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Abstract: The retina is one of the most important structures in the eye, and the vascular health of the
retina and choroid is critical to visual function. Metabolomics provides an analytical approach to
endogenous small molecule metabolites in organisms, summarizes the results of “gene-environment
interactions”, and is an ideal analytical tool to obtain “biomarkers” related to disease information.
This study discusses the metabolic changes in neovascular diseases involving the retina and discusses
the progress of the study from the perspective of metabolomics design and analysis. This study
advocates a comparative strategy based on existing studies, which encompasses optimization of the
performance of newly identified biomarkers and the consideration of the basis of existing studies,
which facilitates quality control of newly discovered biomarkers and is recommended as an additional
reference strategy for new biomarker discovery. Finally, by describing the metabolic mechanisms of
retinal and choroidal neovascularization, based on the results of existing studies, this study provides
potential opportunities to find new therapeutic approaches.

Keywords: metabolomics; retinal neovascularization; diabetic retinopathy; retinopathy of prematurity;
neovascular age-related macular degeneration

1. Introduction

Vasculogenesis and angiogenesis are two processes that are indispensable for the
formation of vascular networks, and they both promote neovascularization in a specific
microenvironment [1,2]. Neovascularization in the physiological state contributes to wound
healing. Pathological neovascularization results when exogenous stimuli, such as hypoxia
and ischemia, disrupt the regulation of the dynamic balance between endogenous pro-
angiogenic and anti-angiogenic factors [3]. Abnormal neovascularization is associated with
many diseases, including cancer, hypertension, and ocular neovascularization disease.

The retina is one of the most important structures in the eye, converting incident light
into neural signals that can be received by the visual cortex of the brain, thus allowing
us to receive information from the outside world. The high metabolic demands of the
retina are met by a well-organized vascular system. The types of neovascularization af-
fecting the retina include both retinal neovascularization and subchoroidal or choroidal
neovascularization (CNV) [4]. Incomplete endothelial cells of neovascularization undergo
spontaneous rupture, producing fundus hemorrhage, and exudation, leading to loss of
central vision, visual distortion, and reduced contrast sensitivity in patients, eventually pro-
gressing to irreversible vision loss and leading to blindness. Neovascularization associated
with retinal vascular disease is a comprehensive phenotype of a group of diseases, such as
diabetic retinopathy (DR), retinopathy of prematurity (ROP) and neovascular age-related
macular degeneration (nAMD), pathological myopia, and idiopathic CNV, and associated
risk factors have been reported in different studies [5]. Frequently reported risk factors
include age [6], hyperglycemia [7], diet [8], transmissibility, trauma, and inflammation [9].
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Although considerable progress has been made in understanding the risk and genetic
architecture of neovascularization, the exact etiology is still not fully understood.

Metabolomics offers the opportunity to analyze the endogenous small molecule
metabolites of an organism, conveying “signals from genetic structure and environment”
and providing “functional readouts of physiological states”. Khan et al. recommend it as
a promising histological technique for disease investigation [10]. Metabolites can serve
as dynamic indicators of the interaction of genes, proteins and the external environment
in physiological and pathological states, and identifying metabolites with strong quanti-
tative differences between phenotypic classes (e.g., normal and disease samples) may be
an ideal way to find disease-related biomarkers in the context of a hypothesis generation-
driven research approach [11]. The ideal biomarker should have balanced sensitivity and
specificity, be easily accessible, be both non-invasive and cost effective, and provide the
opportunity for early detection of disease, and it should exist as a quantitative indicator
of disease status [12]. Abnormal states, such as inflammation, alter the permeability of
the blood-ocular barrier, making it possible to study neovascular diseases through plasma
and serum metabolomics [13]. However, limited relevant studies exist and the design and
analysis still need to be rationalized and standardized, which also results in differences
in biomarkers identified by different studies and the need to find criteria and methods to
enhance biomarker performance. This review summarizes the existing study designs and
results, and, finally, attempts to use the existing findings to explain disease mechanisms
and facilitate the clinical translation of metabolomics findings.

