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Abstract

Generally, prognostication of coma outcome currently combines behavioral, reflex, and pos-

sibly neuroimaging tests that are interpreted by an attending physician. Electroencephalog-

raphy, particularly, event-related brain potentials (ERP) have received attention due to

evidence demonstrating the positive predictive value of certain ERP including the mismatch

negativity (MMN) and the P3a, for coma emergence. We describe a set of ERP paradigms

designed to require and reflect increasing levels of cognitive processing with the added

objective of determining the influence of each paradigm’s context strength on its ability to

elicit ERPs. These paradigms were then used without explicit instructions to participants to

attend to the stimuli to determine which paradigms possessed sufficient context “strength”

to elicit ERPs in the absence of active participation on the part of the subject; a circumstance

often encountered in brain injury patients. These paradigms were then validated on two

groups of adults–younger and older, and the difference due to active participation was vali-

dated on another group of younger adults. Results show that paradigms with stronger stimu-

lus context features performed better than those with weaker contexts, and that older adults

generally had significantly attenuated and delayed responses compared to younger adults.

Based on these findings, it is recommended the use of the auditory oddball paradigm that

includes novel stimuli to elicit the mismatch negativity and P300, and semantic violation

sentences to elicit the N400. These findings also reinforce the procedure of instructing

participants about the requirements of a protocol–regardless of the patient’s diagnosis

or apparent state–in order to help those who are able to attend to show the most robust

responses possible.

Introduction

The use of event related potentials (ERPs) for the assessment of patients in altered states of

consciousness has been a topic of research for the past few decades. Some of the first prognostic
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studies involved the use of the P300 in non-traumatic comas, where the presence of the P300

was correlated with positive outcomes [1–3].

Some researchers have taken issue with the use of the P300, which is heavily influenced by

the participant attending to the stimuli. The proposed solution was to use an ERP component,

which could be evoked irrespective of attention, like the mismatch negativity (MMN). One of

the first to do this was Kane et al., who presented tones in an auditory oddball sequence [4].

Since the MMN has been strongly elicited irrespective of attention, they believed it to be a

more reliable measure for patients in altered states of consciousness [5, 6]. This study showed

that in each case the MMN was detected, the patient would soon regain consciousness. They

noted that the “MMN response is the earliest available indicator of awakening from coma”

while acknowledging that the MMN “does not provide prognostic information about func-

tional outcome, [but] it may help to define objectively the duration of coma” [4].

Fischer et al. built upon this work by expanding the use of the MMN in comatose patients

[7]. These studies, however, utilized the traditional method of ERP analysis that is time con-

suming, requires specialized tools, and visual inspection by a trained electrophysiologist.

Fischer and colleagues used stimuli which were delivered in short blocks, and only those

blocks that were visually identified as containing the N100 and P200 were further scrutinized

for the MMN [7]. Depending on the quality of the recorded data, this could lead to large quan-

tities of discarded data, which ultimately makes the technique harder for clinicians to use.

Despite these methods running the risk of data loss and the requirement of expert examina-

tion, they remain the gold standard for much of the clinical research literature [8, 9].

More recent investigations by Tzovara et al. have tried to reduce the quantity of data needed

to generate meaningful information regarding the presence or absence of the MMN [10].

Using an automated classification technique to quantify the neural response of each individual

instead of an expert visual inspection, they were able to take a whole data set and blindly clas-

sify it, thereby increasing the amount of useful data. Furthermore, even though the model was

able to accurately classify the neural responses of non-survivors, it was the positive or negative

progression over time that was the major predictor of outcomes.

A notable commonality of this literature is the frequent use of greatly different MMN elici-

tation protocols and analysis methods to confirm its presence. This difference in method may

be a contributing factor to the wide range in test specificity seen across studies. The inconsis-

tency in test specificities is one of the reasons preventing clinicians from bringing ERP tests

into a health care setting (see Discussion).

The current clinical gold standard of outcome prognosis include the Glasgow Coma Scale

(GCS) [11], which relies heavily on the patient’s ability to produce behavioral responses to

external stimuli and commands. However, early evoked potentials, like somatosensory

responses and brainstem auditory potentials are also of high prognostic value [7, 12]. Tests

that utilize later cortical responses like the MMN have further improved the prognostic value

of these tests while continuing the move away strictly behaviorally based ones [13]. Such

improvement is necessary considering the misdiagnosis rates for the unresponsive wakefulness

syndrome (UWS) of between 41% [14] to 43% [15] when relying on traditional behaviorally-

based consensus methods. More structured behavioral assessment can significantly improve

the diagnosis of UWS [14] and there is every reason to believe that functional brain measures

would further improve diagnostic accuracy [16, 17].

Kane suggested that the use of attention-modulated ERP components (e.g., P300) was a

hindrance to their prognostic power because the response is larger in attentive individuals and

is even absent in some healthy controls [4]. However, it is precisely the sensitivity of certain

responses to changes in attention that increases the power of these methods to examine levels
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of function in disorders of consciousness (DOC) patients and with improved protocols the

absence of such responses in controls can be reduced dramatically.

In addition to the P300 reflecting different levels of cognitive activity, it is also sensitive to

more sophisticated cognitive process such as memory-based processing including recognition

of one’s own name. For example, Holeckova et al. used a classic auditory oddball paradigm

comprised of standard and infrequently occurring deviant tone stimuli, but was also able to

elicit the P300 in response to rare and more salient novel sounds, such as the Subject’s Own

Name (SON) [18]. The SON test is of particular interest as it is known to capture attention in

the absence of effort [19] and elicits a robust P300 response [20–23].

Building on this, another component that is sensitive to contextually-based expectancies is

the N400. This component requires the integration of both pre-existing knowledge and newly

parsed information. It is a late-occurring response associated broadly with comprehension of

speech, text, and other stimuli possessing “meaning” [24].

Expectations can be set up through the use of word pairs that may or may not have underly-

ing semantic relationships [25], or sentences with incongruous, unexpected or infrequent end-

ings [26]. With word pairs, the N400 occurs to the second word when it violates the semantic

context created by the first word. A significantly stronger semantic context is created by sen-

tences so that a word that fails to meet contextually-based expectations results in a large N400

in contrast to little or no response to a contextually appropriate word [24]. In these cases, the

mismatching words must be interpreted within a particular context, the processing of which

requires elaborated attention and memory. Within the context of DOC, the evaluation of

receptive language functions provides an objective measure of cognitive processing and, by

implication, the level of consciousness.

This study addresses these issues by examining the various stimulation paradigms often

used in the literature and selecting those that are best able to elicit strong ERP components

of interest. The strongest paradigms will be integrated into a framework for extended and

repeated testing of patients in comas for the prediction of both coma emergence and func-

tional outcome. The framework’s design allows for data to be collected over extended dura-

tions and at milestone points during a patient’s recovery, giving a better understanding of a

patient’s recovery trajectory and to further examine the stability of these components in brain

injured patients over time. This framework does not prescribe a specific analysis method to

replace expert visual inspection but rather aims to generate data that is agnostic toward the

method of analysis. The components elicited should be strong enough to be detected using

both traditional methods as well as newer machine learning-based methods.

Methods

Participants

Two groups of participants were recruited based on age range. Twenty-six native English

speaking undergraduate students (19 females) from McMaster University were recruited for

the younger adult group. Thirteen native English speaking adults (6 females) from the Hamil-

ton community were recruited for the older adult group. Participants were 18 to 22 and 66 to

76 years old (M = 19.8, SD = 1.44;M = 69.8, SD = 3.35) for the younger and older adult groups,

respectively. All participants were dextral (M = 85.6; Edinburgh Handedness Inventory Lat-

erally Quotient Range: 40–100; [27]), had no history of neurological diseases or disorders, and

had normal or corrected-to-normal vision. Undergraduate students received course credit for

their participation, and older adults received $20.

A third group of participants was recruited for the follow up study and included twelve

native English speaking students (10 females) from McMaster University. These participants
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were 19 to 25 (M = 21.0, SD = 1.78), were dextral (M = 93.7; Laterally Quotient Range: 40–100;

[27]), had no history of neurological diseases or disorders, and had normal or corrected-to-

normal vision.

Electrophysiological methods

The electroencephalogram (EEG) was recorded continuously (bandpass = 0.01–100 Hz and

sampled at 512 Hz) using a 64 channel Biosemi ActiveTwo system (Biosemi, Amsterdam, The

Netherlands) using a 10-20 elastic cap with Ag/AgCl electrodes. The electrooculogram (EOG)

was recorded from electrodes placed above and at the outer canthus of the left eye. References

were recorded bilaterally from the mastoids and at the nasion for offline referencing.

Data preprocessing was conducted using BrainVision Analyzer 2. All recordings were visu-

ally inspected and epochs containing artifacts (e.g., muscle, movement) removed. Individual

subtask recordings were filtered offline with a bandpass of 0.1–30 Hz. Ocular artifacts were

corrected using the Ocular ICA transformation provided by BrainVision Analyzer 2.

