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A model of lightness perception guided by probabilistic
assumptions about lighting and reflectance

Richard F. Murray
Department of Psychology and Centre for Vision

Research, York University, Toronto, Ontario, Canada

Lightness perception is the ability to perceive black,
white, and gray surface colors in a wide range of lighting
conditions and contexts. This ability is fundamental for
any biological or artificial visual system, but it poses a
difficult computational problem, and how the human
visual system computes lightness is not well understood.
Here I show that several key phenomena in lightness
perception can be explained by a probabilistic graphical
model that makes a few simple assumptions about local
patterns of lighting and reflectance, and infers globally
optimal interpretations of stimulus images. Like human
observers, the model exhibits partial lightness
constancy, codetermination, contrast, glow, and
articulation effects. It also arrives at human-like
interpretations of strong lightness illusions that have
challenged previous models. The model’s assumptions
are reasonable and generic, including, for example, that
lighting intensity spans a much wider range than surface
reflectance and that shadow boundaries tend to be
straighter than reflectance edges. Thus, a probabilistic
model based on simple assumptions about lighting and
reflectance gives a good computational account of
lightness perception over a wide range of conditions.
This work also shows how graphical models can be
extended to develop more powerful models of
constancy that incorporate features such color and
depth.

Introduction

We perceive the colors of objects effortlessly and
for the most part reliably, even though light intensity
at the retina provides highly ambiguous information
about surface properties (Land and McCann, 1971;
Belhumeur et al., 1999). Understanding how the visual
system overcomes this ambiguity to compute lightness
(i.e., perceived surface reflectance1) is a difficult
problem with a long history (Hering, 1905/1964; von
Helmholtz, 1910/1924). Research over several decades
has shown, however, that features such as perceived
lighting boundaries, depth discontinuities, and cues to
transparency play a central role in lightness perception;

for reviews, see Adelson (2000), Gilchrist (2006), and
Kingdom (2011).

To take just one example, Gilchrist et al. (1999) have
explored the role of lighting boundaries and formulated
an “anchoring theory” that consists of several principles
of lightness perception. The “highest luminance rule”
states that the highest-luminance element in a perceived
lighting region is assigned a local perceived reflectance
value of 0.90. The principle of “codetermination” states
that an element’s perceived lightness depends not only
on its lightness assignment in its local lighting region,
but also on its lightness assignment in a larger, global
region. “Scale normalization” states that the visual
system tends to expand the range of perceived lightness
values in a scene towards the full range from black to
white. These principles and others provide a broad
understanding of how we perceive lightness under a
wide range of conditions.

However, theories of lightness have generally not
been formulated as computational models. Anchoring
theory, for example, although able to make quantitative
predictions for some stimuli (Economou et al., 2007),
nevertheless relies on the modeler to identify perceived
lighting boundaries and specify their strength. The fact
that theories of lightness are usually not computational
means that they cannot make clear predictions for
many stimuli, and it also limits their usefulness in
applications. This stands in sharp contrast to theories
of brightness (i.e., perceived luminance1), which are
almost always image-based computational models, and
can make falsifiable predictions for any achromatic
two-dimensional stimulus (e.g., Blakeslee andMcCourt,
1999; Dakin and Bex, 2003).

Still, there have been a few computational theories
of lightness. Land and McCann’s (1971) retinex theory
estimates reflectance by discounting illumination at
sharp boundaries, although more recent versions of
retinex have aimed at modeling image “appearance”
instead of lightness (McCann and Rizzi, 2012,
chapter 12). Adelson and Pentland (1996) described
an optimization approach to recovering lighting,
shape, and reflectance in polyhedral scenes. Allred
and Brainard (2013) developed a Bayesian algorithm
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for predicting lighting and reflectance percepts in
a 5 × 5 grid stimuli, and tested this model against
psychophysical data. And although not a theory of
human lightness perception, Barron and Malik (2015)
developed a computer-vision algorithm for estimating
lighting, shape, and reflectance that is a useful point of
comparison for theories of human vision. All of these
theories have been, to varying extents, motivated by
observations about statistical properties of lighting and
reflectance in natural scenes. Exploiting natural scene
statistics provides a principled approach to overcoming
the intrinsic ambiguity of retinal images, and potentially
even an optimal approach (Geisler, 2008). This is
the approach that I follow in the present work as
well.

Some probabilistic modelling tools

The lightness model that I describe below is a
conditional random field (CRF), which is a type of
Markov random field (MRF). I cannot give an adequate
introduction to CRFs, MRFs, and probabilistic
graphical models here, but in the following paragraphs
I outline some key concepts so that readers unfamiliar
with these tools can understand the gist of the lightness
model. More complete introductions can be found in
Koller and Friedman (2009), Bishop (2006), and Prince
(2012).

In many statistical modeling problems, there is a
large number of individual elements, and each element
has statistical dependencies on many other elements.
An MRF model makes the simplifying assumption
that each element has a small number of “neighbors,”
and that all statistical relationships are byproducts
of statistical relationships between neighboring
elements. More precisely, each element of an MRF
is conditionally independent of its non-neighbors,
given the state of its neighbors. In a model of natural
images, for example, we could adopt a model where
each image pixel is a neighbor of the eight immediately
adjacent pixels. Distant image pixels may be correlated,
but in this example the MRF model posits that
these long-range correlations are consequences of
local statistical relationships between neighboring
pixels.

The probability density function of an MRF can
be written in the following form,2 called a “Gibbs
distribution”:

P(X) = 1
Z

exp

(
−

∑
i

ε i(Ci)

)
(1)

A “clique” is a set of elements in which all pairs are
neighbors, and here the sum is over all cliques Ci of
the MRF. In the natural image example where each
pixel has eight neighbors, a little thought shows that the
largest cliques are 2 × 2 squares of pixels. The functions
εi are “potential functions” that put a cost on the state
of each clique, such that states with high costs tend to
occur less frequently3. Z is a constant that gives the
density function a total volume of 1. The probability
density of a state X of the ensemble is determined by
the the sum of the potentials of all cliques under that
state. Thus, we can specify the probability density of
an MRF by specifying a set of potential functions εi
on cliques, and because cliques tend to be small, this
makes modeling the ensemble of elements much more
tractable.

In some modeling problems there are “observed”
elements, whose states we know, and “hidden” elements,
whose states we wish to infer. In shape from shading,
for example, the observed elements may be the pixels
of a stimulus image, and the hidden elements may be
variables that give the slant and tilt of a surface at each
pixel location. A CRF is a variant of the MRF that
is useful for such problems (Lafferty & McCallum,
2001). In a CRF, the potential functions εi for hidden
elements depend on the state of the observed elements.
In the shape-from-shading example, we observe a
stimulus image, and a CRF model would then provide a
corresponding set of potential functions εi that specify
(as in Equation 1) the probability density of slant and
tilt across the image. We then interpret Equation 1
as the conditional probability density of the hidden
elements, given the observed elements.

Even when a CRF provides a probability density
over hidden variables, making a point estimate of those
variables, such as a maximum a posteriori (MAP)
estimate, can be a difficult problem. The lightness
model described here addresses this problem using a
belief propagation algorithm. Belief propagation is
a method where elements are grouped into clusters,
and each cluster passes “messages” to clusters that
overlap with it; in “max-sum” belief propagation, the
method used here, the message contains information
about the most probable state of the elements that the
sender and receiver have in common. As messages are
passed, information about the most probable states
of elements is propagated through the ensemble. If
the message passing network has no loops, then belief
propagation is guaranteed to find the most probable
joint state of the elements. If the network has loops
(as in the lightness model described elsewhere in this
article) then the algorithm is not guaranteed to find the
most probable state, or even to converge. Nevertheless,
in practice belief propagation has been found to work
well even in many problems where the message passing
network has loops.
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Figure 1. Grid figures. The red and green dot locations have the same reflectance within each figure. (a) Argyle illusion (Adelson,
1993). (b) Long-range argyle illusion (Flynn & Shapiro, 2014). (c) Argyle control figure (Adelson, 1993). (d) Koffka ring, broken (Koffka,
1935). (e) Koffka-Adelson figure (Adelson, 2000). (f) Koffka ring, connected (Koffka, 1935). (g) White’s illusion (White, 1979). (h)
Checkerboard assimilation (DeValois and DeValois, 1988). (i) Snake illusion (Adelson, 2000). (j) Snake control figure (Adelson, 2000).
(k) Classic simultaneous contrast figure (Hess & Pretori, 1894/1970). (l) Articulated simultaneous contrast figure (Katz, 1935). (m)
Haze illusion (Adelson, 2000).

