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Over the last decade, anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase (RTK), has been identified as a
fusion partner in a diverse variety of translocation events resulting in oncogenic signaling in many different cancer
types. In tumors where the full-length ALK RTK itself is mutated, such as neuroblastoma, the picture regarding the
role of ALK as an oncogenic driver is less clear. Neuroblastoma is a complex and heterogeneous tumor that arises
from the neural crest derived peripheral nervous system. Although high-risk neuroblastoma is rare, it often relapses
and becomes refractory to treatment. Thus, neuroblastoma accounts for 10–15% of all childhood cancer deaths. Since
most cases are in children under the age of 2, understanding the role and regulation of ALK during neural crest devel-
opment is an important goal in addressing neuroblastoma tumorigenesis. An impressive array of tyrosine kinase inhibi-
tors (TKIs) that act to inhibit ALK have been FDA approved for use in ALK-driven cancers. ALK TKIs bind
differently within the ATP-binding pocket of the ALK kinase domain and have been associated with different resistance
mutations within ALK itself that arise in response to therapeutic use, particularly in ALK-fusion positive non-small cell
lung cancer (NSCLC). This patient population has highlighted the importance of considering the relevant ALK TKI to
be used for a given ALK mutant variant. In this review, we discuss ALK in neuroblastoma, as well as the use of ALK
TKIs and other strategies to inhibit tumor growth. Current efforts combining novel approaches and increasing our
understanding of the oncogenic role of ALK in neuroblastoma are aimed at improving the efficacy of ALK TKIs as
precision medicine options in the clinic.
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The ALK receptor tyrosine kinase can be activated
in a wide range of human cancers by both chromo-
somal translocations leading to ALK-fusion pro-
teins and mutation in the context of full-length
ALK (Fig. 1). In addition to these two main mech-
anisms of ALK activation, ALK overexpression
and activation in the absence of genetic aberration
has also been described.

ALK-FUSION PROTEINS IN HUMAN CANCER
– IDENTIFICATION OF CHROMOSOMAL
TRANSLOCATIONS

Anaplastic lymphoma kinase was originally
described as a fusion partner with nucleophosmin

(NPM) in anaplastic large cell lymphoma (ALCL)
(1). Since then, almost 30 different ALK-fusion
partners have been reported, identifying the ALK
locus as a ‘hot spot’ for translocation events that
occur in a wide range of cancers (2, 3). ALK-
fusion proteins share common features, including:
(i) regulation of expression by the promotor of the
fusion partner, (ii) modulation of subcellular local-
ization by the fusion partner and (iii) ALK-fusion
dimerization/oligomerization by the fusion part-
ner, leading to trans-autophosphorylation of the
ALK kinase domain and subsequent signaling to
downstream targets (4–7). Here, we briefly intro-
duce ALK fusions in three of the more studied
cancers: ALCL, inflammatory myofibroblastic
tumors (IMTs) and non-small cell lung cancer
(NSCLC).
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ALK FUSIONS IN ALCL, IMT AND NSCLC

Anaplastic large cell lymphoma

Anaplastic large cell lymphoma (ALCL) is a rare
type of Non-Hodgkin lymphoma involving T-cell
receptor rearrangement that commonly occurs in
children and young adults (8). In ALCL, the pre-
dominant ALK translocation fusion partner is
NPM-ALK, which occurs in approximately 80% of
ALK-positive ALCL cases (Fig. 2) (9, 10). The
molecular characterization of NPM-ALK was first
reported in ALCL in 1994, with a number of other
ALK translocation fusions since reported in ALCL,
including MSN-ALK, ALO17-ALK, TFG-ALK,
TPM3-ALK, TPM4-ALK, MYH9-ALK, ATIC-
ALK, CLTC-ALK and TRAF1-ALK (3, 8).

Inflammatory myofibroblastic tumor

Inflammatory myofibroblastic tumors (IMTs) are
rare mesenchymal neoplasms that frequently origi-
nate in the lung, abdomen and retroperitoneal
region and mostly affect young adults (11). Almost
50% of IMT cases exhibit rearrangement of the
ALK locus at 2p23, of which half are fusions with

TPM3 that result in the TPM3-ALK fusion protein
(Fig. 2) (12, 13). ALK translocations in both ALCL
and IMT are associated with better prognosis (14–
16). Similar to ALCL, other ALK fusions, such as
TPM4-ALK, SEC31A-ALK, PPFIBP1-ALK,
RANBP2-ALK, CARS-ALK, ATIC-ALK, CLTC-
ALK, TFG-ALK, EML4-ALK, PRKAR1A-ALK,
LMNA-ALK, FN1-ALK and NUMA1-ALK, are
also found (3, 17, 18).