Trials were segmented into epochs depending on the component of interest. Different pre-

stimulus intervals for each component of interest were chosen based on the analysis methods

used in the original work. For segments containing the MMN: 100 ms pre-stimulus to 500 ms

post-stimulus (as in [12]); the P300: 200 ms pre-stimulus to 1000 ms post-stimulus (as in [18]);

the N400: 100 ms pre-stimulus to 1000 ms post-stimulus (as in [26]). Segments for each sub-

task were baseline corrected together to remove mean pre-stimulus activity. A final artifact

rejection was performed automatically, removing segments with voltage steps greater than

50μV, voltage differences greater than 200μV in 200 ms, and channels with low activity

(<0.5μV). Segments were averaged together per condition, per participant for each subtask.

In each condition, peaks were automatically detected for each channel independently

within the following epochs: N1: 110–190 ms, P2: 180–280 ms, MMN: 120–240 ms, P300:

270–450 ms, N400: 300–700 ms. For further analysis, the latency and the mean amplitude of a

50 ms epoch around each peak were determined for each condition and participant.

Assessment battery

A battery of tasks was developed to evaluate increasing levels of auditory, cognitive, and lin-

guistic processing. As this battery will be used to assess the level of consciousness of comatose

patients, participants were informed that the auditory stimuli were of no relevance to the study

and were free to view a silent film. The working hypothesis is that comatose patients are inca-

pable of processing environmental stimuli, so the instructions were intended to better approxi-

mate the possible variability in the mental state of patients. The third group of participants

received additional instructions (see Behavioural manipulation section of Procedure). The

total time required to administer these tests was approximately 90 minutes. A brief description

of each task follows.

All stimulus items were normalized using WaveGain, which is a program that applies the

ReplayGain standard to sound files. The ReplayGain standard is a normalization technique

that is based on the perceptual loudness of sounds. Auditory stimulus delivery was calibrated

to 89 dB SPL using a continuous 800 Hz tone.

Oddball mismatch. The SON protocol [12, 18] has been demonstrated to invoke a P3b

component to the subject’s own name. This protocol was combined with an auditory oddball

task like that in [12] to which an additional novel sound was included in order to elicit the P3a

(c.f. [28]). These protocols were chosen due to their prior use with clinical populations includ-

ing comatose patients and those with UWS. The modifications introduced in the present study
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were intended to capture additional but related information on the processing levels already

captured by the original protocols.

Stimuli consisted of standard (80%) and deviant (14%) tones, a familiar novel sound (the

SON) (3%), and an unfamiliar novel sound that carried no linguistic content (a dog bark)

(3%). Tones were digitally generated sine waves of 800 Hz, with a standard tone duration of 75

ms and a deviant tone duration of 30 ms. The familiar novel was a digital recording of the sub-

ject’s name spoken by a native speaker of Canadian English in a neutral voice. The unfamiliar

novel was a digital recording of a dog barking. Stimuli were presented pseudorandomly (no

deviant or novel stimulus was preceded by less than two standard tones) in one block of 2000

items with a stimulus onset asynchrony (SOA) for the tones being 610 ms and 1220 ms for the

novels.

Pattern violation mismatch. A different MMN-eliciting task was included to determine

whether the type of expectancy violation would affect the resulting MMN component. This

task was a global pattern violation task (adapted from [29]) and used the same tone stimuli as

in the Oddball Mismatch task.

Tones were presented in an alternating pattern (i.e., ABABAB with, for example, A being

the longer tone and B the shorter) so that violations were produced when the alternating

sequence was altered by the double repetition of one of the stimuli (e.g., ABABBBAB). Stimuli

were presented in one block of 2000 items with 8% of the items being first repetition deviants

and 8% being second repetition deviants. The stimulus onset asynchrony was 610 ms.

Subject’s Own Name (SON). Similar to the oddball mismatch task above, this task

(adapted from [18]) used the subject’s own name to elicit the P300. This task was included to

compare the P300 characteristics to names presented within the oddball mismatch to those

presented alongside other names and words.

The subject’s first name is presented alongside five other Common First Names (CFN) (two

of the same gender as the participant and three of the opposite), and a list of ten mono- or di-

syllabic Non-Salient Other Words (NSOW). These non-salient other words were high in fre-

quency and matched the length of the subject’s own name. All words were digital recordings

of a speaker of Canadian English reading the words in a neutral voice. Each of these items

were presented 60 times for a total of 480 trials. The speaker did not represent a familiar voice

or person to the participant.

Semantic violation sentences. This task was a replication without behavioral responses of

the terminal-word semantic violation paradigm (as in [26]) and used 144 sentences of six to

twelve words recorded using natural speech. All sentences were digital recordings of a speaker

of Canadian English reading in a neutral voice. These sentences were divided into groups of 36

having either: a semantically congruent terminal word (Phoneme Match-Semantic Match),He
takes his coffee with milk and SUGAR; a semantically incongruent terminal word (Phoneme

Mismatch-Semantic Mismatch), The pizza was too hot to SING; a terminal word with low cloze

probability (Phoneme Mismatch-Semantic Match), The pigs wallowed in the PEN; or a phono-

logical foil having a terminal word that began with the same initial sound as the semantically

congruent word (Phoneme Match-Semantic Mismatch), The gambler had a streak of bad
LUGGAGE.

Word-word priming. The final element of the battery was a replication without behav-

ioral responses of the word-word auditory priming task from [25]. All words were recorded

using natural speech by a speaker of Canadian English reading in a neutral voice. All word

pairs had a valid word of English as a prime. The targets included valid words of English that

were either semantically congruent or incongruent, English pseudowords, or noise that was

generated by reversing a valid English word. A total of 160 pairs of words were presented with

1150 ms between words and three seconds between trials.
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Procedure

The study was approved by the Hamilton Integrated Research Ethics Board, Hamilton,

Ontario, Canada. All persons gave their written informed consent prior to their inclusion in

the study, in accordance with the ethical standards of the Declaration of Helsinki. Participants

completed a brief demographic questionnaire to ensure they met all inclusion criteria. While

seated in a dimly lit room, auditory stimuli were delivered via Etymotic ER-1 insert earphones

and participants were instructed to watch a silent video and disregard the sounds occurring in

the background. Between each subtest, participants were given a brief break.

Behavioral manipulation. The third group of participants were only given a subset of the

paradigms in the passive condition, as described above, and then were given the same para-

digms with instructions to press buttons depending on the paradigm.

For the SON paradigm, the participants were instructed to press a button when they heard

their own name. For the semantic violation sentences paradigm, they were instructed to press

one button when the sentence was grammatical, and another if the sentence was ungrammati-

cal. For the word-word priming paradigm, they were instructed to press one button if the

target word was a valid English word, and another if the target word was not a valid word of

English.

Statistical analyses

The ERP peak amplitude values were extracted by computing the mean value of 50 ms win-

dows centered on the detected ERP peak. ERP peak amplitude and latency data were analyzed

using separate mixed-design analysis of variance (ANOVA) models. The ANOVAs were con-

ducted as omnibus tests with Greenhouse-Geisser corrections being applied to the degrees of

freedom. All corrected probabilities are reported. Analyses were conducted separately for each

detected peak’s amplitude and latency in each subtask individually using Group (younger and

older adult) as a between-subjects factor, and Condition (levels dependent on protocol) and

ROI (Mid Frontal, Mid Central, and Mid Parietal) as within-subjects factors. The ROIs were

defined per the NEMO ROI plan [30], and as shown in Fig 1.

To determine if the MMN was present for the pattern violation mismatch paradigm, the

mean MMN peak amplitude for each combination of group, ROI, and deviant was compared

for significant differences from zero using a one-tailed t-test [31].

Results

Oddball mismatch

MMN. Grand average subtraction waveforms for both groups with peak topographic

maps are presented in Fig 2. For younger adults, 21 of 26 participants showed the oddball mis-

match, and for older adults, 12 of 13 participants showed the oddball mismatch.

It is readily apparent that the MMN occurs earlier in the younger adults than in the older

adults. It is also clear that waveform morphology differed between the two groups with youn-

ger adults exhibiting a small post-MMN positivity (P200) but no such response being seen in

older adults. Finally, the MMN topographical maps show a stronger and more focused scalp

distribution for younger adults than for older adults.

Descriptive statistics for the amplitude and latency for both groups and the three ROIs are

presented in Table 1. Mixed-design ANOVAs were conducted separately for amplitude and

latency with Group (younger and older adults) as a between-subjects factor and ROI (Mid

Frontal, Mid Central, and Mid Parietal) as a within-subject factor. Since the MMN is most
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readily detected by using subtractions between the deviant and standard conditions, there is

no Condition factor in the ANOVA.

There was only a main effect of ROI for amplitude (F(2,74) = 44.001, p< 0.001), with both

the Mid Central and Mid Frontal ROIs being significantly more negative than the Mid Parietal

ROI (all p0 s< 0.001). There were both main effects of group (F(1,37) = 25.694, p< 0.001) and

ROI (F(2,74) = 13.443, p< 0.001) for latency. The peaks for younger adults were significantly

earlier than the older adults, and both the Mid Central and Mid Frontal ROIs occurring signif-

icantly earlier than the Mid Parietal ROI (all p0 s< 0.02).

P300 response to novels. Grand average waveforms with peak topographic maps for

both groups are presented in Fig 3. For younger adults, 25 of 26 participants had both a P300

response to the FN and UFN, and for older adults, 13 of 13 participants had both a P300

response to the FN and UFN.

Descriptive statistics for the amplitude and latency for both groups, the three ROIs, and

both conditions are presented in Table 2. Both groups exhibited large P300s to both novel

sounds, with the familiar novel (FN) generating the larger amplitude on average.