A probabilistic model of lightness
perception

My goal in this article is to describe a model that
produces qualitatively human-like lightness judgments
with a wide range of stimuli. To focus on some of the
problem’s essential features, I model stimuli on a simple
16 × 16 grid. Within this constraint, one can create
many phenomena that challenge current theories, and a
thorough account of this domain would explain a great
deal about lightness perception. For example, Figure 1
illustrates several lightness phenomena on a 16 × 16
grid, including effects of perceived lighting boundaries
(Figure 1a), simultaneous contrast (Figure 1k),
articulation (Figure 1 l), assimilation (Figure 1g), and
translucency (Figure 1m). No current computational
model can account for all these effects.

The lightness model I propose is guided by a local
statistical model of lighting and reflectance. The model
is a CRF that uses statistical assumptions about small
image patches to infer globally optimal estimates of
lighting and reflectance. I call the model MIR, for
“Markov illuminance and reflectance.” The model
has three layers: a reflectance map, an illuminance
map that represents incident lighting magnitude,1
and a luminance map that represents the observed

Figure 2. Layer structure of the MIR model. The luminance
stimulus is represented as a pointwise product of illuminance
and reflectance maps. Local statistical assumptions about 2 × 2
patches of illuminance and reflectance guide the model in
estimating the illuminance and reflectance maps. The
illuminance and reflectance maps shown here are illustrative;
see Figures 5 and 6 for model results.

stimulus (Figure 2). Given a luminance map, the model
constructs potential functions on 2 × 2 patches of
the illuminance and reflectance maps. The potential
functions impose the following soft constraints. (a)
Reflectance mostly spans the range 3% to 90%, with a
rapid decline in probability outside these limits. (b) Low
illuminances are more probable than high illuminances.
(c) Illuminance edges are less common than reflectance
edges. (d) Reflectance and illuminance edges usually
occur at image luminance edges (Freeman, 1996). (e)
X-junctions are evidence for illuminance edges (Metelli,
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Figure 3. Argyle stimuli in Experiment 1. Each image is physically the same at the green and red dot locations. (a) Argyle illusion. (b)
Long-range argyle illusion. (c) Argyle control figure.

1970; Beck et al., 1984). (f) Costs are evaluated on
uniform image regions instead of pixelwise4 (Katz,
1935; Gilchrist, 2006). (g) Illuminance edges tend
to be straighter than reflectance edges (Logvinenko
et al., 2005). Given a stimulus image, MIR uses belief
propagation to find global illuminance and reflectance
assignments that generate the image and match these
local assumptions as closely as possible. I describe these
assumptions quantitatively in the Appendix, and I
provide a MATLAB implementation of the model at
doi:10.17605/OSF.IO/4FWJV.

These assumptions are tentative, and I have chosen
them because either (a) they reflect simple properties
of lighting and reflectance or (b) they are suggested
by previous literature, and together they explain a
range of phenomena in lightness perception. In the
general discussion section, I discuss possible alternative
assumptions, and alternative ways of arriving at the
assumptions that drive the model.

Experiment 1

To obtain lightness data that can be used to test
MIR and related models, I ran a behavioral experiment
using several grid stimuli. I tested whether people
perceive the expected illusions in the stimuli shown in
Figures 1 and 3, which are adaptations of well-known
lightness illusions for a 16 × 16 grid. The first part of
the experiment tested for lightness illusions: observers
viewed reflectance-calibrated printouts of grid stimuli
under uniform lighting and judged which of two
isoluminant target regions was a lighter shade of
printed gray. The second part tested the relative strength
of lightness illusions: observers viewed pairs of grid
stimuli, and judged which had a greater lightness
difference between the two isoluminant target regions.

Methods

Observers
There were 20 participants, recruited from York

University and paid $25. All procedures were approved

by the Office of Research Ethics at York University and
adhere to the Declaration of Helsinki.

Stimuli
The stimuli were 8-cm square printed paper images. A

Konica Minolta LS-110 photometer (Konika Minolta,
Tokyo, Japan) and a Labsphere Spectralon 99% diffuse
reflectance standard (model SRS-99-020; Labsphere,
North Sutton, NH) were used to characterize the
mapping from gray level to reflectance for an HP
Color LaserJet Pro printer (model M452dw; HP Inc.,
Palo Alto, CA). This mapping was used to print the
required reflectance patterns on white letter paper
(reflectance 82%), and then the stimulus figures were
cut out from these prints. The stimulus set included
the following images from Figure 1: broken Koffka
ring, Koffka-Adelson figure, connected Koffa ring,
White’s illusion, checkerboard assimilation figure, snake
illusion, snake control, simultaneous contrast, and
articulated simultaneous contrast. It also included the
argyle, long-range argyle, and argyle control images
from Figure 3. It did not include the haze illusion,
which does not produce a simple difference in perceived
reflectance between the two target locations. The
stimulus set included a left-right, mirror-reversed
version of each image, so that any left-right response
biases would not cause observers to choose one target
region more often than the other. Two small green dots
(diameter 0.4 mm) in each figure indicated the two
target regions where observers were to judge lightness.
(In Figure 1 and elsewhere in this article I use red and
green dots so that I can refer to the target regions
separately, but in the experiment both dots were green.)
The paper figures were shown in a room illuminated by
overhead fluorescent lights, and the white regions of the
stimuli (reflectance 82%) had a luminance of 89 cd/m2.
The 16 × 16 reflectance patterns are provided with the
model code at doi:10.17605/OSF.IO/4FWJV.

Procedure
Each observer participated in one 10-minute session.

In the first part of the session, the observer sat at

https://doi.org/10.17605/OSF.IO/4FWJV
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Figure 4. Results of Experiments 1 and 2. Data points to the left of the vertical dashed line show results from trials where observers
judged the relative lightness of two target patches in a single figure. Data points to the right show results from trials where observers
judged which of two figures had the greater lightness difference between two target patches. Each data point shows the proportion
of trials on which observers chose the expected target patch or the expected figure (see text for details). Error bars show 95%
confidence intervals. The two experiments used different subsets of the stimulus figures, so not all conditions have both red and
green data points. Furthermore, Experiments 1 and 2 used different stimuli in the argyle and argyle control conditions.

a viewing distance of 57 cm from a small wooden
stand on a table covered by a matte black cloth. Head
position was stabilized with a chin rest. On each trial,
the experimenter placed a paper stimulus figure on the
wooden stand. The 24 stimuli were shown in a different
random order for each observer, with the constraint
that a stimulus and its mirror reversal were separated
by at least two intervening trials. Each stimulus was
8 cm square and subtended 8° of visual angle. From
the observer’s viewing position, the wooden stand was
occluded by the stimulus (the back of each paper figure
had a small attachment that the experimenter latched
onto the stand), so there was a depth discontinuity at
the edges of the paper figure; previous work shows that
depth discontinuities tend to make a region function
as an independent lighting framework (Gilchrist,
2006). The observer responded “left” or “right” to
indicate which of two equiluminant target regions in
the stimulus, indicated by small green dots, seemed
to be printed with a lighter shade of grey ink. The
observer was also given the choice of responding
“same” if they did not perceive a difference between
the printed grays of the two target regions. Trials where
observers responded “same” were counted as a 0.5 trial
contribution to both the “left” and “right” response
counts. The observer typically took between 0.5 and
2 seconds to make a response. The experimenter
recorded the response, removed the figure, and began
the next trial.

