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Abstract
Cinacalcet, a type II calcimimetic agent that interacts with
the calcium-sensing receptor on the parathyroid gland and
increases its sensitivity to calcium, has proved an effec-
tive therapy for the treatment of the biochemical derange-
ments that comprise uraemic secondary hyperparathy-
roidism. These patients experience high cardiovascular
attrition with evidence that this is associated with vas-
cular calcification, arterial stiffening and increased pulse
wave velocity, and with some of the disturbances of bone
and mineral metabolism in uraemia. Thus, it is possible
that improved biochemical control in calcimimetic-treated
patients might lead to better clinical outcomes. This hy-
pothesis was investigated by retrospective analyses of ran-
domized placebo-controlled phase 3 studies. The addition
of cinacalcet to standard therapy with active vitamin D and
phosphate binders was found to result in a 93% reduction in
the rate of parathyroidectomy, a 54% reduction in fracture
rate and 39% reduction in the rate of cardiovascular hos-
pitalization, as well as improvements in some measures of
quality of life. These encouraging results point to the need
for a more robust assessment of the impact of cinacalcet on
cardiovascular and skeletal outcomes.
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Introduction

Uraemic secondary hyperparathyroidism (SHPT) is an
adaptive response to reduced glomerular filtration rate,
impaired phosphate excretion and failure to complete the
bioactivation of vitamin D [1]. These disturbances of min-
eral metabolism are also associated with abnormal bone
morphology and turnover [2], and with vascular and other
soft tissue calcification [3–6]. Important skeletal seque-
lae of uraemic bone disease include increased fracture rate
[7] and increased mortality associated with fracture [8]. In
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addition, bone pain and failure of growth in children are im-
portant and potentially preventable complications [9]. The
sustained elevations of serum parathyroid hormone (PTH),
calcium, phosphorus and calcium–phosphorus product
(Ca × P) characteristic of these patients are associated with
increased cardiovascular (CV) disease [10,11], CV mortal-
ity [12] and increased rates of hospitalization [13]. SHPT it-
self is associated with increased rates of parathyroidectomy
[14], long-bone fractures [13,15], CV hospitalization [13],
death [13] and compromised quality of life (QOL) [16].
Here, we review the consequences of SHPT, its associated
derangements and the potential effects of calcimimetics on
these outcomes.

Consequences of SHPT

Cardiovascular effects

Vascular calcification occurs in patients with chronic kid-
ney disease (CKD) undergoing dialysis [3,17]. In a study
investigating the mechanism by which calcification oc-
curs, Yang et al. [18] (using an in vitro human vascular
smooth muscle cell [VSMC] model) demonstrated that el-
evated calcium concentrations increased mineralization. In
separate studies, accelerated and increased VSMC calci-
fication occurred in response to elevations in both cal-
cium and phosphorus concentrations [18,19]. It was also
shown that calcium-induced mineralization was dependent
in part on the sodium-dependent phosphorus cotransporter-
dependent pathway [18], previously described in these cells
[20].

Various studies have shown that patient age [17,21,22],
duration of dialysis [21,22] and Ca × P levels [18] are pos-
itively associated with vascular/valvular calcification. The
compromised vascular compliance associated with vascu-
lar calcification in haemodialysis patients increases pulse
wave velocity, pulse pressure (Figure 1) and wave reflexion
[10] and probably contributes importantly to left ventricular
hypertrophy and to increased rates of mortality [23]. Ad-
vancing age also is strongly correlated with increased aortic
pulse wave velocity in patients with stage 5 CKD compared
with the general population [24]. The association of CV sur-
vival in patients with stage 5 CKD and aortic pulse wave
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Fig. 1. Correlation between arterial calcification score and pulse pressure
(P < 0.001; ANOVA). SD, standard deviation. Adapted with permission
from Guerin et al. [22].

Fig. 2. Correlation between CV survival and aortic pulse wave velocity in
patients with end-stage renal disease. The cohort was divided into tertiles
based on pulse wave velocity (<9.7 m/s, >9.7 m/s and >12 m/s). CV,
cardiovascular. Adapted with permission from Pannier et al. [25].

velocity is shown in Figure 2 [25]. These data demonstrate
a strong association between CV mortality rates and in-
creased pulse wave velocity caused by increasing vascular
calcification, which in turn is a predictor of all-cause mor-
tality in long-term dialysis patients [26].