To first determine if there was a significant difference between the two P3 generating condi-

tions and the standard baseline condition, and if there were any group differences, separate

mixed-design ANOVAs were conducted for amplitude and latency with Group (younger and

older adults) as a between-subjects factor, and Condition (Standard, Familiar novel, Unfamiliar

novel) as a within-subjects factor. There was only a main effect of condition for amplitude

(F(2,74) = 55.390, p< 0.001), and both a main effect of group (F(1,37) = 7.736, p< 0.001) and

condition (F(2,74) = 29.031, p< 0.001) for latency.

Fig 1. Graphical representation electrode members of the Regions of Interest (ROIs). Mid Frontal (red, 4

electrodes): F1, F2, Fz, AFz. Mid Central (green, 6 electrodes): C1, C2, Cz, FC1, FC2, FCz. Mid Parietal (blue, 6

electrodes): P1, P2, Pz, CP1, CP2, CPz.

https://doi.org/10.1371/journal.pone.0200793.g001
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Post-hoc tests showed that all three conditions differed significantly from each other in

terms of amplitude (all p0 s< 0.001), but only the FN and UFN conditions differed compared

to the standard condition in terms of latency (all p0 s< 0.001).

To better understand the difference between the two P3 generating conditions and their

scalp distribution, another pair of mixed-design ANOVAs were conducted for amplitude and

latency with Group (younger and older adults) as a between-subjects factor, and Condition
(Familiar novel and Unfamiliar novel) and ROI (Mid Frontal, Mid Central, and Mid Parietal)

as within-subjects factors.

For amplitude, there were main effects of both condition (F(1,37) = 5.020, p = 0.031) and

ROI (F(2,74) = 3.758, p = 0.048), a Group x ROI interaction (F(2,74) = 11.055, p< 0.001), and

a Group x Condition x ROI interaction (F(2,74) = 10.507, p< 0.001).

Post hoc tests showed that overall, the FN was significantly more positive than the UFN, the

Mid Central ROI was significantly more positive than the Mid Frontal ROI, but the Mid Parie-

tal ROI was not significantly different than the other ROIs. The three-way interaction is shown

graphically in Fig 4.

For latency, there was only a main effect of ROI (F(2,74) = 11.882, p< 0.001), where the

P300 scored in the Mid Parietal ROI peaked significantly later than those in the other two

ROIs (all p0 s< 0.001).

Fig 2. Grand average difference waveforms in the Mid Central ROI of the oddball mismatch MMN and

corresponding peak topographic maps. The mean difference response for the younger adult (blue) and older adult

(orange) groups are plotted. Dashed colored lines indicate the mean group latency from individually scored MMN

peak latencies. Scalp topography maps show voltage distributions at mean group peak latencies.

https://doi.org/10.1371/journal.pone.0200793.g002

Table 1. Means and standard errors of the mean of MMN peak amplitudes and latencies for the oddball mismatch.

ROI Younger Adults Older Adults

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal -3.23 (0.20) 158.5 (1.5) -2.88 (0.16) 186.0 (2.9)

Mid Central -3.10 (0.14) 163.3 (1.4) -3.00 (0.10) 191.2 (2.3)

Mid Parietal -2.37 (0.14) 167.9 (1.7) -2.19 (0.11) 196.8 (2.2)

https://doi.org/10.1371/journal.pone.0200793.t001

A framework for the extended monitoring of levels of cognitive function in unresponsive patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0200793 July 19, 2018 8 / 33

https://doi.org/10.1371/journal.pone.0200793.g002
https://doi.org/10.1371/journal.pone.0200793.t001
https://doi.org/10.1371/journal.pone.0200793


Pattern violation mismatch

Grand average waveforms and corresponding peak topographic maps for both groups are pre-

sented in Fig 5. For younger adults, 7 of 25 participants (one participant did not complete this

paradigm) showed a MMN to the pattern violation mismatch. For older adults, 4 of 12 partici-

pants (one participant did not complete this paradigm) showed a MMN to the pattern viola-

tion mismatch.

Two difference waves were generated: the difference between the first deviant and the

standard (MMN1), and the difference between the repetition of the deviant and the standard

(MMN2).

A summary of the mean amplitudes and latencies of these peaks for each group is presented

in Table 3.

The results from the MMN-detection t-tests are given in Table 4. P-values have been

adjusted using a per-group Bonferroni correction.

Fig 3. Grand average waveforms at Mid Central ROI to the familiar and unfamiliar novels and corresponding

peak topographic maps within the oddball mismatch. The mean responses to the familiar novel (FN) for younger

adults (blue) and older adults (green), and the unfamiliar novel (UFN) for younger adults (orange) and older adults

(red) groups are plotted. Dashed colored lines indicate the mean group latency from individually scored P300 peak

latencies. Scalp topography maps show voltage distributions at mean group peak latencies.

https://doi.org/10.1371/journal.pone.0200793.g003

Table 2. Means and standard errors of the mean of P300 peak amplitudes and latencies in response to novel stimuli in the oddball mismatch.

ROI Condition Younger Adults Older Adults

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal FN 6.58 (0.43) 364.4 (4.0) 9.49 (0.60) 353.3 (6.2)

UFN 5.87 (0.51) 362.4 (4.2) 7.71 (0.75) 336.6 (7.1)

Mid Central FN 8.26 (0.38) 366.6 (3.8) 9.47 (0.56) 345.9 (4.1)

UFN 6.49 (0.44) 359.2 (4.6) 8.72 (0.64) 330.5 (5.0)

Mid Parietal FN 9.18 (0.37) 375.7 (4.0) 7.53 (0.56) 377.0 (5.7)

UFN 6.92 (0.37) 372.2 (5.0) 7.04 (0.61) 365.9 (9.7)

https://doi.org/10.1371/journal.pone.0200793.t002
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Fig 4. The amplitude Group x Condition x ROI interaction to the P300 response within the oddball mismatch.

The mean values of each combination of group, condition, and ROI are plotted. Younger adults are represented with

red circles, and older adults with blue triangles. Error bars represent ±0.5 SEM.

https://doi.org/10.1371/journal.pone.0200793.g004

Fig 5. Grand average difference waveforms in the Mid Frontal ROI of the pattern violation mismatch MMN to

the first and second deviants and corresponding peak topographic maps. The mean difference response to the first

and second deviants for the younger adult and older adult groups are plotted. Young adult first deviant (blue), younger

adult second deviant (orange), older adult first deviant (green), and older adult second deviant (red). Dashed colored

lines indicate the mean group latency from individually scored MMN peak latencies. Scalp topography maps show

voltage distributions at mean group peak latencies.

https://doi.org/10.1371/journal.pone.0200793.g005
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Since only the response to the first deviant in the mid central and mid parietal ROIs was

found to be significantly different from zero, the mixed-design ANOVAs were separately con-

ducted for amplitude and latency with Group (younger and older adults) as a between-subjects

factor, and ROI (Mid Central and Mid Parietal) as a within-subjects factor, and only included

peaks from the first deviant.

A significant main effect of Group (F(1,35) = 5.740, p = 0.022) and a Group x ROI interac-

tion (F(1,35) = 6.920, p = 0.008) were found for peak amplitude. The younger adults had more

negative peaks across both regions, with the mid central region being most negative. The older

adults, however, had a more negative response in the mid parietal region than compared to the

mid central. There were no significant differences with regard to the latencies.

Subject’s Own Name (SON)

The grand average waveforms and peak topographic maps for SON, Common First Names,

and Non-salient Other Words for younger and older adults are presented in Fig 6. For younger

adults, 10 of 26 participants had a P300 response to their own name, and for older adults, 6 of

13 participants had a P300 response to their own name.

Descriptive statistics for the amplitude and latency for both groups, the three ROIs, and

both conditions are presented in Table 5.

Mixed-design ANOVAs were conducted separately for amplitude and latency with Group
(younger and older adults) as a between-subjects factor, and Condition (Subject’s Own Name,

Table 3. Means and standard errors of the mean of MMN peak amplitudes and latencies for pattern violation mismatches.

ROI Condition Younger Adults Older Adults

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal MMN1 -1.69 (0.15) 177.5 (2.6) -0.17 (0.11) 185.4 (3.4)

MMN2 -0.86 (0.14) 165.3 (2.7) -0.05 (0.24) 177.5 (4.4)

Mid Central MMN1 -1.54 (0.01) 174.1 (2.2) -0.40 (0.07) 181.1 (3.1)

MMN2 -0.71 (0.12) 169.7 (2.2) -0.20 (0.17) 173.1 (3.8)

Mid Parietal MMN1 -1.37 (0.11) 173.2 (2.3) -0.62 (0.09) 180.0 (3.0)

MMN2 -0.45 (0.12) 175.1 (2.8) -0.33 (0.12) 172.3 (3.8)

https://doi.org/10.1371/journal.pone.0200793.t003

Table 4. Means and standard errors of the mean of MMN peak amplitudes and latencies for pattern violation mismatches.