Non-small cell lung cancer

Lung cancer is one of the leading causes of cancer
death worldwide, which is classified into two sub-
groups: (i) small cell lung cancer (SCLC) and (ii)
non-small cell lung cancer (NSCLC) (19, 20).
Almost 80% of lung carcinoma belongs to the
NSCLC subgroup. The EML4-ALK fusion protein
accounts for around 2–9% of NSCLC adenocarci-
noma cases, and ALK-positive NSCLCs therefore
represent the largest ALK-positive patient group (2,
5, 21, 22). EML4-ALK is the product of an inver-
sion event at chromosome 2p, which results in the
fusion of N-terminal region containing coiled coil
domain of the EML4 gene with the tyrosine kinase
domain of the ALK gene (5, 21). At least 15

Fig. 1. Oncogenic anaplastic lymphoma kinase (ALK) signaling. Schematic representation of different oncogenic forms of
ALK (fusions, point mutations, amplification/overexpression) and downstream signaling pathways. FP, fusion protein;
GR, glycine-rich domain; LDL, low-density lipoprotein class A domain; MAM, meprin, A-5 protein and receptor protein
tyrosine phosphatase Mu domain; PTK, protein tyrosine kinase domain; TM, transmembrane region.
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different EML4-ALK variants have been described
to date, with variants 1, 2 and 3a and 3b being
most common (Fig. 2) (23, 24). Almost all EML4-
ALK variants contain exons 20–29 of ALK encod-
ing the intracellular kinase domain; however, they
contain different portions of EML4, which are
thought to play a role in the stability or activity of
the resulting fusion protein (7, 23–25). In addition
to EML4-ALK, other translocations reported in
NSCLC are HIP1-ALK, STRN-ALK, PTPN3-
ALK, TFG-ALK, KLC1-ALK, KIF5B-ALK and
TPR-ALK (3, 21, 26–31). ALK-targeted therapies
are routinely employed clinically for ALK-positive
NSCLC; however, understanding the resistance
mechanisms that arise in response to ALK inhibitor
therapy is currently a major clinical challenge (2,
32–35).

ALK POINT MUTATIONS IN HUMAN
CANCER

Activation of ALK, whether by ALKAL ligands or
by mutation, leads to downstream signaling via
MEKK2/3-MEK5-ERK5, PI3K-AKT-mTOR, RAS-
MAPK and PLC-c pathways (Fig. 3) (7, 36, 37). The
signaling initiated by ALK varies depending on the
cell or tumor type as well as the method of ALK acti-
vation, whether by ligand, fusion partner, overexpres-
sion or activating mutation. A number of cancers
have been associated with activating point mutations
in ALK, including anaplastic thyroid tumors (ATC),
NSCLC and neuroblastoma (2, 7, 38–43). While the
ALK point mutations ALK-L1198F and ALK-

G1201E were described as gain-of-function activating
point mutations in anaplastic thyroid tumor (ATC)
(43), a recent report has shown that neither is consti-
tutively active, thus questioning the role of ALK as
an oncogenic driver in ATC (44). We focus in the fol-
lowing sections on ALK variants in neuroblastoma
and patients, predominantly with ALK-positive
NSCLC, who have been treated with ALK TKIs.

NEUROBLASTOMA – A BRIEF OVERVIEW

Neuroblastoma is a childhood cancer that arises in
the sympathetic nervous system. It accounts for 8–
10% of all childhood cancer deaths and is the most
commonly diagnosed cancer in infants under one
year (45). Neuroblastoma is a complex and heteroge-
neous disease which affects very young children with
a median age of 22 months at diagnosis (46, 47).
Children can develop tumors at any point along the
sympathetic chain; however, neuroblastoma most
frequently originates in the area of the adrenal
medulla, disseminating to tissues of the abdomen,
chest, pelvis and neck region (45, 47–49). Neuroblas-
toma is classified in five clinical stages (stages 1–4
and 4S) according to the International Neuroblas-
toma Staging System (INSS) (50–52). In neuroblas-
toma, as in other pediatric cancers, the mutation
load is low (53–55). In contrast, chromosomal aber-
rations are important for prognosis in neuroblas-
toma, with the most common genetic anomalies
being deletions of parts of chromosome arms 1p and
11q, 17q gain, triploidy, as well as MYCN and ALK
amplifications (47, 56–60). Amplification of MYCN