In the second part of the session, which immediately
followed the first, the observer sat at a viewing distance

of 57 cm from two small wooden stands. On each trial,
the experimenter placed a paper stimulus figure on each
stand. The pairs of stimuli were: argyle illusion and
argyle control; long-range argyle illusion and argyle
control; argyle illusion and simultaneous contrast;
snake illusion and snake control; broken Koffka ring
and connected Koffka ring; Koffka-Adelson figure
and connected Koffka ring; and simultaneous contrast
and articulated simultaneous contrast. Each pair was
shown on two trials, once with the first figure on
the left and the second on the right, and once with
the opposite placement. The 14 resulting pairs were
shown in a different random order for each observer,
with the constraint that each pair and its left-right
opposite-placement pair were separated by at least
two intervening trials. The observer responded “left”
or “right” to indicate which figure had target regions
that differed more in their printed shades of gray.
The observer could also respond ‘same’ if the two
figures seemed to have the same difference between
their target regions. The experimenter recorded the
response, removed the stimuli, and began the next
trial. Observers’ trial-by-trial responses are available at
doi:10.17605/OSF.IO/4FWJV.

Results and discussion

The left side of Figure 4 shows results from the
first part of the experiment, where one stimulus was
shown on each trial. Based on the previous literature,

https://doi.org/10.17605/OSF.IO/4FWJV
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observers were expected to choose the leftmost target
region in each stimulus in Figures 1 and 3. (Recall that
the experiment also included the left-right reversal of
each stimulus; in those stimuli observers were expected
to choose the rightmost target region.) Observers saw
the expected lightness illusion in most of the stimuli
(Figure 4). They chose the expected target region at
significantly above-chance rates with the snake, snake
control, broken Koffka, Koffka-Adelson, simultaneous
contrast, articulated simultaneous contrast, White,
and checkerboard assimilation stimuli. Observers did
not choose the expected target region at significantly
above-chance rates with the connected Koffka or argyle
control figures, which are known to create weak or
nonexistent lightness illusions, and are typically used as
control figures.

However, observers also did not choose the expected
target region at significantly above-chance rates with
the argyle or long-range argyle stimuli. In their original
form, these lightness illusions are strong and reliable, so
these findings show that the grid figures did not recreate
the illusions adequately. Interestingly, the problem was
not that the target regions in these figures seemed to
have similar shades of gray. Observers usually judged
the target regions to have a greater lightness difference
in the argyle figure than in the simultaneous contrast
figure (Figure 4, right-hand side), and they reliably
perceived the expected illusion in the simultaneous
contrast figure (Figure 4, left-hand side). Furthermore,
after the experiment was finished I asked some
observers informally how they perceived the stimuli and
found that they typically experienced strong lightness
illusions with the argyle and long-range argyle figures,
but some saw the illusion in the expected direction and
others saw it in the opposite direction. As in reports
of #thedress (Brainard & Hurlbert, 2015; Murray &
Adams, 2019), observers experienced a strong illusion
and found it difficult to believe that others saw the figure
differently. These individual differences may be related
to the perceived illumination pattern in the grid argyle
figures, where the target patch that some observers see
as a darker shade of gray (as expected) also appears
to be in a brighter lighting region. In any case, the
models tested here do not address individual differences,
so these versions of the argyle and long-range
argyle illusions are not useful for model testing.
Experiment 2 tested a revised version of the argyle
figure.

The right side of Figure 4 shows results from the
second part of the experiment, where two stimuli
were shown on each trial. For all stimulus pairs,
observers chose the stimulus that we would expect
from the previous literature to have the stronger
lightness illusion, at rates significantly above chance.
The argyle illusion and long-range argyle illusion
were chosen more often than the argyle control figure.
The snake illusion was chosen more often than the

snake control figure. The broken Koffka ring and
Koffka-Adelson figures were chosen more often than
the connected Koffka ring. The argyle and snake
figures, typically strong lightness illusions, were chosen
more often than the simultaneous contrast figure. And
the articulated simultaneous contrast figure was chosen
more often than the standard simultaneous contrast
figure.

Experiment 2

Experiment 2 repeated Experiment 1 with a subset of
the stimuli, as well as a revised grid argyle figure with
stronger articulation and grouping cues in perceived
lighting regions. As shown in Figure 1a, the revised
argyle figure has boundaries that extend all the way to
the edge of the stimulus (presumably segmenting the
perceived lighting regions more strongly), and has light
and dark squares in the two central perceived lighting
regions (which increases articulation).

Methods

Observers
There were 17 participants, recruited from York

University and paid $15. Eleven had participated in
Experiment 1.

Stimuli
The stimuli were the following images from Figure 1:

argyle illusion, argyle control, snake illusion, snake
control, and simultaneous contrast.

Procedure
The procedure was the same as in Experiment 1. The

session took approximately 3 minutes. In the first part
of the session, the observer viewed a single stimulus
on each trial, and judged which of two target regions
was a lighter shade of printed gray. In the second part,
the observer viewed the following pairs: argyle illusion
and argyle control; argyle illusion and simultaneous
contrast; snake illusion and snake control; and snake
illusion and simultaneous contrast. The observer
judged which figure had a greater lighter difference
between the two target regions. As in Experiment 1, the
stimulus set included the left-right mirror reversal of
each figure, and the left-right opposite placement of
each pair of figures.
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Results and discussion

The green data points in Figure 4 show the
proportion of trials on which observers chose the
expected target region or stimulus. The left side of
Figure 4 shows that observers saw the expected lightness
illusions. In particular, observers saw the expected
illusion in the revised argyle figure, but little or no
illusion in the revised argyle control figure. The right
side of Figure 4 shows that observers chose the figure
that we would expect from previous literature to have
the stronger lightness illusion, at rates significantly
above chance.

Model results: lightness illusions

I tested the MIR lightness model on the same
stimuli shown to human observers in Experiments 1
and 2 (Figure 1), except that I did not use the version
of the argyle figures that resulted in large individual
differences in Experiment 1. I took MIR’s reflectance
output at the two isoluminant test locations to be its
prediction of human lightness percepts for the grid
stimuli. The test was qualitative: If the model produced
a higher lightness response for the target region that
human observers chose significantly more often as
appearing lighter, then the model was judged to have
predicted human observers’ responses correctly for that
stimulus. The results are shown in Figures 5 and 6, and
summarized in Table 1.

Like human observers, MIR interprets the argyle
figure as having bright and dark vertical strips of
lighting (Figure 5a). The model takes these lighting
estimates into account when computing reflectance, and
so image locations that have the same luminance are
assigned very different reflectances. Also like human
observers, the model interprets the argyle control figure
as having uniform lighting (Figure 5b), so in this case
it assigns the same reflectance to the two isoluminant
target patches.

The model also makes qualitatively human-like
interpretations of most of the other stimulus figures.
Although the model makes only local statistical
assumptions on 2 × 2 image patches, belief propagation
distributes local information broadly, so the model
interprets the long-range argyle illusion much like
the standard argyle (Figure 5c). The model predicts
a strong lightness difference in the snake illusion and
not in its control condition (Figure 5d, e). The Koffka
ring figures depend on the presence or absence of a
perceived lighting boundary, and the model makes
human-like assignments here as well (Figure 5f, g,
h). The model accounts for classic and articulated
simultaneous contrast (Figure 6i, j), even though it has
no explicit mechanism for lateral inhibition (Economou

et al., 2007; Ratliff, 1965). (MIR predicts a lightness
illusion in the classic simultaneous contrast figure, but
not in the snake control figure, because in the snake
control the long boundaries that span the image have
corners, and the model places a high cost on lighting
boundaries that have corners. Thus, in the simultaneous
contrast figure the long boundary is interpreted as a
partial illuminance edge, whereas in the snake control it
is interpreted purely as a reflectance edge.)