Group ROI Condition t-value Degrees of Freedom Adjusted p-value

Younger Adults Mid Frontal MMN1 -10 100 <0.001

MMN2 -6 100 <0.001

Mid Central MMN1 -10 100 <0.001

MMN2 -6 100 <0.001

Mid Parietal MMN1 -10 100 <0.001

MMN2 -3 100 0.003

Older Adults Mid Frontal MMN1 -2 50 0.370

MMN2 -0.4 50 1.000

Mid Central MMN1 -5 70 <0.001

MMN2 -1 70 0.754

Mid Parietal MMN1 -7 70 <0.001

MMN2 -3 70 0.0277

https://doi.org/10.1371/journal.pone.0200793.t004
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Non-salient Other Words, and Common First Names) and ROI (Mid Frontal, Mid Central,

and Mid Parietal) as within-subjects factors.

For peak amplitude, there were significant main effects of group (F(1,37) = 11.05, p = 0.002)

and condition (F(2,74) = 4.13, p = 0.025). There were also significant Group x ROI (F(2,74) =

31.17, p< 0.001) and Condition x ROI (F(4,148) = 3.99, p = 0.015) interactions. Generally, the

Fig 6. Grand average waveforms to a list of Common First Names, the Subject’s Own Name, and a list of Non-

salient Other Words and their corresponding peak topographic maps within the Subject’s Own Name paradigm.

A: The younger adult group’s average responses in the Mid Parietal ROI to the Common First Names (blue), Subject’s

Own Name (orange), and the list of Non-salient Other Words (green) are plotted. B: The older adult group’s average

responses in the Mid Frontal ROI to the Common First Names (blue), Subject’s Own Name (orange), and the list of

Non-salient Other Words (green) are plotted.

https://doi.org/10.1371/journal.pone.0200793.g006
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older adults had peaks that were more positive than the younger adults. The Own Name condi-

tion was the most positive, followed by other names, and then other words. The interaction

effects appear to be driven by the mid parietal region, where the difference between the two

groups is smaller.

For peak latency, there was only a significant main effect of ROI (F(2,74) = 18.529, p<
0.001) with the mid parietal peaks occurring later than the other two regions.

Semantic violation sentences

The grand average waveforms and peak topographic maps for the semantic violation sentences

for younger and older adults are presented in Fig 7. N400 peaks were scored for each condi-

tion, group, and ROI. The mean amplitudes and latencies are presented in Table 6. For youn-

ger adults, 19 of 26 participants had a N400 response to incongruent terminal words, and for

older adults, 5 of 13 participants had a N400 response to incongruent terminal words.

Mixed-design ANOVAs were separately conducted for amplitude and latency with Group
(younger and older adults) as a between-subjects factor, and Condition (Congruent, Incongru-

ent, Phonological Foil, and Low Probability) and ROI (Mid Frontal, Mid Central, and Mid Pari-

etal) as within-subjects factors. For amplitude, there were significant main effects of Group (F

(1,37) = 11.783, p = 0.001), Condition (F(3,111) = 12.364, p< 0.001), and ROI (F(2,74) = 9.297,

p = 0.003). Young adult peaks were overall significantly more negative than older adults (p<
0.001). Post hoc comparisons showed that Incongruent and Phonological Foil sentences were

both significantly more negative than Low Probability sentences (p0 s< 0.001), which in turn

were significantly more negative than Congruent (p = 0.007). There was no significant differ-

ence between Incongruent and Phonological Foil sentences. The mid parietal ROI was signifi-

cantly had peaks that were significantly more negative than both the mid frontal and mid

central ROIs, but those two ROIs were not significantly different from each other (p0 s< 0.001).

For latency, there was a significant main effect of ROI (F(2,74) = 32.457, p< 0.001), as

well as Group x Condition (F(3,111) = 3.521, p = 0.026), Condition x ROI (F(6,222) = 3.990,

p = 0.003), and Group x Condition x ROI (F(6,222) = 2.898, p = 0.019) interactions. Overall,

peaks in the mid parietal region occurred earlier than both of the other regions (p0 s< 0.001),

The three-way interaction is shown graphically in Fig 8.

Word-word priming

The grand average waveforms and peak topographic maps for the word-word priming para-

digm for younger and older adults are presented in Fig 9. N400 peaks were scored for each

Table 5. Means and standard errors of the mean of P300 peak amplitudes and latencies for the Subjects Own Name paradigm.

ROI Condition Younger Adults Older Adults

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal SON -0.10 (0.33) 444.8 (7.3) 2.44 (0.34) 420.8 (9.4)

NSOW -1.58 (0.37) 451.4 (7.0) 1.90 (0.48) 422.8 (11.8)

CFN -1.01 (0.18) 414.1 (7.8) 2.45 (0.33) 381.2 (7.6)

Mid Central SON 0.54 (0.28) 433.2 (5.4) 1.69 (0.27) 428.1 (8.2)

NSOW -1.63 (0.28) 450.6 (6.0) 1.53 (0.30) 412.0 (9.9)

CFN -0.68 (0.14) 420.8 (6.2) 2.08 (0.23) 387.3 (7.5)

Mid Parietal SON 1.35 (0.23) 461.6 (5.5) 0.85 (0.29) 482.5 (8.5)

NSOW -1.07 (0.25) 472.8 (6.5) -0.29 (0.23) 428.3 (10.9)

CFN -0.20 (0.12) 446.8 (6.4) 0.89 (0.14) 432.7 (10.6)

https://doi.org/10.1371/journal.pone.0200793.t005
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condition and each group. The mean amplitudes and latencies are presented in Table 7. For

younger adults, 7 of 25 participants (one participant did not complete this paradigm) had a

N400 response to incongruent target words, and for older adults, 4 of 11 participants (two par-

ticipants did not complete this paradigm) had a N400 response to incongruent target words.

Fig 7. Grand average waveforms to Congruent, Incongruent, Low Probability, and Phonological Foil terminal

words and their corresponding peak topographic maps within the semantic violation sentences paradigm. A: The

younger adult group’s average responses in the Mid Central ROI to the list of Congruent (blue), Low Probability

(orange), Incongruent (green) and Phonological Foil (red) terminal words are plotted. B: The older adult group’s

average responses in the Mid Parietal ROI to the list of Congruent (blue), Low Probability (orange), Incongruent

(green) and Phonological Foil (red) terminal words are plotted. Dashed colored lines indicate the mean group latency

from individually scored N400 peak latencies. Scalp topography maps show voltage distributions at mean group peak

latencies.

https://doi.org/10.1371/journal.pone.0200793.g007
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Mixed-design ANOVAs were conducted separately for amplitude and latency with Group
(younger and older adults) as a between-subjects factor, and Condition (Semantically Congru-

ent, Semantically Incongruent, Non-word, and Pseudoword) and ROI (Mid Frontal, Mid Cen-

tral, and Mid Parietal) as within-subjects factors.

For amplitude, there were significant main effects of group (F(1,34) = 10.424, p = 0.003)

and ROI (F(2,68) = 8.499, p = 0.003), and a Group x ROI interaction (F(2,68) = 23.155, p<
0.001). Younger adults peaks were generally more negative than the older adults, and the

mid parietal region was significantly more negative than the mid frontal region overall. Older

adults appear to have a more focused negativity towards the mid parietal region, whereas the

younger adults have a large negativity that is present across all three regions.

Table 6. Means and standard errors of the mean of N400 peak amplitudes and latencies for semantic violation sentences.

ROI Condition Younger Adults Older Adults

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal Incongruent -5.22 (0.29) 493.2 (9.8) -2.56 (0.36) 471.8 (14.3)

Low Probability -2.94 (0.35) 449.9 (12.1) -1.68 (0.33) 478.2 (19.7)

Phonological Foil -5.66 (0.34) 507.7 (10.7) -2.35 (0.38) 458.4 (15.6)

Congruent -1.48 (0.36) 436.9 (10.0) -1.58 (0.36) 547.1 (17.3)

Mid Central Incongruent -5.34 (0.22) 471.3 (7.5) -2.69 (0.30) 448.4 (10.5)

Low Probability -2.77 (0.25) 443.3 (8.8) -1.61 (0.03) 463.7 (15.3)

Phonological Foil -5.47 (0.23) 496.4 (7.8) -2.64 (0.28) 452.8 (10.1)

Congruent -1.59 (0.25) 419.7 (8.6) -1.12 (0.32) 507.8 (15.1)

Mid Parietal Incongruent -4.28 (0.20) 429.9 (6.4) -2.87 (0.34) 397.8 (8.1)

Low Probability -2.31 (0.22) 429.5 (8.1) -1.38 (0.16) 442.4 (14.5)

Phonological Foil -5.15 (0.22) 476.3 (6.4) -2.07 (0.22) 455.3 (10.1)

Congruent -0.91 (0.20) 401.8 (8.5) -0.80 (0.33) 414.0 (11.3)

https://doi.org/10.1371/journal.pone.0200793.t006

Fig 8. The latency Group x Condition x ROI interaction to the N400 response for the semantic violation sentences

paradigm. The mean values of each combination of group, condition, and ROI are plotted. Younger adults are

represented with red circles, and older adults with blue triangles. Error bars represent ±0.5 SEM.

https://doi.org/10.1371/journal.pone.0200793.g008
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There were main effects of condition (F(3,102) = 8.488, p< 0.001) and ROI (F(2,68) =

6.015, p = 0.009) in terms of peak latency, as well as a significant Group x Condition x ROI

interaction (F(6,204) = 3.765, p = 0.009). All non-word targets had significantly earlier peaks

compared to all other conditions (all p’s< 0.001), and peaks in the mid parietal region

Fig 9. Grand average waveforms to Congruent, Incongruent, Nonword, and Pseudoword target words and their

corresponding peak topographic maps within the word-word priming paradigm. A: The younger adult group’s

average responses in the Mid Central ROI to the list of Congruent (blue), Incongruent (orange), Nonword (green) and

Pseudoword (red) target words are plotted. B: The older adult group’s average responses in the Mid Parietal ROI to the

list of Congruent (blue), Incongruent (orange), Nonword (green) and Pseudoword (red) target words are plotted.