Fig. 2. Schematic depicting the domain structure of the most common anaplastic lymphoma kinase (ALK) fusions found
in anaplastic large cell lymphoma (ALCL), inflammatory myofibroblastic tumors (IMTs) and non-small cell lung cancer
(NSCLC). Fusion partners mediate dimerization of the ALK-fusion proteins resulting in constitutive activation of the
ALK tyrosine kinase. Domains are highlighted as: oligomerization domain (OD, in blue), ALK protein tyrosine kinase
(PTK, in red), coiled coil (CC, in green), HELP (lime green), WD40 (light green).
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on chromosome 2p24 is one of the main hallmarks
of neuroblastoma, observed in 20–30% of all neu-
roblastoma cases and associated with poor survival
(47, 51, 61). MYCN is involved in cell proliferation,
apoptosis, survival and differentiation (62). Neurob-
lastoma models in which MYCN is overexpressed in
the neural crest lead to neuroblastoma tumor devel-
opment, that is accelerated by cooperation with
other oncogenes and tumor suppressor genes, such
as ALK, NF1, TP53, LIN28B and LMO1, driving
increased penetrance and earlier onset of neuroblas-
toma (63–68). Other factors, which also contribute
to neuroblastoma tumorigenesis, are loss of
heterozygosity (LOH) for chromosome 14 (14q), loss
of NF1 and CDKN2A, amplification of DDX1 and
MDM2, aberrant expression of neurotrophin recep-
tors, ganglioside GD2, polycomb complex protein
Bmi-1, micro RNAs (miR-10b, miR-29a/b, miR-
335), as well as mutations in PHOX2B, ATRX,
CHEK2 and BARD1 (53, 69–77). In addition to pro-
tein coding genes, long noncoding RNAs, such as
neuroblastoma associated transcript-1 (NBAT-1)

and Cancer Susceptibility 15 (CASC15), regulate
neuroblastoma tumorigenesis via cell proliferation
and neuronal differentiation (78, 79).

ALK MUTATIONS IN NEUROBLASTOMA

Initial reports of ALK gene amplification and ALK
protein overexpression suggested a role of ALK in
neuroblastoma (80, 81). This was firmly established
with the identification of ALK point mutations in
both familial and sporadic neuroblastoma (56, 57,
82–84). In addition, ALK activating deletions and
translocations have been described (40, 85). The
majority of the reported mutations are located
within the ALK kinase domain and are present in
7–8% of all neuroblastoma cases (58, 86). While a
large range of mutations are observed, the most fre-
quently found ‘hotspot’ mutations are ALK-F1174
(V, L, S, I, C), ALK-F1245 (C, I, L, V) and ALK-
R1275 (L or Q) in the kinase domain, which
account for around 85% of all ALK mutant cases

Fig. 3. General overview of anaplastic lymphoma kinase (ALK) downstream signaling. ALK signaling can be activated in
a ligand-dependent (ALK wild-type) or a ligand-independent manner (ALK gain-of-function, ALK fusions, overexpres-
sion/amplification). ALK signals through multiple downstream pathways and stimulates the initiation of transcription to
regulate specific cellular processes. The range of signaling pathways and cellular responses activated in response to ALK
activation varies with cell type and ALK status (such as ALK fusion, overexpression or point mutation).
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(Table 1 and Fig. 4A). ALK-F1174, ALK-F1245
and ALK-R1275 mutant variants are transforming
when expressed in either nude mice or NIH3T3
cells (82, 83, 87). Furthermore, ALK drives the
transcription of MYCN and ALK-F1174L has been
shown to cooperate with MYCN to enhance the
tumorigenic activity in neuroblastoma mouse mod-
els (3, 64, 88–90). Subsequent analyses of the
remaining 15% of ALK mutations found in neu-
roblastoma patients have highlighted differential
activity, and ligand-dependent/ligand-independent
characteristics of mutant variants, many of which
remain to be characterized fully in the context of
neuroblastoma development (86, 90, 91). Mutations
at residues ALK-G1128, -M1166, -I1170, -I1171, -
R1192, -L1196 (gatekeeper), -L1240 and -Y1278
have also been shown to be activating neuroblas-
toma mutations (Fig. 4A). These mutations are in
close proximity to important structures within the
kinase domain and likely regulate the activation of
ALK activity, such as the alpha-C-helix, and the
activation loop (3, 58, 86). More recent analysis of
relapsed neuroblastoma has highlighted an
increased frequency of activating ALK point muta-
tions in these patients (92–95).