Furthermore, the model accounts for the relative
strength of lightness illusions in all stimulus pairs
compared by human observers in Experiments 1
and 2 (see summary in Table 1). The model correctly
predicts stronger lightness illusions in the argyle, snake,
broken Koffka, and Koffka-Adelson figures than in
their control conditions. It also correctly predicts
stronger illusions in the argyle, snake, and articulated
figures than in the classic simultaneous contrast
figure.

One limitation of the model is that it does
not account for assimilation effects, as in White’s
illusion and the checkerboard assimilation stimulus
(Figure 6k, l). Assimilation is a challenging phenomenon
for lightness models like MIR that rely on discounting
illumination, because it shows that surrounding a target
patch with high-luminance elements, which we would
generally expect to increase the illumination estimate,
can cause the target patch to appear lighter, not darker.
One possibility for a future revision of MIR is to
incorporate a prior for smooth reflectance patterns,
which would make each reflectance value tend to be
similar to surrounding reflectance values.

Model results: lightness
phenomena

In addition to accounting for these illusions, MIR
also produces and explains several key phenomena
in lightness perception. The highest luminance rule,
for example, states that the highest luminance in a
lighting region tends to be seen as white (Wallach,
1948; Land & McCann, 1971; Gilchrist, 2006). Figure
7a shows that the model assigns a high reflectance to
the highest luminance in each inferred lighting region
in Figures 5 and 6. This behavior follows naturally
from the model’s goal of assigning low illuminances
while mostly limiting reflectance to the range of 3%
to 90%, which implies that the highest luminance
in a strongly segmented lighting region will tend to
have a reflectance of around 90% (Murray, 2013). To
generate the lightness values histogrammed in Figure
7a, I found the highest reflectance estimate in each
uniform illuminance region, for example, in Figure 5a
there are four vertical strips in the illuminance map,
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Figure 5. MIR’s responses to lightness illusions. In each lettered panel, the left image shows the stimulus, the middle image shows
MIR’s illuminance map output, and the right image shows MIR’s reflectance map output. Red and green dots in the stimulus images
show isoluminant target locations where human observers judged reflectance. Red and green dots are also shown at corresponding
locations in the model output images for reference. Red and green numbers show the model’s outputs at those locations (stimulus
luminance units are cd/m2, illuminance map units are lux). Human observers judged the green target locations to be as light as or
lighter than the red target locations at rates significantly above chance (see Figure 4). The model’s reflectance outputs (in bold and
underlined) correctly predict a strong lightness illusion in stimuli a, c, d, f, and h, and not in stimuli b, e, and g. One caveat is that the
model predicts no illusion in the snake control stimulus (e), whereas human observers see a weak contrast effect. As in the perceptual
experiments, the stimulus set did not include the haze illusion because it does not produce a simple lightness difference between the
two target locations. See Figure 6 for further results.

so I found the highest reflectance in each of the four
corresponding regions of the reflectance map.

Sometimes, however, the highest luminance in a scene
does not appear to be a reflective white, but instead
appears to glow. MIR accounts for this phenomenon as

well (Figure 7b). The model assumes that reflectance
mostly spans the range of 3% to 90%, but that with
some small probability it can extend above 90%, and
even above 100%, which is one way of representing
glow (see the Appendix for details; Bonato & Gilchrist,
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Figure 6. MIR’s responses to additional lightness illusions. MIR correctly predicts a contrast effect in stimulus i, and a stronger contrast
effect in stimulus j. MIR does not correctly predict the assimilation effects in stimuli k and l. See caption of Figure 5 for details.

MIR ODOG High-pass Retinex

Single stimuli
Argyle � � � �
Broken argyle � � � �
Snake � � � �
Snake control × � � �
Koffka broken � � � �
Koffka-Adelson � � � �
Koffka connected � � � �
Simultaneous contrast � � � �
Articulated Simultaneous contrast � � � �
White’s illusion × � × ×
Checkerboard assimilation × � × ×

Stimulus pairs
Argyle vs. broken � × × ×
Snake vs. control � � � �
Koffka broken vs. Koffka connected � � × ×
Koffka-Adelson vs. Koffka connected � × × ×
Articulated vs. simultaneous contrast � × × �
Argyle vs. simultaneous contrast � × × �
Snake vs. simultaneous contrast � × � ×

Table 1. Model test results. A check mark indicates that the model qualitatively predicts the lightness illusion seen by human
observers (for single stimuli) or the relative strength of two illusions (for stimulus pairs). An x indicates that it does not.

1994). The model’s potential functions imply that
assigning a moderate reflectance to a small luminance
outlier is not worth the cost of either positing a strong
illuminance edge or assigning a high illuminance to
the whole figure, so instead the model posits a weak
illuminance edge and assigns the outlier a reflectance
greater than 100%. A large luminance outlier is worth
the cost, however, and so the model is less likely to see
large regions as glowing (Figure 7b). This is also true of
human observers (Bonato and Gilchrist, 1999).

Codetermination refers to the fact that the perceived
reflectance of an image patch often depends not only
on the image luminances in its own lighting region,
but also on adjacent lighting regions (Kardos, 1934;
Gilchrist, 2006). MIR shows codetermination as well
(Figure 7c). The model uses a smooth cost function
that often interprets luminance edges as a combination
of illuminance and reflectance edges (i.e., partial
lighting boundaries), rather than making all-or-none
assignments. At a partial lighting boundary, stimulus
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Figure 7. Lightness phenomena. (a) Highest luminance rule: MIR assigns a white reflectance (around 0.8) to the highest luminance in
each region of the stimuli in Figure 1 that it interprets as a strongly segmented lighting region (see the illuminance maps in Figures 5
and 6 for assigned lighting regions). (b) Glow: A small luminance outlier is assigned a reflectance greater than one, but as the width of
the region increases, the assigned reflectance decreases to around 0.8. (c) Codetermination: In the classic simultaneous contrast
figure, the reflectance that MIR assigns to the left-hand center patch decreases as the luminance of the right-hand surround
increases. (d) Articulation: As the stimulus is subdivided into more regions, the simultaneous contrast effect (i.e., the difference
between the reflectances assigned to the two center patches) increases. The ‘baseline’ stimulus is the classic simultaneous contrast
image shown in Figure 1k, and the inset shows the 64 subblock stimulus.

features that affect perceived illuminance on one side of
the boundary will generally affect perceived illuminance
on the other side as well, and so luminance values in one
lighting region affect the model’s reflectance estimates
in adjacent regions.

Lightness contrast effects are often stronger when
an image is “articulated,” that is, composed of several
distinct luminance regions (Katz, 1935). MIR also
shows articulation effects (Figure 7d). The model
produces simultaneous contrast, and this contrast
effect is stronger in articulated figures. (The articulated
stimuli are generated by randomly perturbing the
luminance of each subblock. Each bar shows the
median simultaneous contrast effect over 100 stimulus
samples.) This articulation effect occurs because the
model’s potentials are evaluated on uniform luminance
regions,4 not pixelwise, so when the image is divided
into a larger number of uniform regions there is a

greater cost reduction for positing a strong lighting
boundary along the vertical edge that divides the figure
in two.