Dashed colored lines indicate the mean group latency from individually scored N400 peak latencies. Scalp topography

maps show voltage distributions at mean group peak latencies.

https://doi.org/10.1371/journal.pone.0200793.g009
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occurred significantly earlier than those in the other two regions (all p’s< 0.001). The three-

way interaction is shown graphically in Fig 10.

Behavioral manipulation

The analysis for the three paradigms used in the behavioral manipulation was the same as

described above.

SON. The grand average waveforms and peak topographic maps for SON, Common First

Names, and Non-salient Other Words for the Passive and Active tasks are presented in Fig 11.

Descriptive statistics for the amplitude and latency for both groups, the three ROIs, and both

conditions are presented in Table 8. In the passive condition, 9 of 13 participants had a P300

Table 7. Means and standard errors of the mean of N400 peak amplitudes and latencies for word-word priming.

ROI Condition Younger Adults Older Adults

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal Incongruent -3.64 (0.41) 462.3 (3.0) -0.58 (0.48) 451.7 (5.5)

Pseudoword -4.36 (0.42) 455.7 (4.3) 0.83 (0.39) 456.5 (5.8)

Nonword -3.40 (0.44) 429.7 (5.5) 0.56 (0.57) 397.6 (7.6)

Congruent -3.86 (0.38) 444.4 (4.3) 1.30 (0.57) 461.2 (5.6)

Mid Central Incongruent -4.06 (0.35) 457.1 (2.7) -1.49 (0.40) 451.3 (4.7)

Pseudoword -4.70 (0.29) 455.8 (3.6) -0.74 (0.33) 449.6 (5.6)

Nonword -3.14 (0.35) 415.0 (4.4) 0.50 (0.34) 400.5 (6.2)

Congruent -3.72 (0.32) 450.0 (3.2) 0.95 (0.47) 456.4 (5.2)

Mid Parietal Incongruent -3.58 (0.30) 451.7 (3.3) -2.73 (0.42) 441.9 (5.5)

Pseudoword -4.20 (0.21) 451.7 (3.5) -2.62 (0.28) 442.7 (5.9)

Nonword -3.26 (0.30) 405.4 (3.7) -0.47 (0.24) 418.8 (6.3)

Congruent -3.29 (0.28) 436.5 (3.9) -0.40 (0.39) 435.3 (6.8)

https://doi.org/10.1371/journal.pone.0200793.t007

Fig 10. The latency Group x Condition x ROI interaction to the N400 response for the word-word priming

paradigm. The mean values of each combination of group, condition, and ROI are plotted. Younger adults are

represented with red circles, and older adults with blue triangles. Error bars represent ±0.5 SEM.

https://doi.org/10.1371/journal.pone.0200793.g010
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response to their own name, whereas in the active condition, 13 of 13 participants had a P300

response to their own name.

Repeated measures ANOVAs were conducted separately for amplitude and latency with

Behavioral Condition (Passive and Active), Task Condition (Subject’s Own Name, Non-salient

Fig 11. Grand average waveforms at Cz to a list of Common First Names, the Subject’s Own Name, and a list of

Non-salient Other Words and their corresponding peak topographic maps within the Subject’s Own Name

paradigm with the behavioral manipulation. A: The average responses to the Common First Names (blue), Subject’s

Own Name (orange), and the list of Non-salient Other Words (green) in the Passive condition are plotted. B: The

average responses to the Common First Names (blue), Subject’s Own Name (orange), and the list of Non-salient Other

Words (green) in the Active condition are plotted. Dashed colored lines indicate the mean group latency from

individually scored P300 peak latencies. Scalp topography maps show voltage distributions at mean group peak

latencies.

https://doi.org/10.1371/journal.pone.0200793.g011
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Other Words, and Common First Names), and ROI (Mid Frontal, Mid Central, and Mid Pari-

etal) as factors. For amplitude, there were significant main effects of task condition (F(2,44) =

20.370, p< 0.001) and ROI (F(2,44) = 5.760, p = 0.019), as well as Behavioural Condition x

Task Condition (F(2,44) = 8.450, p = 0.004), Task Condition x ROI (F(4,88) = 11.210, p<
0.001), and Behavioural Condition x Task Condition x ROI (F(4,88) = 5.530, p = 0.009) inter-

actions. Peaks to the subject’s own name condition were significantly more positive than the

other two conditions across behavioural condition and regions. Peaks were also, on average,

significantly more positive in the mid parietal region than in the mid frontal region, but no

significant difference was found between the mid central region and the other regions. The

Behaviour x Task Condition interaction is attributable to the larger P300 amplitude to the

SON in the Active compared to the Passive condition; an effect not found in the other two task

conditions. The three-way interaction is shown graphically in Fig 12.

Table 8. Means and standard errors of the mean of P300 peak amplitudes and latencies for the active and passive versions of the Subjects Own Name paradigm.

ROI Condition Active Passive

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal SON 9.86 (1.00) 385.1 (5.7) 4.14 (0.44) 418.1 (9.8)

NSOW 2.52 (0.65) 411.5 (10.8) 3.17 (0.96) 452.3 (13.1)

CFN 2.79 (0.29) 385.7 (9.6) 1.82 (0.80) 454.3 (14.5)

Mid Central SON 13.28 (0.81) 400.5 (7.2) 4.92 (0.50) 425.6 (7.6)

NSOW 2.58 (0.45) 444.3 (10.7) 2.94 (0.91) 477.3 (10.5)

CFN 2.77 (0.23) 387.8 (7.2) 2.2 (0.70) 449.5 (11.1)

Mid Parietal SON 15.46 (0.84) 408.1 (7.2) 5.46 (0.53) 446.2 (7.7)

NSOW 2.69 (0.41) 464.4 (11.4) 3.05 (0.96) 498.3 (10.8)

CFN 2.38 (0.2) 394.0 (6.9) 2.45 (0.73) 454.0 (9.8)

https://doi.org/10.1371/journal.pone.0200793.t008

Fig 12. The amplitude Behavioural Condition x Task Condition x ROI interaction to the P3 response for the

Subject’s Own Name paradigm. The mean values of each combination of behavioural condition, task condition, and

ROI are plotted. The passive task condition is represented with red circles, and the active task condition with blue

triangles. Error bars represent ±0.5 SEM.

https://doi.org/10.1371/journal.pone.0200793.g012

A framework for the extended monitoring of levels of cognitive function in unresponsive patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0200793 July 19, 2018 19 / 33

https://doi.org/10.1371/journal.pone.0200793.t008
https://doi.org/10.1371/journal.pone.0200793.g012
https://doi.org/10.1371/journal.pone.0200793


Peak latency had only significant main effects of behavioural condition (F(1,22) = 5.465,

p = 0.029), task condition (F(2,44) = 4.190, p = 0.030), and ROI (F(2,44) = 4.190, p = 0.008).

Overall, the P3 peaked earlier in the active condition compared to the passive condition. The

P3 also peaked earlier to the subject’s own name and to other names than to other words, and

was on average later in the mid parietal region than the other two regions.

Semantic violation sentences. The grand average waveforms and peak topographic maps

for the semantic violation sentences for the Passive and Active tasks are presented in Fig 13.

N400 peaks were scored for each task condition and each behavioral condition. The mean

amplitudes and latencies are presented in Table 9. In the passive condition, 4 of 13 participants

had a N400 response to incongruent terminal words, whereas in the active condition, 9 of 13

participants had a N400 response to incongruent terminal words.

Repeated measures ANOVAs were conducted separately for amplitude and latency with

Behavioral Condition (Passive and Active), Task Condition (Congruent, Incongruent, Phono-

logical Foil, and Low Probability), and ROI (Mid Frontal, Mid Central, and Mid Parietal) as

factors. For amplitude, there were significant main effects of Task Condition (F(3,66) =

4.099, p = 0.023), and ROI (F(2,44) = 25.535, p< 0.001), and a significant Behavioural

Condition x ROI interaction (F(2,44) = 5.559, p = 0.023). Overall, the response to Incongru-

ent endings was the most negative, although there was no significant difference between

Incongruent and Phonological Foil endings. All three regions were significantly different

from each other, with the mid frontal being the most negative, and the mid parietal being the

least negative. The interaction appears to be driven by a reduction in the difference between

the active and passive behavioural condition in the mid parietal region, compared to the

other regions.

For latency, there was only a significant main effect of ROI (F(2,44) = 12.036, p< 0.001)

with mid parietal peaks occurring significantly earlier than those in the mid frontal region.

Word-word priming. The grand average waveforms and peak topographic maps for the

word-word priming paradigm for the Passive and Active conditions are presented in Fig 14.

N400 peaks were scored for each condition and each group. The mean amplitudes and laten-

cies are presented in Table 10. In the passive condition, 2 of 13 participants had a N400

response to incongruent target words, whereas in the active condition, 5 of 13 participants had

a N400 response to incongruent terminal words.