Studies of ALK germline mutations in familial
neuroblastoma have shown that neuroblastoma has
an incomplete penetrance and the risk of developing
the disease likely depends on other players, such as
segmental chromosomal aberrations (57, 84, 96–98).
As illustration, a recent study reported two siblings
both carrying a germline ALK-R1275Q mutation
that exhibited very different neuroblastoma aggres-
siveness and chemotherapy response. Genetic analy-
sis identified several differing segmental
chromosomal aberrations including the amplification
of MYCN between the siblings that potentially
impacted on the progression of their disease (98).
Indeed, studies in model systems such as mice or zeb-
rafish suggest that activating ALK mutations alone
do not drive neuroblastoma, rather ALK works
together with other oncogenes to promote neuroblas-
toma tumor development (64, 89, 99–102). A better
understanding of the developmental processes that

regulate the penetrance of ALK germline mutations
should aid in unraveling of the underlying mecha-
nisms of oncogenesis of familial neuroblastoma.

TARGETING ALK

Since oncogenic ALK signaling is involved in sev-
eral cancer forms, it stands to reason that targeting
ALK and its downstream partners would be thera-
peutically beneficial in ALK-positive cancer
patients. ALK downstream signaling involves mul-
tiple known pathways, such as MEKK2/3-MEK5-
ERK5, PI3K-AKT-mTOR, RAS-MAPK and PLC-
c (Fig. 3) (7). NVP-TAE684 was one of the first
ALK-specific inhibitors identified to target the
ATP-binding site of ALK (103), and initial studies
identified reduced cell proliferation in ALK-positive
ALCL, NSCLC and neuroblastoma cell lines on
treatment with NVP-TAE684 (87, 104). While
NVP-TAE684 is not used therapeutically, a number
of other ALK tyrosine kinase inhibitors (TKIs)
have been developed and employed clinically in
ALK-positive patient populations (2, 105, 106).

Crizotinib

Crizotinib was the first ALK-targeted TKI to enter
the clinic (Fig. 5) (22). In 2011, the FDA approved
crizotinib for the treatment of ALK-fusion positive
NSCLC patients based on the results from phase I/
II clinical studies (2, 22, 107). In subsequent clinical
studies, crizotinib was shown to be superior to con-
ventional chemotherapy in advanced ALK-fusion
positive NSCLC (2, 108). The efficacy of crizotinib
has been tested in other ALK-fusion positive cancer
forms, including pediatric and adult ALCL with
good responses (109–111). However, responses in
patients with ALK-positive neuroblastoma and
IMT were less encouraging (110). Response to
crizotinib in ALK-fusion positive NSCLC is tran-
sient due to the acquisition of secondary mutations
in the kinase domain of the ALK fusions them-
selves (Fig. 4B) or by ALK copy number gain or

Table 1. Frequency of ALK mutations in neuroblastoma

Bresler et al. De Brouwer et al.

Number of neuroblastoma investigated 1596 709
Number of neuroblastoma with ALK mutations (%) 126 (8) 49 (6.9)
Number of ALK-F1174L/V/S/I/C (% of ALK-positive) 38 (30) 17 (34.7)
Number of ALK-F1245C/I/L/V (% of ALK-positive) 15 (12) 3 (6.1)
Number of ALK-R1275L/Q (% of ALK-positive) 54 (43) 24 (49)

ALK, anaplastic lymphoma kinase.
Percentage of ALK-F1174, ALK-F1245, ALK-R1275 mutations in the neuroblastoma patient population is shown. Data
from (58, 86).
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bypass survival signaling via alternative oncogenes
(2, 32, 34). Crizotinib is also less effective on brain
metastases in ALK-fusion positive NSCLC patients
(112). Next-generation ALK TKIs have been devel-
oped that address activity in the brain and sec-
ondary resistance mutations.