Vascular calcification

Arterial calcification occurs at the media and intima of
the vascular wall [27], the former associated with abnor-
mal stiffness and the latter with increased atherosclerotic
load. In a recent study in uraemic patients undergoing
haemodialysis (n = 716), carotid artery thickness was mea-
sured using ultrasonic scanning to determine whether serum
phosphorus concentration was associated with carotid
artery thickening [28]. It was demonstrated that, in addition

to advanced age, increased serum phosphorus concentration
was a significant independent factor associated with vas-
cular calcification (advanced arteriosclerosis) [28]. These
results suggest that good control of serum phosphorus con-
centration may help prevent vascular calcification.

Although extracellular fluids are supersaturated with cal-
cium and phosphorus, under normal physiological condi-
tions only bone undergoes calcification, suggesting that
mineralization is inhibited in soft tissues. Loss of these
inhibitors may play a critical role in the development
of calcification [29]. Studies have identified matrix
γ-carboxyglutamic acid (Gla) protein (MGP), fetuin-A, os-
teopontin and osteoprotegerin in or around VSMC, as po-
tentially having a role in the prevention of vascular cal-
cification [27,30–34]. In CKD, the VSMC may lose their
inhibitors of calcification, form matrix vesicles for calcium
deposition [19,32] and adopt an osteoblast-like phenotype
[30,35] associated with reduced expression of Gla proteins
[35]. Matrix Gla protein is a potent inhibitor of calcification
and targeting this calcium-binding protein may help regu-
late vascular calcification in patients with CKD. In addition,
progressive VSMC damage with apoptosis is directly asso-
ciated with increasing time on dialysis [21,22] and would
favour calcification, especially if calcium and phosphorus
are elevated [18,19].

By increasing sensitivity of the calcium-sensing recep-
tor (CaR) to serum calcium, calcimimetics enhance signal
transduction by the CaR and suppress PTH production. Ag-
onists of the CaR also have been shown to up-regulate MGP
expression [36]. In VSMC, it was demonstrated that MGP
was up-regulated in response to high concentrations of cal-
cium to prevent further calcification through a mechanism
similar to the CaR [36]. Calcimimetics, therefore, may also
have a role in inhibiting calcification through control of
MGP expression, but further studies are required to sup-
port this notion.

Effect of calcimimetics on vascular calcification

To investigate the effects of the phenylalkylamine cal-
cimimetic R-568 on vascular calcification, uraemic rats
(5/6 nephrectomized) with SHPT received vehicle (con-
trol), calcitriol (active vitamin D), R-568, or calcitriol and
R-568 in combination [37]. The doses of calcitriol and
R-568 given to the rats were those required to reduce
the PTH level to normal. Thus, although both calcitriol
and R-568 reduced serum PTH concentrations, calcitriol
also increased serum calcium and phosphorus. Rats treated
with calcitriol alone had significantly increased aortic cal-
cium and phosphorus compared with controls, whereas aor-
tic calcium and phosphorus content were not increased
in R-568-treated rats compared with controls. Treatment
with R-568 in combination with calcitriol reduced the ex-
tent of calcitriol-induced calcium and phosphorus accu-
mulation. Similarly, von Kossa staining of aortic sections
showed deposits of calcium in nephrectomized rats receiv-
ing calcitriol for 14 days that were absent in those receiv-
ing a calcimimetic or the combination of calcitriol and
calcimimetic. Consistent with the increased calcification
observed, expression of MGP mRNA was significantly up-
regulated in calcitriol-treated rats (P < 0.05).
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In addition to these observations, mortality was signifi-
cantly (P < 0.001) increased in calcitriol-treated uraemic
rats and decreased (P = 0.01) in rats receiving R-568 in
addition to calcitriol [37]. All control and R-568-treated
rats survived. This study demonstrated that R-568 reduced
elevated PTH levels without inducing vascular calcification
and prevented calcitriol-induced vascular calcification and
mortality.