Significantly, these model behaviors do not depend
on fine-tuned assumptions, and are generated by simple
cost functions such as a logarithmic cost on illuminance
and a sum-of-squares cost on illuminance edges (see the
Appendix for details). MIR shows how several broad
features of human lightness perception, which might
seem to be idiosyncratic and unrelated, follow naturally
from a few generic, probabilistic assumptions about
lighting and reflectance.

Comparison to other models

Theories of brightness (i.e., perceived luminance1)
are typically computational models that use operations
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Figure 8. MIR results. The green and red values below each panel show the model’s mean reflectance output inside the green and red
outlined target regions, respectively. These are the same target regions judged by human observers in the perceptual experiments.
The value in black shows the difference between the two values (green minus red). A positive value in black indicates a correct
qualitative prediction of the illusion seen by human observers.

such as spatial filtering and contrast normalization
derived from the physiology of early visual cortical
areas (DeValois & DeValois, 1988), or are based on
simple stimulus properties such as luminance ratios at
edges (Heinemann, 1955; Rudd & Zemach, 2004). The
relationship between lightness and brightness is not well
understood, partly because of this difference between
the goals and methods of the researchers who study
them. Nevertheless, under some viewing conditions
we expect lightness and brightness judgments to be
similar, for example, with simple, reflective, uniformly
illuminated two-dimensional geometric figures such
as the ones used in Experiments 1 and 2, for which
luminance is proportional to reflectance. Thus, with
some caveats it can be useful to evaluate models of
lightness and brightness on the same stimuli, as has
often been done in the past (Adelson, 1993; Shapiro &
Lu, 2011; Blakeslee & McCourt, 2012).

I compared the results with MIR on grid images
to three current computational models: Oriented
Difference of Gaussians (ODOG) (Blakeslee &
McCourt, 1999), a high-pass model (Shapiro & Lu,
2011), and a retinex model (Land & McCann, 1971;
McCann, 1999). I provide MATLAB implementations
of these models and code to run them on the grid
stimuli used here at doi:10.17605/OSF.IO/4FWJV. For
easier comparison, Figure 8 shows MIR’s reflectance
outputs from Figures 5 and 6, reorganized into the

format used below for the other three models. Usually,
I evaluate models on both an illusion and its control
condition. I report the model as having “accounted for”
an illusion if it predicts the expected illusion, but by
itself this is too liberal a criterion: If the model also
predicts an illusion in the control condition, then it
cannot really be said to have explained the illusion.
Thus, in what follows I will draw attention to each
model’s performance both with illusions and also with
their control conditions.

ODOG is a spatial filtering model of brightness
(Blakeslee & McCourt, 1999). It is based on the
responses of oriented filters at several orientations and
scales, and also incorporates a response normalization
stage. To test this model, I used a MATLAB translation
of the Mathematica code in Blakeslee et al. (2016). The
model inputs were the grid stimuli shown in Figure
1 (except for the haze illusion), upsampled to 512 ×
512 pixels (except for the long-range argyle, which was
upsampled to 512 × 768 pixels), and centered in a larger
1024 × 1024 pixel image where the remaining pixels
were set to the mean luminance of each stimulus. In
this ODOG implementation a 512 × 512 pixel image
represents a square subtending 8° of visual angle, which
matches the stimulus size in the perceptual experiments
reported here.

Figure 9 shows the results, which are summarized
in Table 1. ODOG makes qualitatively correct
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Figure 9. ODOG results. The images shown here are downsampled to 16 × 16 pixels for easier comparison with the results from MIR
(Figure 8). Each pixel shows the average value in the corresponding region of the full-resolution (1024 × 1024 pixel) model output.
See caption of Figure 8 for details.

predictions for all individual stimuli in Figure 1,
including those that show assimilation (Blakeslee &
McCourt, 2004). However, as noted, comparisons
with control conditions are also an important part of
evaluating models, and here ODOG does less well.
ODOG mistakenly predicts a stronger illusion in the
argyle control condition than in the argyle illusion
itself (as was shown by Kim et al., 2018). It also
predicts a stronger illusion in the Koffka-connected
control condition than in the Koffka-Adelson illusion.
Furthermore, it predicts that the classic simultaneous
contrast effect, which is relatively weak, is stronger than
the argyle and snake illusions.

Shapiro and Lu (2011) showed that several brightness
illusions are predicted by a linear high-pass filter model.
I tested this model on the same upsampled stimuli as
ODOG. I tested a range of high-pass filter sizes (which
is a parameter of Shapiro & Lu’s model), and found
that a filter that covered a 3 × 3 region in the 16 × 16
stimuli worked best. This corresponds to a 96 × 96 pixel
filter in the upsampled stimuli.

Figure 10 and Table 1 show the results. The high-pass
model makes qualitatively correct predictions for most
of the individual stimuli in Figure 1, although it fails
on stimuli that produce assimilation effects. The model
also fails to handle control conditions correctly: In
most cases, it predicts stronger illusions for control
conditions than for the illusions themselves. It also

mistakenly predicts that the classic simultaneous
contrast effect is stronger than the argyle illusion.

The high-pass model was originally designed to
match its filter size to the target region in a stimulus
(Shapiro & Lu, 2011), so I tested the high-pass model
again with the filter size chosen separately for each
stimulus. It was not always clear how to choose the
filter size for the stimuli used here, so I simply chose
plausible values. In these simulations, the high-pass
model generally performed worse than reported in
the previous paragraph. For the three argyle stimuli
I used a 1 × 1 block (of the 16 × 16 stimuli) as the
filter size, and the model predicted no illusion in any
stimulus. For the three Koffka stimuli I used a 3 ×
3 filter, and the model predicted the same illusion
in the Koffka-connected control figure as in the
Koffka-broken and Koffka-Adelson figures. For White’s
illusion I used a 2 × 2 filter, and for the checkerboard
assimilation stimulus a 1 × 1 filter; in both cases the
model predicted an illusion in the wrong direction.
For the snake stimuli, I used a 1 × 1 filter, and the
model predicted equally strong illusions in the snake
and control conditions. For the simultaneous contrast
stimuli I used a 4 × 4 filter; the model predicted the
classic simultaneous contrast effect, but predicted a
weaker illusion in the articulated figure. Thus, adapting
the filter size to individual stimuli did not improve the
model’s performance.
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Figure 10. High-pass model results. See caption of Figure 9 for details.

McCann’s (1999) retinex model is one of several
revisions of Land and McCann’s (1971) original
model; see McCann and Rizzi (2012), chapter 12, for a
review. McCann’s model is a multiscale, coarse-to-fine
algorithm that models visual appearance by propagating
image luminance ratios over local regions. I tested
Funt, Ciurea, and McCann’s (2000) MATLAB
implementation of the algorithm, with parameter
nIteration set to 4. I upsampled the stimuli in the same
manner as for ODOG and the high-pass model. Other
retinex models operate differently from McCann’s
algorithm, so the results I report here test only this
specific version of retinex.

Figure 11 and Table 1 show the results. The retinex
model correctly predicts illusions in the individual
stimuli in Figure 1, except those that show assimilation.
It too fails to handle control conditions well, however,
and predicts stronger illusions in the argyle and Koffka
control stimuli than in the illusions themselves.

Overall, these results show that the individual
illusions tested here are relatively easy to account for,
except for assimilation effects, but that comparisons
between illusions and their control conditions are more
difficult. The argyle figure and its control condition are
particularly difficult, possibly because the two target
patches have identical immediate surrounds, and the
illusion depends on the arrangement of more distant
elements into X-junctions (Adelson, 1993). Thus, all
three models tested correctly predict an illusion in
the argyle figure but, unlike MIR, they predict at
least as strong an illusion in the argyle control figure.

Comparisons between the Koffka ring variants are
also challenging, again possibly because of the role
of X-junctions as evidence for lighting boundaries
(Metelli, 1970; Beck et al., 1984).