Ceritinib

In 2014, the FDA approved the second-generation
ALK TKI ceritinib for crizotinib resistance ALK-
fusion positive NSCLC patients (32, 113, 114). Like
crizotinib, ceritinib is an ATP competitive inhibitor
which binds in the ALK ATP-binding pocket
(Fig. 5). Ceritinib is a derivative of NVP-TAE684
and in addition to inhibiting ALK is effective
against insulin-like growth factor receptor-1 (IGF-
1R), STKK22D and INSR (115, 116). Ceritinib is
able to overcome both ALK-crizotinib resistance
mutations (G1269A, L1196M, I1171T/N and
S1206C/Y) and ALK-alectinib resistance mutations
(I1171T/N/S and V1180L) (Fig. 4B) (116, 117).
Ceritinib is also effective in the treatment of ALK-
rearranged ALCL (118). The median progression-
free survival (PFS) with ceritinib in ALK-fusion
positive NSCLC is 7–8 months, after which ALK
secondary mutations arise and the response to ceri-
tinib significantly decreases (119). While few reports
exist in ALK-positive neuroblastoma, one patient
with a complete response to ceritinib has been
described (120).

Alectinib

Alectinib is a potent ALK TKI which displays
activity toward crizotinib resistance mutations
including L1196M, F1174L, R1275Q and C1156Y
(Fig. 5) (32, 121). A phase I/II trial in Japanese
patients with ALK-rearranged NSCLC led to the
approval of alectinib in Japan and in 2015 the
FDA granted breakthrough therapy designation for
ALK-fusion positive NSCLC patients who have
progressed with crizotinib (122, 123). In a recent
phase III clinical study of untreated advanced
ALK-fusion positive NSCLC, treatment with alec-
tinib showed superior efficacy, with a 12-month sur-
vival of 66.4%, and lower toxicity when compared
with crizotinib (124). Further, alectinib demon-
strated superior central nervous system (CNS)
activity and delayed CNS progression in ALK-
fusion positive NSCLC relative to crizotinib (125).
Alectinib is an effective inhibitor of the gatekeeper
mutation ALK-L1196M as well as the ALK-
R1275Q and ALK-F1174L neuroblastoma hotspot
mutations (121). Similar to other ALK TKIs, alec-
tinib treatment leads to resistance with the ALK-
G1202R, ALK-V1180L and ALK-I1171T muta-
tions reported as well as other ALK-independent
mechanisms (117, 126). Alectinib has been studied
preclinically in neuroblastoma and has been
employed in one heavily pretreated, refractory,
metastatic ALK-F1245C neuroblastoma case, where
a partial clinical response was observed (127, 128).

Fig. 4. Anaplastic lymphoma kinase (ALK) kinase domain point mutations in neuroblastoma and resistance mutations
from patients treated with ALK tyrosine kinase inhibitors (TKIs). (A) ALK kinase domain showing activating mutations
reported in neuroblastoma patients (purple spheres). The three hotspot mutations (F1174, F1245 and R1275, blue spheres)
are indicated. (B) ALK tyrosine kinase domain resistance mutations from patients treated with ALK TKIs are shown (pur-
ple spheres). ATP is shown in the ATP-binding site of the kinase domain (orange).
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Brigatinib

Brigatinib, FDA approved in 2017, is a potent inhi-
bitor of ALK that is also effective against epider-
mal growth factor receptor (EGFR) and ROS
Proto-Oncogene 1, RTK (ROS1), and is effective
against a range of ALK resistance mutations
(Fig. 5) (129). In phase I/II trials in crizotinib resis-
tance ALK-positive NSCLC patients, brigatinib
showed 72% overall response with a median PFS
of 11–13 months (32). A recently published phase
III trial showed a superior efficacy of brigatinib as
compared with crizotinib in the treatment-na€ıve
ALK-fusion positive NSCLC, with an estimated
12-month event-free survival of 67% (130). The
predominant resistance mutation seen in response
to alectinib therapy is ALK-G1202R which is resis-
tant to most ALK TKIs, with the exception of lor-
latinib (see below). Sequential treatment with
crizotinib and brigatinib has been reported to result
in dual mutations such as ALK-E1210K+ALK-
S1206C as well as ALK-E1210K+ALK-D1203N (2,
131). Brigatinib has been explored in preclinical
neuroblastoma models, where it has been shown to
inhibit ALK more effectively than crizotinib (132).