Repeated measures ANOVAs were conducted separately for amplitude and latency with

Behavioral Condition (Passive and Active), Task Condition (Semantically Congruent, Semanti-

cally Incongruent, Non-word, and Pseudoword), and ROI (Mid Frontal, Mid Central, and

Mid Parietal) as factors.

For peak amplitude, there was a significant main effect of Task Condition (F(3,66) = 4.032,

p = 0.015) with the responses to the Congruent, Incongruent, and Pseudoword targets all

being significantly more negative than the response to Non-word targets (all p’s< 0.001), and

a significant main effect of ROI (F(2,44) = 26.671, p< 0.001), with the mid frontal and mid

central regions being significantly more negative than the mid parietal. Additionally, there was

a significant Behavioural Condition x Task Condition (F(3,66) = 3.054, p = 0.042) interaction

where all target words except for the Non-word targets had a more negative response when

actively responded to, and a significant Behavioural Condition x ROI (F(2,44) = 7.430,

p = 0.010) interaction where the active condition became less negative in more posterior sites,

but the passive condition was the same throughout.

For peak latency, there were only significant main effects of Task Condition (F(3,66) =

4.841, p = 0.005), with Non-word targets occurring significantly earlier than the responses to

all other targets (all p’s< 0.001), and ROI (F(2,44) = 13.364 p< 0.001) with mid parietal peaks

occurring earlier than those in the mid frontal region.
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Discussion

We recorded ERPs from 26 younger and 13 older healthy adults in five paradigms eliciting the

MMN, P300, and N400 components. As one of the goals of this study was to evaluate and select

paradigms that were capable of strongly eliciting the ERP components of interest, we will

Fig 13. Grand average waveforms at Cz to Congruent, Incongruent, Low Probability, and Phonological Foil

terminal words and their corresponding peak topographic maps within the semantic violation sentences

paradigm with the behavioral manipulation. A: The average responses to the list of Congruent (blue), Low

Probability (orange), Incongruent (green) and Phonological Foil (red) terminal words in the Passive condition are

plotted. B: The average responses to the list of Congruent (blue), Low Probability (orange), Incongruent (green) and

Phonological Foil (red) terminal words in the Active condition are plotted. Dashed colored lines indicate the mean

group latency from individually scored N400 peak latencies. Scalp topography maps show voltage distributions at

mean group peak latencies.

https://doi.org/10.1371/journal.pone.0200793.g013
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examine each grouping in turn. The number of participants who exhibited an ERP component

in each paradigm is given in Table 11.

Two paradigms were used to elicit the MMN, differing primarily in the type of violation. As

illustrated in Figs 2 and 5, although both paradigms produced negativities, those generated

using the classical oddball paradigm (Fig 2) were larger (in some cases 4 μV), and more clearly

defined than those seen in the pattern violation paradigm (Fig 5).

The oddball MMN had significant latency differences between the age groups, with older

adult participants having later peak latencies compared to the younger adult group, and

latency differences between conditions. The pattern violation paradigm did not generate

strong MMNs, however there was a difference in amplitudes between groups, with younger

participants having amplitudes that were almost four times larger than the older participants.

This age-related attenuation effect is consistent with other studies which also found reduced

MMN amplitudes at relatively short inter-stimulus intervals in older adult participants. [32–

35] Since the strongest and most reliable MMN was generated with the auditory oddball para-

digm, that would be one of the paradigms included in the suggested battery.

Two paradigms were used to elicit the P300: novel sounds within an auditory oddball para-

digm (Fig 3), and a subject’s own name (SON) paradigm that included other names and words

(Fig 6). The difference in the size of the waveforms between the two paradigms is quite notice-

able. The N1 and P2 components in the oddball paradigm are almost 300% larger than those

in the SON paradigm. Unexpectedly, the P300 to the subject’s own name, which should be

quite sizable, is late and very small in the SON paradigm employed here; but appears in the

correct time window and is larger when embedded within tones. Within the oddball paradigm,

there is a significant difference in amplitude between the familiar and unfamiliar novel condi-

tions and the standard tone. There was also a significant difference between groups and

between conditions.

The P300 in the SON paradigm was expected to be largest to the subject’s own name, how-

ever that is not the case for the older participants (Fig 6). These participants exhibited a positiv-

ity to the list of other common names, but not their own. Younger participants showed a later

and sustained positivity to their own name compared to the other common names; even this

response is, however, relatively small. Both groups exhibit an N400-like component to the list

of other words. Overall, the younger participants displayed larger waveforms, which is seen as

a significant main effect of group. These data would appear to support the previous claims that

Table 9. Means and standard errors of the mean of N400 peak amplitudes and latencies for the active and passive versions of semantic violation sentences.

ROI Condition Active Passive

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal Incongruent -10.29 (0.84) 467.3 (13.4) -5.26 (1.03) 465.2 (17.8)

Low Probability -4.98 (0.94) 435.8 (14.4) -3.34 (0.65) 379.6 (13.7)

Phonological Foil -10.16 (1.10) 431.4 (13.8) -4.42 (0.60) 429.1 (14.6)

Congruent -5.03 (0.87) 432.6 (18.1) -3.17 (0.59) 473.8 (19.0)

Mid Central Incongruent -7.83 (0.45) 427.1 (11.7) -4.54 (0.80) 453.1 (12.8)

Low Probability -3.16 (0.54) 406.1 (11.1) -2.54 (0.53) 391.1 (11.4)

Phonological Foil -7.58 (0.61) 424.4 (8.5) -4.24 (0.51) 424.2 (11.3)

Congruent -3.11 (0.43) 381.9 (11.1) -2.21 (0.43) 467.3 (15.9)

Mid Parietal Incongruent -4.65 (0.31) 407.1 (10.8) -3.44 (0.81) 417.5 (11.4)

Low Probability -1.30 (0.47) 396.1 (11.6) -1.81 (0.56) 401.3 (10.0)

Phonological Foil -4.85 (0.53) 419.3 (8.1) -3.13 (0.50) 421.8 (9.9)

Congruent -1.76 (0.41) 356.5 (7.9) -1.31 (0.50) 442.7 (14.9)

https://doi.org/10.1371/journal.pone.0200793.t009
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the P300 may not always be a reliable enough measure to be used in a clinical setting. [36–38]

As the P300 was most reliably elicited to the novel stimuli in the auditory oddball paradigm

without requiring attending to the sounds, we would again recommend the use of this para-

digm in the suggested battery. This provides the added benefit of eliciting two components

with only one stimulation paradigm.

Fig 14. Grand average waveforms at Cz to Congruent, Incongruent, Nonword, and Pseudoword target words and

their corresponding peak topographic maps within the word-word priming paradigm with the behavioral

manipulation. A: The average responses to the list of Congruent (blue), Incongruent (orange), Nonword (green) and

Pseudoword (red) target words in the Passive condition are plotted. B: The average responses to the list of Congruent

(blue), Incongruent (orange), Nonword (green) and Pseudoword (red) target words in the Active condition are

plotted. Dashed colored lines indicate the mean group latency from individually scored N400 peak latencies. Scalp

topography maps show voltage distributions at mean group peak latencies.

https://doi.org/10.1371/journal.pone.0200793.g014
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The N400 was elicited using two paradigms of increasing semantic context: sentences with

a terminal-word manipulation (Fig 7) and word-word priming (Fig 9). In both paradigms, no

explicit instruction was given to participants to attend to any semantic relations between the

words. In the case of the word-word priming, there was again an effect of age with the younger

participants having larger N400’s than the older. Across groups, there was a significant differ-

ence between the non-word targets and all other target words, with the non-words having ear-

lier peak latencies.

The semantic violation sentences showed significant age effects, with younger participants

having larger N400’s than older. They also showed significant condition effects, with incongru-

ent and phonological foil endings resulting in larger N400 amplitudes than the low probability

and congruent conditions. The responses to the incongruent endings in the semantic violation

sentences were generally more negative than the responses to the incongruent targets in the

word-word priming. Considering the results up to this point, the semantic violation sentences

appear to have a better ability to elicit the N400 without explicit instruction to attend to the

sentences.

To better understand the effect of attention on these paradigms, we recorded ERPs from 13

other young healthy adults while they first passively experienced the stimuli, and then actively

responded to what they were hearing.

Table 10. Means and standard errors of the mean of N400 peak amplitudes and latencies for the active and passive versions of word-word priming.

ROI Condition Active Passive

Amplitude (SEM) Latency (SEM) Amplitude (SEM) Latency (SEM)

Mid Frontal Incongruent -9.94 (0.65) 448.0 (5.4) -3.97 (0.73) 430.8 (6.3)

Pseudoword -10.29 (1.18) 438.3 (6.7) -4.06 (0.88) 448.7 (5.4)

Nonword -5.10 (1.31) 410.6 (6.6) -4.22 (0.83) 418.5 (8.0)

Congruent -10.46 (1.35) 433.4 (7.0) -3.80 (0.84) 436.4 (6.6)

Mid Central Incongruent -8.84 (0.49) 437.3 (4.0) -3.77 (0.51) 431.6 (4.8)

Pseudoword -8.46 (0.92) 423.3 (5.2) -3.55 (0.59) 429.1 (4.6)

Nonword -1.28 (0.83) 389.3 (4.2) -2.67 (0.76) 402.1 (6.4)

Congruent -7.95 (0.94) 421.5 (6.2) -3.54 (0.58) 432.1 (6.6)

Mid Parietal Incongruent -5.29 (0.46) 434.3 (4.1) -2.89 (0.39) 442.0 (5.0)

Pseudoword -4.71 (0.83) 423.7 (4.2) -1.80 (0.63) 418.5 (4.6)

Nonword 1.62 (0.60) 373.0 (3.5) -1.76 (0.72) 393.1 (6.2)

Congruent -3.49 (0.73) 406.6 (6.3) -2.25 (0.54) 427.5 (6.7)

https://doi.org/10.1371/journal.pone.0200793.t010

Table 11. Counts of participants exhibiting the desired ERP response in each paradigm.