2. Application of Metabolomics in Retinal and Choroidal Neovascularization Studies

The eye is a relatively independent organ, and the blood-ocular barrier system regu-
lates intraocular fluid content and maintains a relatively stable state of metabolic environ-
ment in the general circulation of the body [14]. The blood-retinal barrier is a physiological
barrier to metabolic exchange in the retina, divided into internal and external barriers.
Retinal capillary endothelial cells limit the efflux of plasma and its components into the
interstitial space of the retina, forming an internal blood-retinal barrier. Retinal pigment
epithelial cells located between the choroid and the outer segments of photoreceptor cells
form the outer blood-retinal barrier, which separates retinal tissue fluid from choroidal
tissue fluid and has selective permeability and active transport functions. The choroidal
vessels accommodate up to 85% of the blood volume in the eye, allowing plasma to bathe
the retinal pigment epithelium (RPE) and meet the high metabolic demands of the photore-
ceptors [15].

When exogenous stimuli cause pathological neovascularization, it disrupts the barrier
system and the diffusion barrier between the retinal extracellular fluid and the adjacent
vitreous disappears, disrupting the local environmental homeostasis of the aqueous humor
(AH) and vitreous, which also offers the possibility to study neovascular disease through
ocular tissue and blood [13]. Neovascularization is a common pathological manifestation
of a group of vascular diseases involving the retina, of which CNV is mainly a proliferation
of neovascularization in the choroidal capillary layer that breaks through and grows across
Bruch’s membrane toward the retina and enters between Bruch’s membrane and RPE or
between the RPE layer and the retinal neurosensory layer, ultimately affecting vision, of
which nAMD is the main representative [16]. Neovascularization of the retinal capillary
network is represented by DR and ROP [17]. There is great etiological variation among these
eye diseases, but they exhibit the same neovascularization phenomenon, which may arise as
a cumulative result of gene-environment interactions. Therefore, metabolomics studies may
contribute to the understanding of disease mechanisms. This section summarizes studies
on the use of metabolomics platforms to reveal metabolic changes in several classes of
diseases presenting with retinal and choroidal neovascularization changes, including AMD,
PDR, and ROP. Metabolites that undergo changes in pathological states are summarized
and the mechanisms of disease are further elucidated on the basis of pathway analysis.
We emphasize the importance of technical and biological validation and clinical utility
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assessment, advocating a comparative results strategy based on existing studies, which
covers both performance optimization of newly identified biomarkers and consideration
based on the existing research base as additional optimized reference standards for the
discovery of desirable biomarkers.

2.1. Metabolomics to Identify Metabolic Changes in Retinal and Choroidal Neovascular Disease

Metabolomics studies have reported several ocular diseases associated with neovascu-
larization, including AMD, DR, and ROP, and we used these three common eye diseases
as examples to develop a review of metabolic changes. We conducted a literature search
using the PubMed database. Articles were identified by searching for titles using the fol-
lowing search terms: (“metabolomics” or “metabonomics” or “metabolome” or “metabolic
profiling”) AND “neovascularization-related disease*”. Additional articles were identified
by searching the reference lists of the included studies. We included metabolomics studies
based on mass spectrometry (MS) or nuclear magnetic resonance (NMR), focusing on the
generalization of population-based studies presenting with neovascularization pathological
states and looking for differential metabolites, excluding drug evaluation reports, review
articles, and abstracts without full text, resulting in the inclusion of twenty-six studies,
including five studies of ROP, nine studies of nAMD, and twelve studies of DR. A simplified
flow diagram of study selection is shown in Figure 1. Important details about the study
design and methods were extracted from selected articles and summarized (Table 1).
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Table 1. Characterization of metabolomics studies of retinal neovascularization events.

References Comparison Age Male% Source/Race Biofluid Technique
Employed Evaluation Standard

ROP

Yang (2020) ROP patients (n = 40) GA (31.20 ± 4.62
weeks) 37.50 China Blood UPLC-MS/MS OPLS-DA (VIP > 1) & t-tests

(p < 0.05) & Wilcoxon (p < 0.05)

controls (n = 41) GA (30.96 ± 4.17
weeks) 73.17

Nilsson (2021) 47 ROP cases Sweden Serum LC-MS Repeated measures data (Spline
function)

cord blood and at postnatal days 1, 7, 14, and 28, and at postmenstrual weeks
32, 36, and 40