Entrectinib

Entrectinib, FDA approved as breakthrough therapy
2017, is a potent inhibitor of ALK, NTRK and ROS1
(Fig. 5), that is currently being evaluated in phase I/II

trials for patients with ALK, ROS1, NTRK alter-
ations (32, 133). A recent report identified entrectinib
as effective in the reduction of neuroblastoma cell
proliferation and tumor growth (134). Entrectinib
has orphan drug designation for treating neuroblas-
toma patients as well as for NTRK, ALK, ROS1
alterations in NSCLC and metastatic colorectal can-
cer. Entrectinib has been studied in preclinical mod-
els, where it has been shown to have activity toward
the ALK-G1202Rmutant (135).

Lorlatinib

Lorlatinib, FDA accelerated approval in 2018, is a
novel, highly potent ALK/ROS1 inhibitor that can
pass the blood–brain barrier (Fig. 5). Lorlatinib
overcomes almost all known ALK resistance muta-
tions observed with other ALK TKIs, including the
ALK-G1202 mutation (2, 136, 137). In both in vitro
and in vivo systems, lorlatinib is more potent than
other ALK TKIs (138). It has been shown that lorla-
tinib exhibits superior potency toward ALK in pre-
clinical neuroblastoma tumor models (139, 140).
Lorlatinib is currently being investigated in trails for
ALK/ROS1-positive NSCLC as well as in neurob-
lastoma, where it shows strong antitumor and CNS
activity both in treatment-na€ıve and previously ALK
TKI treatment ALK-positive NSCLC patients (32,
141). Due to its high efficacy, lorlatinib may serve as
a useful partner for combinatorial treatments to

Fig. 5. A selection of FDA approved anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) in the ATP-bind-
ing site of the ALK kinase domain. The different ALK TKIs (orange) bind in the ATP-binding pocket with varying contact
sites resulting in unique profiles of inhibition of the ALK mutant variants observed in neuroblastoma patients as well as in
ALK TKI resistant non-small cell lung cancer (NSCLC) and inflammatory myofibroblastic tumor (IMT) patients.
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overcome the emergence of resistance clones in
ALK-positive cancers.

ALK KINASE DOMAIN RESISTANCE
MUTATIONS IN RESPONSE TO ALK TKI
TREATMENT

Based on in vitro drug screens, in vivo models and
patient data, ALK TKI resistance mechanisms can
be classified into two major groups (2, 34, 142). The
first group is ALK dependent, which includes ALK
secondary resistance mutations (Fig. 4B). The ALK
gatekeeper mutations L1196M and C1156Y were
the first reported resistance mutations in ALK-fusion
positive NSCLC (39). The other common resistance
mutations seen in NSCLC are I1151Tins, F1174C/L/
V, L1152P/R, G1202R, G1269A/S, D1203N,
S1206C/Y (2, 34, 39, 116, 117) (Fig. 4B). In most
cases, ALK secondary mutations can be overcome by
second- and third-generation ALK TKIs. However,
consecutive treatment with ALK TKIs in patients
can lead to dual mutational loads (such as E1210K/
D1203N, C1156Y/L1198F and C1156Y/I1171N)
which confer resistance to third-generation ALK
TKIs (2, 131). Much effort is being expended to
match the individual ALK resistance mutations with
the most effective inhibitor in ALK-fusion positive
NSCLC (2, 33, 35). Individual patient treatments can
become complex involving therapeutic approaches
that can include multiple ALK TKI treatments, illus-
trated by a report of therapeutic use of lorlatinib in a
patient with crizotinib-resistant ALK-fusion positive
NSCLC that led to the appearance of the ALK-
L1198F+C1156Y resistance mutation (143). In the
same study, it was shown that this lorlatinib resis-
tance mutation is sensitive to crizotinib treatment
(143), highlighting the importance of understanding
the dynamics of resistance mutations that arise in
response to ALK TKIs. Interestingly, secondary
resistance mutations have not yet been reported in
neuroblastoma, where mutations in ALK are already
present as primary mutations. The second group of
resistance mutations is ALK independent and
includes the activation of alternative oncogenes (such
as EGFR, IGFR, MET, KIT) and lineage alterations
described in NSCLC (2, 34, 142). In neuroblastoma,
activation of alternative oncogenic drivers Axl and
ErbB4 has been reported to lead to ALK TKI resis-
tance in preclinical analyses (144, 145).