In another study investigating the effects of calcitriol and
calcimimetics on vascular calcification and the effect of
calcimimetics on calcitriol-mediated calcification, Henley
et al. [38] administered cinacalcet, calcitriol or cinacalcet
in combination with calcitriol for 26 days in a rat model
of SHPT. Using von Kossa staining, calcitriol-treated rats
exhibited calcification, whereas vehicle- and cinacalcet-
treated groups did not. Both cinacalcet and calcitriol
treatment groups had significantly reduced serum PTH con-
centrations. It was also demonstrated that calcitriol signif-
icantly elevated serum calcium, phosphorus and Ca × P
above the levels observed before treatment or observed in
the vehicle- or cinacalcet-treated group.

These promising findings clearly warrant further investi-
gation to determine whether the use of calcimimetics could
ameliorate vascular calcification in humans.

Outcomes with cinacalcet treatment

Biochemical and metabolic outcomes

By increasing the sensitivity of the CaR receptor to cal-
cium, cinacalcet treatment predictably results in simulta-
neous reduction of both calcium and PTH in patients with
primary or secondary hyperparathyroidism [39]. In SHPT,
the clinical utility of cinacalcet treatment has been evalu-
ated in a series of controlled studies in which patients with
moderate and severe SHPT, despite receiving standard care
with active vitamin D compounds and phosphate binders
as appropriate, were randomized to receive either cinacal-
cet or a placebo in addition to standard care [40–43]. The
results of these studies were substantially consistent and
showed a marked reduction in serum PTH, with moderate
(although still highly significant) reductions in serum cal-
cium, phosphate and Ca × P. These biochemical changes
led to striking increases in the proportion of patients who
became compliant with National Kidney Foundation Kid-
ney Disease Outcomes Quality Initiative (KDOQI) targets
for serum PTH, calcium, phosphorus and Ca × P (Figure 3)
[44].

Clinical outcomes

Ideally, clinical outcomes in relation to a new therapy should
be assessed by means of a prospective randomized interven-
tion study designed specifically to evaluate the particular
clinical outcome(s) under scrutiny. This has not yet been
done with respect to any treatment for SHPT. However, the
randomized, placebo-controlled Evaluation of Cinacalcet
HCl Therapy to Lower CV Events (EVOLVE) trial, cur-
rently in progress, is investigating the effect of treatment
with cinacalcet on all-cause mortality and CV events in ap-

Fig. 3. Effect of treatment with cinacalcet in addition to standard ther-
apy on achievement of KDOQI targets for serum PTH, calcium, phos-
phorus and calcium × phosphorus product. For serum PTH, a target
of ≤300 pg/mL was used in the analysis, instead of the KDOQI range
of 150–300 pg/mL. All comparisons between control and cinacalcet were
significant (P < 0.001). Adapted with permission from Moe et al. [44].

proximately 4000 haemodialysis patients around the world
[45]. A second randomized clinical trial (ADVANCE) is
investigating the ability of cinacalcet in combination with
reduced-dose vitamin D to attenuate the progression of
coronary artery calcification in haemodialysis patients.

An alternative, if less robust, way of approaching this
issue is by retrospective analysis of prospectively ac-
quired data from relevant intervention studies. Evaluation
of pooled data from four randomized double-blind stud-
ies of similar design was undertaken. In these studies, pa-
tients with SHPT, despite receiving standard care, were ran-
domized to receive either cinacalcet in addition to standard
care (n = 697) or standard care alone (n = 487) [46]. The
following safety outcomes were assessed at 6 to 12 months:
parathyroidectomy (considered treatment failure and a rea-
son for discontinuation), fractures, hospitalization, mortal-
ity and self-reported health-related QOL (HR-QOL) [46].
HR-QOL outcomes were captured in all studies with the
Medical Outcomes Study Short Form-36 General Health
Survey (SF-36) and the Cognitive Functioning scale of the
Kidney Disease Quality of Life instrument. Although the
number of patients was fairly large, it should be noted that
the number of events was quite small and some occurred
late or in the extension phase of the study in question.