Passive-only Younger Older

Oddball mismatch (MMN) 21/26 12/13

Pattern violation mismatch 7/25 4/12

Oddball mismatch (P300 to novels) 25/26 13/13

SON 10/26 6/13

Semantic violation sentences 19/26 5/13

Word-word priming 7/25 4/11

Behavioural manipulation Passive Active

SON 9/13 13/13

Semantic violation sentences 4/13 9/13

Word-word priming 2/13 5/13

https://doi.org/10.1371/journal.pone.0200793.t011
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Overall, the P300 responses to the SON and the N400 responses to semantically incongru-

ent sentence endings and target words were much larger in the active task condition than in

the passive task condition. This is in line with the amplitude differences reported in [39] where

actively responded to oddball stimuli elicited more positive P300 responses than those that

were passively listened to. This gives reason to always provide instruction to attend to the sti-

muli irrespective of the participant’s ability.

The use of ERPs to assess the clinical state of an individual is not without its complexities.

ERPs are in some ways ideally suited to examine the cognitive consequences of brain injury

because different ERP components are so strongly related to specific cognitive functions [40].

EEG and ERPs in clinical contexts have many advantages: 1. The ability of most people to

tolerate the less intimidating environment that characterize other brain recording systems

(e.g., MRI); 2. The close relationship between particular ERP components and particular

sensory, perceptual and cognitive processes—a feature shared only with the more expensive

magnetoencephalography (MEG) methodology; 3. The lowest costs of any neuroimaging/

recording method; and, 4. The exquisite sensitivity of ERP measures to many of the most

common manifestations of CNS pathology, particularly acquired brain injury (ABI)–that is,

generalized response latency delays, reduced response amplitudes and most notably domain-

specific changes in latency/amplitude that reveal compromised functional integrity in atten-

tion, memory and language (see [41]).

Over the years, however, there has been the belief that ERPs, and in particular the oddball

P300, are not sufficiently stable to serve as clinical tools. [36–38] This view has often been con-

flated to include later-occurring responses that are related to higher level cognitive functions.

While the MMN has long demonstrated its stability and relevance as a clinical tool, there

remains some skepticism regarding the oddball P300 [42]. However, when evaluated against

gold standard medical assays, the P300 recorded using the oddball paradigm fares well.

Using the coefficient of variation (CV) [43] and normative data from various standard

biomedical test norms [44], a comparison was made of these tests’ CVs with CVs derived from

literature-based data for P300 amplitude and latency [42]. Lower CVs imply a leptokurtic dis-

tribution rather than a platykurtic distribution making lower CVs preferable because any

observed atypical response can more reliably be attributed to true abnormality rather than

an uncontrolled source of variance. P300 amplitudes’ CV values were comparable to assays for

triglycerides used for assessing heart health—these values being amongst the highest in the col-

lection of standard clinical assays evaluated. In contrast, CVs for P300 latencies were compara-

ble to the lowest CVs recorded for standard clinical assays such as those for hemoglobin and

potassium, some tests for thyrotropin, and considerably lower than assays for cholesterol and

glucose [42].

As impressive as these findings are, however, there remains a question about the test-retest

reliability of the oddball P300 in individual subjects; and without reliability at the individual

subject level there will be limited adoption of this protocol in clinical settings. Although a

strong case is made for the clinical utility of the P300, Polich and Herbst acknowledge that pro-

tocols enabling improved sensitivity and discriminability are needed before P300 is adopted

more widely for use in clinical settings [42].

Further criticisms of the utility of the P300 in clinical settings include Picton [36], who

suggested that it reflected little beyond the fact that an individual was capable of responding

differentially to frequently and infrequently occurring stimuli. He also identified the lack of

relevance of the oddball P300 for a patient because it measured such a relatively inconsequen-

tial activity. A further limitation of the oddball P300 is its non-specificity; the response is fre-

quently found to be delayed in latency and/or smaller in amplitude in a wide range of CNS

pathologies but specific to none. These characteristics are not in and of themselves “fatal flaws”
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for the P300 if the paradigm can be constructed to target a specific function in a highly reliable

manner.

[45] used a local/global paradigm and found in several experiments that a late positivity

(the P3b) was obtained reliably if and only if participants were consciously aware of the global

regularity pattern and violations of that pattern. That is, an unengaged participant did not

exhibit a P3b–a finding that is compatible with earlier criticisms of the traditional P300 para-

digms. In fact, Bekinschtein et al. included a “mind wandering” condition in their work and

demonstrated an absence of the late positivity indicative of a failure to recognize the global

stimulus structure and its violations. At the same time, however, the MMN was observed reli-

ably and in accord with their findings in MCS patients was interpreted as reflecting “conscious

processing of local regularities”.

Despite concerns surrounding the use of classic oddball paradigms as clinical tests, they

retain clinical assessment potential. However, as is often the case with many clinically useful

assessment tests, classic oddball tests are best employed in conjunction with other tests that

address more specific cognitive processes. Also, the entire test context should not be ignored

any more than it would be ignored in a more traditional neuropsychological assessment con-

text. That is, the choice of test, test sequence, and the initial difficulty level should be chosen on

the basis of patient performance, and to the extent possible, clinical judgment.

Connolly and colleagues have proposed a complementary set of criticisms and suggestions

that address the relevance of the testing paradigms to the individual patient and to the pathol-

ogy being targeted; an approach that increases the reliability of the P300 at the individual sub-

ject level [37, 38]. Building on earlier arguments [36], they have noted that it is possible to

address both the relevance to the patient issue and the reliability of the P300 by implementing

protocols that are transparently relevant to the patient and ask more of the patient than differ-

entiating stimuli that occur often from those that do not. For example, Connolly and col-

leagues [46] adapted the vocabulary tests in the Wechsler Intelligence Scale for Children III

(WISC-III) [47] and the Wechsler Adult Intelligence Scale-Revised as a Neuropsychological

Instrument (WAIS-R-NI) [48] in order to test receptive language skills and vocabulary knowl-

edge in a group of younger adults.

The specificity of the P300 component as an assessment measure emphasizes the impor-

tance of task choice. In particular, specificity for the P300 was found to be 90.5% for the WIS-

C-III, that indicated that 19/21 healthy participants showed the expected response statistically

while specificity for the WAIS-R was 85.7% (18/21 participants). It is important to note that

when these two psychometric tests were combined, the P300 specificity value was 90.5% (19/

21 participants).

These specificity values were obtained when participants’ behavior (button presses to cor-

rect and incorrect choices) was taken into account by creating the averaged P300 with correctly

identified deviant stimuli only. Connolly and colleagues recognized that relying on an ERP

component whose specificity was possibly dependent on identifying a participant’s behavioral

accuracy and removing data obtained only when participants responded inaccurately might

be of little value in trying to assess the cognitive ability of a patient incapable of executing any

type of behavioral response. However, when behavioral responses were not taken into account

and averaged P300 responses were obtained without removing incorrectly identified trials

(thus “simulating” a non-responsive participant), specificity values for the WISC-III actually

increased to 95.2% (20/21 participants), but declined for the WAIS-R, 66.6% (14/21 partici-

pants). But when the two tests were combined for assessment purposes, specificity was 90.5%

(19/21 participants)–precisely the same value obtained when behavior was accounted for.

These findings demonstrate not merely the utility of this particular combination of tests in pro-

viding significant information about individuals’ cognitive function but more to the point,
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they provide a demonstration that the use of ERPs generally and, in this case, P300 specifically,

can be used with confidence in nonresponsive populations in the knowledge that one is obtain-

ing accurate and valuable psychometric information about that individual’s cognitive status.

Of course, context within a particular protocol is equally important. We have shown that

the classic MMN oddball design of a frequently occurring series of “standard” tones inter-

spersed with a less frequently occurring “deviant” tone results in larger MMN responses than

an alternating pattern of tones (A,B) serving as the standard with a tone repetition (e.g., A,B,B,

A,B) serving as the deviant. The P300 generated the strongest response when the subject’s own

name was put together with tones, which are acoustically very different, rather than with other

words and names, which are very similar in nature. The strongest N400 response was gener-

ated when the semantic violation was put in a sentence context rather than in a less semanti-

cally rich word-word priming environment. [49, 50]

The role of context strength is critically important when evaluating language comprehen-

sion generally and even more so when using ERPs in clinical environments. The choice of

either a weaker word-word priming task instead of a stronger sentence design or the failure to

ensure that sentences are structured for maximum contextual strength can result in healthy

controls failing to show hypothesized N400 effects. This failure to establish a clear baseline

control makes interpretation of patients’ failures to show N400 responses impossible to inter-

pret. [51, 52]

When comparing the two cohorts of younger participants in their performance on the two

N400 paradigms, we see a decline in the number of responding participants in the smaller, sec-

ond cohort. However, the pattern of the decline in performance with the reduction in strength

of context still holds, both in the passive and active conditions in the second cohort. In both

behavioural conditions, the number of responding participants to the word-word priming par-

adigm are nearly half of those who responded to the semantic violation sentences. While there

are paradigms that are able to elicit the N400 with even stronger contexts, such as those used

by van Berkum et al. [53] that place the violation in the middle of the sentence or within a

larger discourse, care must be taken to balance the cognitive processing requirements of those

paradigms with their contextual strength. These paradigms may be too taxing on patients with

traumatic brain injuries or diminished capacity, which may lead to false negatives or cases

with too few good trials for averaging.