TARGETING ALK IN NEUROBLASTOMA

The identification of ALK mutations in neuroblas-
toma, both at initial diagnosis and at increased

frequency in relapsed neuroblastoma cases, has dri-
ven efforts to effectively employ ALK TKIs clini-
cally. A phase I trial looking at the safety and
activity of crizotinib included 11 neuroblastoma
patients with identified ALK mutant variant status,
including the three hotspot mutations (F1174,
R1245 and R1275), as well as one patient with an
ALK-Y1278S mutation (110). Only one complete
response was observed in a patient harboring a
germline ALK-R1275 mutation. Unfortunately, lit-
tle is known about other somatic or companion
mutations carried by these patients. A number of
studies have investigated the effect of ALK TKIs
in a neuroblastoma setting (86, 87, 90, 120, 132,
139, 140, 146, 147). Table 2 shows a selection of
FDA approved ALK TKIs, brigatinib, ceritinib,
lorlatinib and crizotinib (120, 132, 140), that vary
in their efficacy to inhibit the different ALK
mutant variants observed in neuroblastoma in pre-
clinical models. Although not performed side-by-
side, the accumulated results illustrate potential
differences, important as the different ALK TKIs
bind differentially within the ATP-binding pocket
of the ALK kinase domain (Fig. 5). Since ALK
mutations found in both initial and in relapsed
neuroblastoma cases are located mostly in the
alpha-C-helix and the activation loop, some over-
lap exists with the reported NSCLC resistance
mutations (Fig. 4) (7). Comparing inhibition of the
hotspot mutations F1174, F1245 and R1275 in
in vitro assays shows that ceritinib is generally two-
fold more effective than crizotinib, which inhibits
the hotspot mutations in the range of 25–35 nM
(Table 2). Brigatinib and lorlatinib abrogate the
activity of ALK neuroblastoma hotspot mutations
within a single digit nanomolar (nM) range
(Table 2). The ALK-I1171N mutant variant pre-
sents challenges for many ALK TKIs, and both
ceritinib and brigatinib are less efficient at inhibit-
ing this variant than lorlatinib (Table 2). This
likely reflects sensitivity to steric effects of the
ALK-I1171N mutation on the binding surfaces in
the ATP-binding pocket. A recent molecular
dynamics study shows dislocation of the ALK
TKI alectinib triggered by the ALK-I1171N muta-
tion, which induces conformational changes at the
inhibitor binding site that impact on the interac-
tion between alectinib and the ALK-I1171N
mutant (148). The third-generation ALK TKI lor-
latinib shows strong activity toward all tested
ALK neuroblastoma mutant variants, supporting
the current clinical testing of lorlatinib in neurob-
lastoma (139, 140). Based on the efficacy in pre-
clinical systems, both lorlatinib and brigatinib
appear to be good options for the targeting of
ALK in neuroblastoma.
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COMBINATORIAL TREATMENTS IN
NEUROBLASTOMA

Given the complex pattern of ALK resistance
mutations that arise in response to ALK TKI treat-
ment, combinatorial targeting of downstream tar-
gets or other bypass pathway components could
offer therapeutic benefit for ALK-positive neurob-
lastoma patients and also hinder the development
of resistance. Choosing the right target for poly-
therapy is complicated, considering the issue of
toxicity and the fact that negative feedback signal-
ing events may lead to the development of resis-
tance (149, 150). Successful combinatorial
treatments should not only show efficacy superior
to mono-treatment but also be tolerable at effective

doses in patients. Several combinations of ALK
TKI with chemotherapy agents, immunotherapy
agents and downstream target agents have been
evaluated (Table 3). These include the use of
ERK5, mTOR, CDK4/6 and RET inhibitors
together with ALK for improved inhibition of
tumor growth in preclinical models (146, 147, 151–
153). Recent proteomics-based studies have also
identified additional targets, such as IGF-1R/INSR,
identifying combined ALK and IGFR inhibition as
effective in reducing the proliferation of ALK-posi-
tive neuroblastoma cell lines (154, 155). Efforts are
currently being concentrated on understanding how
ALK TKIs can be employed therapeutically in
combination so in the future patients are treated
accordingly.