I also tested whether these three models account for
glow, codetermination, and articulation effects, using
the same approach as for MIR (Figure 7). Tests for
glow perception are shown in Figure 12, which plots
model output as a function of the width of a central
high-luminance patch. For all three models, the output
for the central patch decreases as a function of patch
width, as it does for MIR. However, these three models
have no criteria for what output values correspond to
reflective surfaces and what values indicate glow, so it
is difficult to evaluate whether they predict perceived
glow in such stimuli (cf. Economou et al., 2007). For
the same reason, it is unclear how to test whether these
three models account for the highest luminance rule
(Figure 7a).

Tests for codetermination are shown in Figure 13,
which plots model output at the center left patch of a
classic simultaneous contrast stimulus as a function of
the luminance of the right-hand surround. ODOG and
the high-pass model correctly predict codetermination
effects, with left-center outputs that decrease as the
right-surround luminance increases. Retinex shows a
reverse codetermination effect, where the left-center
output increases instead.

Tests for articulation are shown in Figure 14, which
plots the magnitude of a simultaneous contrast effect
as the stimulus is divided into increasing numbers
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Figure 11. Retinex results. See caption of Figure 9 for details.

Figure 12. Model tests for glow perception. All three model outputs decrease as a function of test patch size, but none of the models
has a criterion for what output range indicates reflective gray and what range indicates a light-emitting surface.

Figure 13. Model tests for codetermination. ODOG and the high-pass model predict qualitatively correct codetermination effects, but
retinex does not.
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Figure 14. Model tests for articulation. Retinex predicts a qualitatively correct articulation effect, but ODOG and the high-pass model
do not. The inset shows the 64 subblock stimulus.

of subblocks. Retinex correctly predicts that the
simultaneous contrast effect increases with greater
articulation. The high-pass model predicts no effect,
and ODOG predicts a small effect in the wrong
direction.

Discussion

Research on lightness perception has revealed
several important principles regarding how we see
achromatic images (e.g., the role of perceived lighting
boundaries), but these findings have not usually been
formulated as computational models. This often makes
it difficult to know which principles are fundamental,
and what the predictions are of several taken together.
The present work takes a step toward addressing
these problems. The modeling results reported here
suggest, for example, that no special mechanisms are
required to account for glow perception, and that the
the straightness of lighting boundaries plays a central
role in lightness perception despite the limited attention
it has received in previous work (Logvinenko et al.,
2005). Simple but precise models can make unexpected
predictions (Geisler, 1984; Palmer et al., 2000), so there
is much to be learned by formulating midlevel theories
of lightness as computational models.

There is surprisingly little overlap between research
on lightness and brightness, largely owing to differences
in goals and methods. One difference is that current
brightness models are almost always computational,
whereas theories of lightness seldom are (although
see the Introduction for some exceptions). This is a
historical accident, however, and theories of lightness
should aspire to be precise enough to make predictions
for arbitrary images, just as brightness models do. Even
low-level operations like convolution and contrast
normalization may have promise for lightness models;
ODOG accounts for an impressively wide range of
stimuli with a relatively simple mechanism, and it
seems entirely plausible that a model with similar
elements could provide a physiologically motivated

model of lightness that incorporates factors such as
lighting boundaries (although see Betz et al., 2015).
It may be that a Bayesian inference model like MIR
describes lightness or brightness mechanisms at Marr’s
‘computational’ level, whereas ODOG-like models
describe them at the ‘implementation’ level (Marr,
1982).

Another difference is that brightness experiments
usually show stimuli on computer monitors, whereas
lightness experiments often use physical objects
under real illumination. This difference may be
more important than it seems. For example, classic
experiments comparing lightness and brightness
perception showed stimuli on computer monitors
(Arend & Spehar, 1993; Blakeslee & McCourt, 2012).
When judging lightness, observers were asked to
report which stimulus regions appeared to be cut from
the same piece of paper, but presumably no region
of a light-emitting CRT in a dark room genuinely
seemed to be cut from reflective paper. (The use
of computer-generated stimuli may be one reason
why some brightness researchers regard lightness
judgments as partly “cognitive” rather than purely
perceptual.) When judging brightness, observers were
asked to report which stimulus regions had the same
luminance, “disregarding, as much as possible, other
areas of the display.” It is hard to say, however, how
such instructions affect observers’ behavior or why
brightness judgments should be more local than
lightness judgments. One easy step toward a common
theory of lightness and brightness would be to use
stimuli where observers can make natural judgments of
both properties; the most reliable way of doing this may
be to use physical objects under realistic lighting, since
lightness judgments, at least, can be very different with
computer-generated and physical stimuli (Morgenstern,
Geisler, & Murray, 2014; Patel, Munasinghe, & Murray,
2018; but see Radonjic et al., 2016).

The present work can be seen as a computational
variant of anchoring theory (Gilchrist et al., 1999;
Gilchrist, 2006). As with anchoring theory, a primary
goal of MIR is to explain a wide range of qualitative
lightness behaviors using a few general principles, rather
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than making a detailed model of a narrow range of
tasks. MIR shows that several principles of anchoring
theory – the highest luminance rule, codetermination,
and so on – need not be posited as specific rules of
lightness perception, because they emerge naturally
from reasonable assumptions about scene statistics
(Figure 7). Anchoring theory is sometimes presented
as a theory of systematic lightness errors (Gilchrist
et al., 1999), but if the present approach is correct
then many of the behaviors it describes are actually
consequences of the human visual system making
rational use of statistical regularities in lighting and
reflectance (Murray, 2013).

Another similarity to anchoring theory is that partial
lighting boundaries play an important role in MIR.
In anchoring theory, each local lighting framework
has an associated weight that determines how strongly
lightness estimates within the framework are affected
by image luminances outside the framework; when
a local framework is strongly segmented from the
surrounding scene (e.g., by penumbra cues) the weight
is low, and when it is weakly segmented the weight is
high. Similarly, MIR interprets some luminance edges,
such as those in the simultaneous contrast figure, as
a combination of illuminance edges and reflectance
edges (Figure 5i), and the CRF’s potential functions
place no additional cost on this interpretation. It is
an interesting question how this behavior is related to
the statistical properties of natural scenes, where such
accidental alignments of lighting and reflectance edges
are presumably rare. I leave this problem for future
work, but it seems likely that, for some computational
goals, hedging the interpretation as a combination of
illuminance and reflectance edges will be an optimal
solution, much as Bayesian cue combination models
show that the optimal estimate of a scene property
usually falls between the value indicated by a prior and
the values indicated by cues (Maloney & Landy, 1989).

MIR is also consistent with psychophysical work
showing that achromatic surfaces have at least two
perceptual dimensions, namely, perceived reflectance
and perceived illuminance (Logvinenko & Maloney,
2006; Logvinenko, 2015). One of themodel’s advantages
is that it makes estimates of both these dimensions,
which allows it to directly model the relationship
between perceived lighting conditions and lightness
estimates. Whether it can accommodate evidence
against luminance-discounting models of lightness
remains to be seen (Rutherford & Brainard, 2002).

As mentioned when describing the model, the
statistical assumptions that guide MIR are tentative,
and an important direction for improving the model
will be to explore alternative assumptions. For example,
does the model need an assumption that illuminance
boundaries tend to be straight, given that a) the model
puts a cost on illuminance edges and b) a straight
line between two points is shorter than a curved line?