Parathyroidectomy. In a study investigating parathy-
roidectomy rates and associated mortality in patients under-
going haemodialysis between 1992 and 2002 [14], it was
observed that rates progressively declined from 11.6 per
1000 patient-years in 1992 to 6.8 per 1000 patient-years in
1998 and successively increased thereafter, reaching 11.8
per 1000 patient-years in 2002. Parathyroidectomy rates
were much higher in patients who had received dialysis for
a long time (Figure 4). Parathyroidectomy was associated
with an increased relative risk (RR) of death in the 3 to 6
months following surgery.
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Fig. 4. Parathyroidectomy rates by year for subgroups according to du-
ration of previous haemodialysis. Adapted with permission from Foley
et al. [14]

Fig. 5. Effect of treatment with cinacalcet in addition to standard therapy
on the relative risk of parathyroidectomy, fracture, hospitalization, car-
diovascular hospitalization and mortality. ∗P < 0.05; ∗∗P < 0.01 versus
standard therapy. Adapted with permission from Cunningham et al. [46].

In uraemia, PTH secretion is increased in response to
low serum calcium and it is likely that calcimimetics lessen
the need for parathyroidectomy by rendering parathyroid
cells more calcium sensitive, thus decreasing PTH syn-
thesis and parathyroid cell proliferation [47]. Cunningham
et al. [46] demonstrated that the probability of a parathy-
roidectomy was substantially diminished in patients treated
with cinacalcet. The RR for parathyroidectomy was 0.07 in
the cinacalcet group. Event rates per 100 patient-years fell
from 4.1 with standard care to 0.3 with cinacalcet (a 93%
reduction; Figure 5) [46].

Long-bone fractures. Uraemia is associated with in-
creased long-bone fracture rate and increased mortality in

relation to such fractures [7,8]. Increased calcium, phos-
phorus and PTH concentrations are directly related to a sig-
nificantly greater risk of fracture [13,15]. Block et al. [13]
reported that the RR of fracture-associated hospitalization
(n = 257) was 1.12 per mg/dL increase in serum phospho-
rus concentration and that increased PTH concentration was
also significantly associated with fracture-related hospital-
ization (P = 0.035).

Fracture is an important clinical outcome, and the avail-
able surrogates are relatively poor. Measurements to eval-
uate bone health in SHPT patients are normally limited to
bone mineral density (BMD). However, although a measure
of bone quantity is obtained, bone quality cannot be evalu-
ated unless a bone biopsy is performed [2]. There are wide
variations in bone quality among patients with uraemia, and
it is not surprising that BMD in isolation is a poor predictor
of fracture risk in advanced CKD [48]. Bone strength and
fracture risk are what matter to patients, and fracture out-
comes in clinical trials remain highly relevant for assessing
effects of new interventions on bone strength.

A small study (n = 14) showed that after 6 months of
treatment with cinacalcet, femur BMD was increased in
patients with SHPT. In contrast, BMD was decreased in
patients receiving placebo [49]. Fracture outcomes were
not collected in this short-term study but were evaluated
in the analysis of the combined database reported by Cun-
ningham et al. [46]. The fractures were those identified
and recorded during the studies and, although not indepen-
dently adjudicated, were verified individually by review of
medical records. This analysis demonstrated that the rate of
fractures fell significantly in patients receiving cinacalcet
in addition to standard care (from 6.9 per 100 patient-years
to 3.2 per 100 patient-years; RR = 0.46) compared with
standard care alone (Figure 5).

Hospitalizations. Elevated concentrations of PTH and Ca
× P have been shown to be associated with an increased
number of hospitalizations in haemodialysis patients [13].
As CKD progresses, the need for hospitalizations increases
because of the associated complications of advancing dis-
ease. In a study evaluating associations among disorders
of mineral metabolism, mortality and morbidity, Block
et al. [13] demonstrated that during the 12- to 18-month
follow-up period, 60% of patients had at least one hos-
pitalization. Approximately 24% of these hospitalizations
were related to CV events. The risk of hospitalization, all
cause or CV, was significantly increased in those with a
Ca × P ≥50 mg2/dL2.

In the combined database analysis, hospitalizations were
categorized as having been precipitated by either CV or
non-CV reasons. Cunningham et al. [46] reported that hos-
pitalizations due to CV disease fell significantly in pa-
tients receiving cinacalcet in addition to standard care for
SHPT (15.0 versus 19.7 hospitalizations per 100 patient-
years, respectively, for cinacalcet versus standard care;
RR = 0.61). CV disease hospitalizations included is-
chaemic heart disease (including myocardial infarction and
angina pectoris), heart failure, arrhythmia, peripheral vas-
cular disease and stroke. There were no significant dif-
ferences between treatment groups for hospitalizations for
non-CV reasons (RR = 1.16) or for hospitalizations not
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related to CV disease, fracture, or parathyroidectomy (RR
= 1.18) (Figure 5) [46].