It is important to reiterate that the only instruction given to the participants in the first

cohort was that they need not pay attention to the stimuli. As has been noted elsewhere (see

[24] for a review of N400 and attention, and [54] for a discussion of the P300 and attention),

not attending to the stimuli can significantly reduce the amplitude of an ERP response. As was

seen in from the first cohort, the most robust responses were generated when the stimuli were

salient and contextually different enough to attract attention regardless of whether the stimuli

were being attended to explicitly or not. An enhancement of this effect was seen when the par-

ticipants were instructed to pay attention to the stimuli.

These results demonstrate the effects of attention on ERPs and by implication the processes

they reflect. They also show that these effects are altered by the aging process. For example,

N400 amplitudes to semantic violations in sentences were observed in both the younger and

older adult participants; however, N400 amplitudes were reduced by 50% in the older adults.

This same pattern of age-related attenuation is seen in several other paradigms, like the P300

response to the oddball names, the pattern violation MMN, and the word-word priming.

Given that at least 75% of strokes in Canada are in people over the age of 65 [55], and that

coma is often a consequence of stroke, it is very likely that this age-related ERP degradation

may become a constant background feature that should be acknowledged and accounted for

in future work. Similarly, providing instructions to patients regardless of diagnosis and
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apparent state of consciousness as well as using the most stable paradigms available from the

literature are all procedurally essential for providing patients the opportunity to generate the

most robust responses of which they may capable.

In summary, we recommend the use of an auditory oddball paradigm that includes novel

stimuli to elicit the MMN and P300, and semantic violation sentences to elicit the N400. As we

have demonstrated and as illustrated in Table 11, on average, almost 90% of all participants

showed a MMN to the auditory oddball paradigm, and nearly 100% of all participants showed

a P300 to the novel stimuli in this paradigm. While the proportion of participants responding

to the semantic violation sentences was markedly lower than the auditory oddball paradigm,

the stronger context provided by the sentences improved the response rate compared to using

a word-word priming paradigm. There was also an enhancing effect of paying attention to

rather than ignoring the semantic violation sentences, with the number of participants show-

ing a N400 doubling. This combination of paradigms appears to allow for a robust response in

the absence of explicit attention, and are reinforced when the participant is instructed to pay

attention. It is also important to note that when applying these tests to clinical environments,

that the absence of a positive response should not be interpreted as a negative response. The

purpose of these assessments, at least in their current state, should be to better inform clini-

cians and enable to start rehabilitation treatments earlier in cases of positive results.

Supporting information

S1 Fig. Grand average difference waveforms of the oddball mismatch MMN and corre-

sponding peak topographic maps. The mean difference response for the younger adult (blue)

and older adult (orange) groups are plotted for the (A) Mid Frontal, (B) Mid Central, and (C)

Mid Parietal ROIs. Dashed colored lines indicate the mean group latency from individually

scored MMN peak latencies. Scalp topography maps show voltage distributions at mean group

peak latencies.

(TIF)

S2 Fig. Grand average waveforms to the familiar and unfamiliar novels and corresponding

peak topographic maps within the oddball mismatch. The mean responses to the familiar

novel (FN) for younger adults (blue) and older adults (green), and the unfamiliar novel (UFN)

for younger adults (orange) and older adults (red) groups are plotted for the (A) Mid Frontal,

(B) Mid Central, and (C) Mid Parietal ROIs. Dashed colored lines indicate the mean group

latency from individually scored P300 peak latencies. Scalp topography maps show voltage dis-

tributions at mean group peak latencies.

(TIF)

S3 Fig. Grand average difference waveforms of the pattern violation mismatch MMN to

the first and second deviants and corresponding peak topographic maps. The mean differ-

ence response to the first and second deviants for the young adult and older adult groups are

plotted for the (A) Mid Frontal, (B) Mid Central, and (C) Mid Parietal ROIs. Young adult first

deviant (blue), young adult second deviant (orange), older adult first deviant (green), and

older adult second deviant (red). Dashed colored lines indicate the mean group latency from

individually scored MMN peak latencies. Scalp topography maps show voltage distributions at

mean group peak latencies.

(TIF)

S4 Fig. Grand average waveforms at all ROIs to a list of Common First Names, the Sub-

ject’s Own Name, and a list of Non-salient Other Words and their corresponding peak

topographic maps within the Subject’s Own Name paradigm. The younger adult group’s
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average responses in the (A) Mid Frontal, (C) Mid Central, (E) Mid Parietal ROIs, and the

older adult group’s average responses in the (B) Mid Frontal, (D) Mid Central, (F) Mid Parietal

ROIs to Common First Names (blue), Subject’s Own Name (orange), and the list of Non-

salient Other Words (green). Dashed colored lines indicate the mean group latency from indi-

vidually scored P300 peak latencies. Scalp topography maps show voltage distributions at

mean group peak latencies.

(TIF)

S5 Fig. Grand average waveforms at all ROIs to Congruent, Incongruent, Low Probability,

and Phonological Foil terminal words and their corresponding peak topographic maps

within the semantic violation sentences paradigm. The younger adult group’s average

responses in the (A) Mid Frontal, (C) Mid Central, (E) Mid Parietal ROIs, and the older adult

group’s average responses in the (B) Mid Frontal, (D) Mid Central, (F) Mid Parietal ROIs to

Congruent (blue), Low Probability (orange), Incongruent (green) and Phonological Foil (red)

terminal words are plotted. Dashed colored lines indicate the mean group latency from indi-

vidually scored N400 peak latencies. Scalp topography maps show voltage distributions at

mean group peak latencies.

(TIF)

S6 Fig. Grand average waveforms at all ROIs to Congruent, Incongruent, Nonword, and

Pseudoword target words and their corresponding peak topographic maps within the

word-word priming paradigm. The younger adult group’s average responses in the (A) Mid

Frontal, (C) Mid Central, (E) Mid Parietal ROIs, and the older adult group’s average responses

in the (B) Mid Frontal, (D) Mid Central, (F) Mid Parietal ROIs to the list of Congruent (blue),

Incongruent (orange), Nonword (green) and Pseudoword (red) target words are plotted.

Dashed colored lines indicate the mean group latency from individually scored N400 peak

latencies. Scalp topography maps show voltage distributions at mean group peak latencies.

(TIF)

S7 Fig. Grand average waveforms at all ROIs to a list of Common First Names, the Sub-

ject’s Own Name, and a list of Non-salient Other Words and their corresponding peak

topographic maps within the Subject’s Own Name paradigm with the behavioral manipu-

lation. The active condition average responses in the (A) Mid Frontal, (C) Mid Central, (E)

Mid Parietal ROIs, and the passive condition average responses in the (B) Mid Frontal, (D)

Mid Central, (F) Mid Parietal ROIs to the the Common First Names (blue), Subject’s Own

Name (orange), and the list of Non-salient Other Words (green) are plotted. Dashed colored

lines indicate the mean group latency from individually scored P300 peak latencies. Scalp

topography maps show voltage distributions at mean group peak latencies.

(TIF)

S8 Fig. Grand average waveforms at all ROIs to Congruent, Incongruent, Low Probability,

and Phonological Foil terminal words and their corresponding peak topographic maps

within the semantic violation sentences paradigm with the behavioral manipulation. The

active condition average responses in the (A) Mid Frontal, (C) Mid Central, (E) Mid Parietal

ROIs, and the passive condition average responses in the (B) Mid Frontal, (D) Mid Central,

(F) Mid Parietal ROIs to Congruent (blue), Low Probability (orange), Incongruent (green)

and Phonological Foil (red) terminal words are plotted. Dashed colored lines indicate the

mean group latency from individually scored N400 peak latencies. Scalp topography maps

show voltage distributions at mean group peak latencies.

(TIF)
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S9 Fig. Grand average waveforms at all ROIs to Congruent, Incongruent, Nonword, and

Pseudoword target words and their corresponding peak topographic maps within the

word-word priming paradigm with the behavioral manipulation. The active condition aver-

age responses in the (A) Mid Frontal, (C) Mid Central, (E) Mid Parietal ROIs, and the passive

condition average responses in the (B) Mid Frontal, (D) Mid Central, (F) Mid Parietal ROIs to

the list of Congruent (blue), Incongruent (orange), Nonword (green) and Pseudoword (red)

target words are plotted. Dashed colored lines indicate the mean group latency from individu-

ally scored N400 peak latencies. Scalp topography maps show voltage distributions at mean

group peak latencies.

(TIF)
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