The latter two properties would already seem to put a
higher cost on curved illuminance boundaries. In fact, I
have found that a variant of MIR without the straight
illumination boundary assumption does account for
effects such as the argyle and snake illusions (and their
control conditions). However, it also creates artifacts
where small reflectance regions are instead interpreted
as lighting regions,5 and for this reason I have kept the
straight illumination boundary assumption. To take
another example, the assumption that low illuminances
are more probable than high illuminances plays an
important role in MIR, as it drives the model to assign
reflectances that fill the range of 0.03 to 0.90 (MIR’s
version of the “highest luminance rule” in anchoring
theory). It remains to be seen, however, whether this
assumption correctly reflects natural scene statistics,
or whether the human visual system’s tendency to
see the highest luminance in a scene as white has a
different explanation (e.g., Murray, 2013). As these
examples illustrate, there is a great deal of room for
exploring the effects of alternative assumptions about
lighting and reflectance. Another promising approach
would be to learn potential functions from illuminance
and reflectance patterns in natural scenes (or realistic
renderings of natural scenes), instead of manually
specifying a number of discrete assumptions (Freeman
et al., 2000).

Finally, the CRF framework makes MIR highly
extensible. Depth boundaries, for example, have a
strong effect on lightness (Gilchrist, 1977), and if
the model was provided with a depth map as an
additional layer, it would be straightforward to reduce
the cost of illuminance edges at depth discontinuities.
Similarly, a model with three luminance, illuminance,
and reflectance layers for three spectral bands, and with
potential functions similar to those described here,
would provide a starting point for a CRF model of
color constancy (Land & McCann, 1971; Brainard &
Wandell, 1986). It would also improve the model to
incorporate factors such as grouping (Gilchrist, 2006)
and haze (Adelson, 2000), and to allow naturalistic,
high-resolution stimuli. Previous work on graphical
models provides ample guidance and tools for such
problems, and research on lightness perception, which
often appeals to properties of lighting and reflectance
in natural scenes, would benefit greatly from engaging
with this literature.

Keywords: lightness, illumination, computational
modeling, psychophysics
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Footnotes
1Reflectance is the proportion of incident light reflected by a surface, e.g.,
black surfaces have a reflectance of around 3%. Lightness is perceived
reflectance. Luminance is a measure of physical lighting magnitude
in a viewed stimulus (units cd/m2). Brightness is perceived luminance.
Illuminance is a measure of incident lighting magnitude on a surface
(units lux).
2An important detail is that this only holds if the MRF has P(X) > 0 for
all X.
3This is only a tendency, though, and exp ( − εi(Ci)) is not proportional
to the probability density of clique Ci. Finding the marginal probability
density of a clique from the Gibbs distribution of the ensemble
(Equation 1) is not straightforward.
4This aspect of the cost functions is explained in detail in the Appendix.
The cost functions εi are defined on 2 × 2 cliques, so a more complete
statement of this property is that cost functions are evaluated on uniform
image regions, up to a maximum 2 × 2 pixel region.
5In the MATLAB implementation of MIR
(doi:10.17605/OSF.IO/4FWJV), the reader can set the parameter
model.wmtwist (which controls the cost of curved illuminance
boundaries) to zero to see these effects.
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Appendix

The Markov illuminance and reflectance model

Model structure
The Markov illuminance and reflectance (MIR)

model is a CRF with two 16 × 16 layers. Layer 1
represents the observed luminance image L = (lij),
and layer 2 represents the illuminance assignment
M = (mij). For a Lambertian, frontoparallel surface,
these two layers imply a reflectance assignment
R = (ri j ) = (π li j/mi j ). (The factor of π arises when
we use units of cd/m2 for luminance and lux for

illuminance.) Each node in layer 2 (except edge nodes)
has an undirected connection to the nearest nine
neighbors in layer 1 and the eight nearest neighbors
in layer 2. Given an observed luminance image L, the
model represents the posterior probability density of
illuminance M and implied reflectance R as a Gibbs
distribution, with total energy given by a sum of
local potentials over 4-cliques (i.e., 2 × 2 squares) in
layer 2:

P(M,R|L) = 1
Z

exp

⎛
⎝−

∑
i j

εi j (Mi j;L)
⎞
⎠ (2)

Here, ij indexes the 4-clique with its upper left corner
in row i and column j. εij is the potential function
that returns the energy of the 4-clique ij (see Section
2 for details). Mij is the 2 × 2 submatrix of M on the
4-clique ij. Z is the partition function, a constant that
normalizes the probability density to unit volume.

Layer 2 explicitly represents illuminance assignments
mij, but some of its potential functions (see below) also
include costs that depend on the implied reflectance
ri j = π li j/mi j . Thus, a more complete way of describing
layer 2 is to say that it represents illuminance-reflectance
assignments (mij, rij), parameterized by the illuminance
mij. In the exposition in the main text (e.g., Figure 2),
I gave the two layers equal status for simplicity, but in
fact the illuminance layer M is represented explicitly,
and the reflectance layer R is implied.

Potential functions
The model uses the following soft constraints, imple-

mented via the potential functions εij in Equation 2.
These are the seven assumptions described in the main
text.

(A1) Illuminance spans a wide range, and lower
illuminances are more likely. Each node in layer 2 has
a potential ε1mi j = log10mi j that assigns a logarithmic
cost to the illuminance mij at that node. This allows
illuminance to take any positive value, but assigns a
lower cost, and hence a higher probability, to lower
values.

I label potential functions ε with superscripts. In
ε1mi j , the 1 superscript indicates that this is a potential
on a 1-clique (a single node), and the m indicates that
it places a cost on illuminance. In the accompanying
MATLAB implementation, ε1mi j (and all other potential
functions) are represented as a table, and mij takes 20
logarithmically spaced values between 30 lux and 350
lux.

(A2) Reflectance mostly spans the range of 3% to 90%.
Reflectance is modeled using the following probability
density function, which is shown in Figure 15:
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Figure 15. MIR’s reflectance prior.

fr(r)= 1
0.85 − 0.04

min(σ (r; 0.04, 0.01),
σ (−r; −0.85, 0.05)) (3)

Here, σ (x; a, b) =
(
1 + e

−(x−a)
b

)−1
is the logistic

function. fr is the minimum of an increasing and a
decreasing logistic function, with parameters a and b
chosen so that most of the area under the resulting
function lies between r = 0.03 and r = 0.90. Each node
in layer 2 has a potential ε1ri j = − log10 fr(π li j/mi j ),
the negative log likelihood of the implied reflectance
ri j = π li j/mi j .

MIR is robust with respect to changes in the
reflectance density function in Equation 3. For example,
the model gives qualitatively similar results with a
density function that takes a constant value between
0.03 and 0.90, and a value of 10−5 elsewhere. The key
properties of the density function are that it mostly
limits reflectance to a physically realistic range, and
allows values outside this range with some small
probability.

For later convenience (see (A6)), I group the 1-clique
potentials ε1mi j and ε1ri j into 2-clique potentials. The
horizontal 2-clique indexed by ij is the 1 × 2 block
of layer 2 nodes with its left node at position ij. The
vertical 2-clique indexed by ij is the 2 × 1 block with
its upper node at position ij. I define horizontal and
vertical 2-potentials (with superscript labels h and v) as
follows.

ε2hmr
i j = ε1mi j + ε1ri j

ki j
+

ε1mi( j+1) + ε1ri( j+1)

ki( j+1)
(4)

ε2vmr
i j = ε1mi j + ε1ri j

ki j
+

ε1m(i+1) j + ε1r(i+1) j

k(i+1) j
(5)

Here, kij is the number of horizontal or vertical
2-cliques that 1-clique ij belongs to, which is four except
at edge nodes. Dividing by kij distributes the 1-clique
potentials evenly, in such a way that summing all

2-clique potentials ε2hmr
i j and ε2hmr

i j gives the same result
as summing all 1-clique potentials ε1mi j and ε1ri j .