Mortality. Observational data suggest that mortality rates
are related to the achievement of KDOQI targets, with the
greatest increase in mortality occurring when patients have
not achieved Ca × P and PTH goals [13]. As reported
by Block et al. [13], the RR increased from 1.08 in pa-
tients with PTH 600–900 pg/mL to 1.24 in patients with
PTH ≥1200 pg/mL. A similar trend was seen with Ca × P:
RR values of 1.06 and 1.14 with Ca × P of 45–50 mg2/dL2

and 50–55 mg2/dL2, respectively.
In a pooled analysis of three similarly designed, placebo-

controlled, double-blind, 26-week studies, Moe et al. [44]
demonstrated that significantly more cinacalcet-treated
dialysis patients with SHPT achieved KDOQI targets
for intact PTH (≥300 pg/mL instead of the KDOQI
range of 150–300 pg/mL), calcium, phosphorus and
Ca × P (P < 0.001 for each) compared with patients receiv-
ing standard therapy. It remains unknown whether control
within targets will reduce the risk of mortality. The analysis
of the safety database reported by Cunningham et al. [46]
(n = 1184) did not provide evidence for an effect of cinacal-
cet treatment on mortality (5.2 versus 7.4 deaths per 100
patient-years for cinacalcet and standard care, respectively;
P = NS).

HR-QOL. CKD has a significant negative impact on HR-
QOL [50,51]; there are significant differences in many do-
mains of the SF-36 between patients with CKD and the
general population. QOL scores for patients with CKD are
low [16] and SF-36 scores in CKD patients have been re-
ported to be one standard deviation below the mean of the
general population for physical role, physical function and
general health [51]. A significant difference between these
populations was also observed for the vitality score.

In the combined database study of patients with CKD,
baseline HR-QOL scores were similar between treatment
groups and were one half to one standard deviation below
the population mean, indicating reduced HR-QOL [46]. As
shown in Figure 6, data from the SF-36 indicated that there
were significantly greater improvements with cinacalcet
compared with standard care for the Physical Component
Summary, Bodily Pain and General Health Perception do-
mains [46]. A significantly greater proportion of patients
receiving cinacalcet (26%) versus standard care (20%;
P = 0.03) had a large (>5 points) improvement in physical
function. No significant differences were seen in the other
HR-QOL domains evaluated.

Summary

As yet, there is no prospectively acquired clinical evidence
regarding the effect of compliance with biochemical targets
on markers of CV disease, such as vascular calcification or
pulse wave velocity. Similarly, despite observational data
showing associations between compliance with SHPT treat-
ment goals and survival, there is no prospectively acquired
evidence that demonstrates management of hyperparathy-
roidism with vitamin D or cinacalcet improves survival.

Fig. 6. Differences in mean score changes (cinacalcet-treated minus con-
trol patient scores) of combined phase 3 data on KDQOL-CF scale and
SF-36. Cinacalcet (n = 697); control (n = 487). CF, cognitive functioning
(scale of the Kidney Disease Quality of Life instrument); PCS, physi-
cal component summary; MCS, mental component summary; SF-36 do-
mains: PF, physical functioning; RP, role limitations-physical; BP, bodily
pain; GH, general health perception; SF, social functioning; VT, vital-
ity; RE, role limitation-emotional; MH, mental health). A positive score
represents a greater improvement with cinacalcet treatment compared to
control treatment. Bars represent 95% confidence interval. Adapted with
permission from Cunningham et al. [46]

Treatment with cinacalcet enables much higher compliance
with KDOQI biochemical targets than standard care. In ad-
dition, extensive analyses of safety-related outcomes data
suggest that the addition of cinacalcet to standard care may
have a striking salutary effect on parathyroidectomy rate
and fracture rates, CV hospitalization and some aspects
of HR-QOL. Nevertheless, it would be premature to draw
more than tentative conclusions from the positive com-
ponents of these results. Adequately powered prospective
studies are clearly needed to resolve this issue and deter-
mine whether improved adherence to biochemical targets
using cinacalcet is associated with reduction of some of the
morbidities associated with CKD.
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