Neurol. 5:651–663.
23 Darvishi S, et al. 2017. Proprioceptive feedback facilitates motor 

imagery-related operant learning of sensorimotor β-band modu

lation. Front Neurosci. 11:60.
24 Darvishi S, Gharabaghi A, Ridding MC, Abbott D, Baumert M. 

2018. Reaction time predicts brain–computer interface aptitude. 

IEEE J Transl Eng Health Med. 6:2000311.

25 Darvishi S, Ridding MC, Hordacre B, Abbott D, Baumert M. 2017. 

Investigating the impact of feedback update interval on the effi

cacy of restorative brain–computer interfaces. R Soc Open Sci. 4: 

170660.
26 Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. 1975. A 

method for evaluation of physical performance. Scand J Rehabil 

Med. 7:13–31.
27 Yozbatiran N, Der-Yeghiaian L, Cramer SC. 2008. A standardized 

approach to performing the action research arm test. 

Neurorehabil Neural Repair. 22:78–90.

28 Azouvi P, et al. 2003. Behavioral assessment of unilateral neglect: 

study of the psychometric properties of the Catherine Bergego 

Scale. Arch Phys Med Rehabil. 84:51–57.

29 Bohannon RW, Smith MB. 1987. Interrater reliability of a modi
fied Ashworth scale of muscle spasticity. Phys Ther. 67:206–207.

30 Turner-Stokes L. 2009. Goal attainment scaling (GAS) in rehabili
tation: a practical guide. Clin Rehabil. 23:362–370.

31 Cramer SC, et al. 1997. A functional MRI study of subjects recov
ered from hemiparetic stroke. Stroke. 28:2518–2527.

32 Page SJ, Fulk GD, Boyne P. 2012. Clinically important differences 
for the upper-extremity Fugl-Meyer scale in people with minimal 
to moderate impairment due to chronic stroke. Phys Ther. 92: 
791–798.

33 Van der Lee JH, et al. 2001. The intra-and interrater reliability of 
the action research arm test: a practical test of upper extremity 
function in patients with stroke. Arch Phys Med Rehabil. 82:14–19.

34 Cumming TB, Brodtmann A, Darby D, Bernhardt J. 2012. Cutting 
a long story short: reaction times in acute stroke are associated 
with longer term cognitive outcomes. J Neurol Sci. 322:102–106.
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