In Equations 4 and 5, and elsewhere, I leave implicit
the fact that potentials for different clique sizes have
different index ranges ij. For 1-clique potentials ε1∗i j ,

the range is i = 1: 16, j = 1: 16. For horizontal 2-clique
potentials ε2h∗i j , the range is i = 1: 16, j = 1: 15, because
ε2h∗i,16 would extend beyond the right side of the CRF.
Similarly, for vertical 2-clique potentials ε2v∗

i j , the range
is i = 1: 15, j = 1: 16, and for 4-clique potentials ε4∗i j , the
range is i = 1: 15, j = 1: 15.

(A3) Illuminance edges are less common than
reflectance edges. Each horizontal and vertical 2-clique
has a potential that assigns a sum-of-squares cost to
log-illuminance edges:

ε2hmi j = w (logmi j − logmi( j+1))2 (6)

ε2vmi j = w (logmi j − logm(i+1) j )2 (7)

The weight w depends on the local image luminance
pattern as described in (A4) and (A5). The weights were
arrived at by manual adjustment, and the model is fairly
flexible with regard to weight assignments. The model
assigns no cost to reflectance edges.

(A4) X-junctions are evidence for illuminance edges.
For a two-clique at an image luminance edge that is
part of an X-junction, the potentials in Equations 6
and 7 have zero weight, w = wx = 0. I liberally define an
X-junction as a 2 × 2 square where there are luminance
edges between all four pairs of adjacent nodes; no
special relationship between the four luminances is
required. In future revisions of the model, it will be
worth exploring whether requiring physically realistic
luminance relationships in X-junction cues to lighting
boundaries improves performance (Metelli, 1970).

(A5) Illuminance edges tend to occur at image
luminance edges. For a 2-clique at an image luminance
edge that is not part of an X-junction, the potentials
in Equations 6 and 7 have a moderate weight, w =
w1 = 20. For a 2-clique with no luminance edge, the
potentials have a large weight, w = w0 = 600. These and
the other weights w* in the model were arrived at by
manual experimentation.

(A6) Potentials are evaluated on uniform image
regions, not pixelwise. Articulation effects show that
lightness constancy tends to be better in images that
consist of many distinct luminance regions (Katz,
1935). One possible explanation for these effects is that
the visual system partitions an image into uniform
luminance regions, and considers each region to provide
a sample of information about the lighting conditions
in the scene: more luminance regions provide more
information, and as a result lightness percepts tend
to be more accurate. I cannot fully implement this
hypothesis in the present model, as potentials are
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evaluated over regions no larger than 4-cliques. I take
a step in this direction, though, by having 2-clique
potentials that span a luminance edge provide twice the
potential of 2-clique potentials that fall within uniform
luminance regions. I could do the same with 4-clique
potentials, but I find that modifying 2-clique potentials
this way is sufficient to create articulation effects.

I define the following horizontal and vertical 2-clique
potentials that combine the 2-clique potentials defined
above, and divide them by two if they fall within a
uniform-luminance region.

ε2hi j =
ε2hmr
i j + ε2hmi j

a h
i j

where

a h
i j=

{
2 if li j = li( j+1)
1 otherwise (8)

ε2vi j = ε2vmr
i j + ε2vmi j

av
i j

where

av
i j=

{
2 if li j = l(i+1) j
1 otherwise (9)

(A7) Illuminance edges tend to be straighter than
reflectance edges. Each 4-clique has a potential ε4mi j
that assigns a cost to any 2 × 2 illuminance pattern
that is not a multiplicative combination of vertical and
horizontal edges. Consider a local illuminance pattern:[

m11 m12
m21 m22

]
(10)

If the pattern is a horizontal edge, for example,[
1 1
2 2

]
(11)

then m11/m21 = m12/m22, or alternatively τ ≡ (log10m11
− log10m21) − (log10m12 − log10m22) = 0. If the pattern
is a vertical edge, for example,[

1 2
1 2

]
(12)

thenm11/m12 =m21/m22, and again τ = 0. Any pointwise
product of horizontal and vertical edges also has τ =
0. Thus, a 2 × 2 illuminance pattern produced by a
vertical or horizontal shadow, or by a shadow meeting
a transmissive filter at right angles (Metelli, 1970), or
by two transmissive filters meeting at right angles under
uniform illumination, all have τ = 0.

I call τ the twist of the log illuminance, as it is a
discrete analog to ∂2

∂x∂y log10m(x, y) and measures the
local rate of slope change in log illuminance. There
are many ways of quantifying the straightness of

local illuminance edges, but I have found τ to be an
easy-to-compute and effective measure. The potential
ε4mi j puts a cost on τ :

ε4mi j = 200 τ 2
i j = 200[log10mi j + log10 m(i+1)( j+1)

− log10 m(i+1) j − log10 mi( j+1)]2 (13)

The scale factor 200 is a manually chosen value that
makes the model produce human-like interpretations of
lightness illusions. The model puts no cost on the twist
of reflectance.

The full potential εij for each 4-clique (see Equation 2)
is the sum of the twist potential and the 2-potentials
contained within the 4-clique:

εi j = ε4mi j + ε2hi j

k2hi j
+

ε2h(i+1) j

k2h(i+1) j
+ ε2vi j

k2vi j
+

ε2vi( j+1)

k2vi( j+1)
(14)

Here k2hi j is the number of 4-cliques that horizontal
2-clique ij belongs to, which is two except in the top
and bottom rows of the CRF. k2vi j is the corresponding
number for vertical 2-cliques. Dividing by k2hi j and k2vi j
distributes the 2-clique potentials evenly, in such a way
that summing all 4-clique potentials εij gives the same
result as summing all ε4mi j , ε2hi j , and ε2vi j .

Inference
The model uses max-sum belief propagation to

estimate the maximum a posteriori (MAP) assignment
of illuminance and reflectance to a luminance image.
The strictly correct form of the max-sum algorithm is
impractical with densely connected graphical models
such as the one used here, but with some heuristics it
can be made to work well. Here I implement belief
propagation using a Bethe cluster graph (e.g., [p. 405]
Koller & Friedman, 2009) and tree reparameterization
(e.g., [p. 408] Koller & Friedman, 2009).

The Bethe cluster graph for this model has two kinds
of nodes: 1-nodes that represent single CRF nodes
in layer 2, and 4-nodes that represent the potential
function εij for each 4-clique in layer 2. There is an
undirected connection between each 1-node and the
4-nodes that represent the potential functions that
the 1-node contributes to. In each message passing
operation, a node in the cluster graph sends a function
δ(mij) to another node that it is connected to. The
max-sum message δ(mij) reports the lowest energy of
any illuminance-reflectance assignment to the sending
node’s clique, that assigns illuminance mij (and so
reflectance ri j = π li j/mi j) to the one CRF node ij that
the sender and receiver have in common. The message
takes into account incoming messages from the sending
node’s other neighbors, and if the sending node is
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a 4-node then it also takes into account the node’s
potential εij.

I use tree reparameterization to choose the message
passing schedule. The Bethe cluster graph has 60
horizontal and vertical subtrees. To make one complete
message passing iteration, I randomly permute the
order of these subtrees, and do an upward-downward
message passing sweep on each subtree. I find this
method to be much more effective than choosing
individual nodes in random order.

Max-sum belief propagation is guaranteed to
converge to a global energy minimum when the cluster
graph it operates on has no loops. The Bethe cluster
graph used here has many loops, so the algorithm is not
guaranteed to converge, and when it does converge, it

may not converge to a global minimum. Nevertheless,
max-sum belief propagation is often found to work well
in practice on cluster graphs with loops, and that is
what I find here, particularly in conjunction with tree
reparameterization. The algorithm practically always
converges to a reasonable illuminance-reflectance
assignment, though usually not to the global optimum,
and sometimes with artifacts such as illuminance
edges at unexpected locations. I improve convergence
by taking the best (lowest-energy) result of ten
independent runs of belief propagation, each consisting
of five complete iterations as defined above in the
paragraph on tree reparameterization. After 10 runs,
further runs do not usually find substantially better
solutions.