Table 2. IC50 values for inhibition of ALK Y1604 phosphorylation in the context of full-length ALK expressed in PC12
cells by either brigatinib, lorlatinib, ceritinib or crizotinib

ALK mutation ALK TKI IC50s

Brigatinib Lorlatinib Ceritinib Crizotinib* Crizo SD*

Wildtype 2.60 0.80 5.30 16.40 4.17
G1128A 2.00 1.20 19.80 33.53 10.15
I1171N 10.30 3.20 46.60 97.53 50.00
I1171T 7.50 6.80 17.40 193.00
F1174L 1.50 0.70 17.00 23.16 5.8
R1192P 2.50 0.90 26.10 42.50 19.95
F1245V 6.60 0.90 24.70 32.02 6.78
G1269A 3.40 6.40 29.80 130.13 24.11
R1275Q 4.20 0.80 10.80 30.63 1.72
Y1278S 4.60 2.30 20.50 53.7 29.91

ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor.
The table is compiled from three independent articles, all of which have employed investigated crizotinib for comparison
with other ALK TKIs (120, 132, 140). Crizotinib* indicates average of crizotinib treatment based on these studies and
crizo* SD indicates standard deviation of these values. Results for ALK-I1171T are taken from (120).

Table 3. Different combinatorial targets in ALK-positive cancers

Molecular targets Pre-clinical experimental model Combinatorial effects

ALK + MEK EML4-ALK (v1) positive NSCLC Inhibition of NSCLC cell proliferation and tumor growth
ALK-positive neuroblastoma Increased AKT activity

ALK + mTORC1/C2 NPM-ALK-positive ALCL
(mTORC1)

Inhibition of ALCL cell proliferation and tumor growth

ALK-positive neuroblastoma
(mTORC1/C2)

Inhibition of neuroblastoma cell proliferation and
tumor growth

ALK-positive neuroblastoma
(mTORC1)

Increased activation of AKT via Rictor

ALK + ERK5 ALK-positive neuroblastoma Inhibition of neuroblastoma cell proliferation and
tumor growth

ALK + HSP90 EML4-ALK-positive NSCLC Inhibition of NSCLC cell proliferation and tumor growth
ALK + CDK4/6 ALK-positive neuroblastoma Inhibition of neuroblastoma cell proliferation and tumor

growth
ALK + IGF-1R EML4-ALK-positive NSCLC Inhibition of NSCLC cell proliferation and tumor growth

ALK-positive neuroblastoma Inhibition of neuroblastoma cell proliferation

ALCL, anaplastic large cell lymphoma; ALK, anaplastic lymphoma kinase; IGF-1R, insulin-like growth factor receptor-1;
NSCLC, non-small cell lung cancer.
The table represents combinatorial effects of different combinatorial molecular targets in ALK-positive cancers. Choosing
an appropriate molecular target for combinatorial treatment is important to avoid feedback mechanisms. Table refers to
results from (146, 147, 150, 151, 155–159).
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CONCLUDING REMARKS

Much current activity in the field of ALK inhibi-
tion in neuroblastoma centers around understand-
ing how, when and if, the impressive arsenal of
ALK TKIs can be usefully employed therapeuti-
cally in this patient population. This is an impor-
tant challenge for the research field to tackle since
current therapeutic regimes for high-risk neuroblas-
toma come with significant side-effects and morbid-
ity. Those neuroblastoma cases that have shown
responses to ALK TKI treatment would indicate
that there is a window of opportunity to be better
clarified. It is clear that tumor complexity in terms
of heterogeneity and genetic background plays sig-
nificant roles in neuroblastoma and that there is
much to be learned. Improved understanding of the
underlying biology of ALK in the neural crest dur-
ing development and how that function is per-
turbed in neuroblastoma will be important. The
combination of novel techniques now available,
including single cell-based approaches, offers unique
opportunities to define heterogeneity, immune cell
tumor infiltration and tumor microenvironments,
ranging from tumor models in simple model sys-
tems to patient samples. These advanced analyses
offer the power to address many challenging ques-
tions in the coming years, leading to improved
treatments with precision medicine.
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