Zhou (2021) ROP patients (n = 58) 29.09 ± 2.23
(weeks) 58.62 China Plasma HPLC-MS/MS Mann-Whitney U test (p < 0.05)

controls (n = 25) 31.29 ± 2.33
(weeks) 52.00

Zhou (2020) ROP patients (n = 38) GA (29.28 ± 2.42) 55.26 China Plasma UHPLC-MS OPLS-DA (VIP >1) and t-test
(p < 0.05/0.05 < p < 0.1)

controls (n = 24) 30.61 ± 2.75 56.52
Ozcan (2020) ROP patients (n = 26) GA (28.5 ± 2.7) Turkey Plasma LCMS/MS Mann-Whitney-U test (p < 0.05)

controls (n = 29) 31.52 ± 2.6

AMD

Mitchell (2018) NVAMD patients (n = 100) 79.2 35.00 America Plasma LC-MS and
LC-MS/MS Nested feature selection

controls (n =192) 71.9 36.00

Luo (2017) NVAMD patients (n = 20) 66.20 ± 11.51 55.00 China Plasma UPLC-QTOF MS PLS-DA (VIP > 1) & t-test (p < 0.05
or 0.05 < p < 0.1)

controls (n = 20) 64.70 ± 11.60 55.00
Osborn (2013) NVAMD patients (n = 26) 76.0 ± 5.7 Caucasian Plasma LC-FTMS Multiple testing

controls (n = 19) 76.4 ± 4.8
Li (2016) PCV (n = 21) 60.7 ± 9.4 62.00 China Serum UPLC-MS OPLS (VIP > 1), t-test (p < 0.05)

controls (n = 19) 64.8 ± 9.2 53.00
Barca (2020) NVAMD patients (n = 40) 81.1 39.00 France Plasma LC MS t-test (p < 0.05)

controls (n =40) 81.8 41.00
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Table 1. Cont.

References Comparison Age Male% Source/Race Biofluid Technique
Employed Evaluation Standard

Liu (2020) AMD (n =88), PCV (n = 102),
PM (n = 57)

69.84 ± 8.47 (AMD),
66.06 ± 11.42 (PCV),
55.32 ± 14.49 (PM)

66.28 (AMD),
71.57 (PCV),
28.07 (PM)

China Serum GC-TOF-MS OPLS-DA (VIP > 1.0), t-test
(p < 0.05), and FC > 1.2 or <0.8

controls (n = 81) 65.83 ± 11.94 35.80

Han (2020) nAMD patients (n =26) 74.12 53.85 China AH UHPLC-MS/MS OPLS-DA (VIP > 1) & one-way
variance (p < 0.05)

Cataract patients without
AMD (n = 20) 69.6 65.00

Deng (2021) 127 nAMD (CNV + PCV) 71.1 ± 8.4 61.00 China Plasma UHPLC-MS PLS-DA (VIP ≥ 1), FC ≥ 2 and
FC ≤ 0.5, p < 0.05

controls (n = 50) 68.5 ± 9.0 61.00
Lambert (2020) nAMD (n = 72) 38.89 European Serum NMR one-way ANOVA

controls (n = 50) 74.96 (6.24) 48.00

PDR
Sumarriva (2019) PDR patients (n = 34) 55.7 ± 10.9 65.60 America Plasma LC-MS PLS-DA (VIP ≥ 2)

NPDR patients (n = 49) 59.4 ± 11.3 61.40
Haines (2018) PDR (n = 9) 41 ± 10 America Vitreous UHPLC-MS ANOVA, t-test (p < 0.05)

rhegmatogenous RD (n = 25),
and controls (n = 8)

68 ± 6 (controls);
62 ± 10

(rhegmatogenous
RD)

Zhu (2019) PDR (n = 21) 49 (46–56.5) 42.86 China Plasma UPLC Q-TOF-MS t-test (p < 10−5), AUC ≥ 0.95 &
PLS-DA (VIP > 1)NDR (duration ≥ 10y) (n = 21) 55 (50–58) 42.86

Wang (2019) PDR (n = 28) (Vitreous); PDR
(n = 23) (AH) 49.61 (26–65) 42.86 China Vitreous &

AH GC-TOF-MS OPLS-DA (VIP > 1),
Mann-Whitney U test (p < 0.05)

non-diabetic patients with MH
(n = 22) (Vitreous);

non-diabetic patients with
cataract (n = 25) (AH)

53.95 (32–71) 36.36

Paris (2015) PDR (n = 20) Tokyo Vitreous HILIC & RPLC
QTOF-MS Welch’s t test (p < 0.01, FC > 2)

controls (n = 31)
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Table 1. Cont.

References Comparison Age Male% Source/Race Biofluid Technique
Employed Evaluation Standard

Barba (2010) PDR (n = 22) Spain Vitreous NMR
non-diabetic patients with MH

(n = 22)

ABHARY (2009) no diabetic retinopathy
(n = 330) Australia Serum LC-MS Hierarchical multiple regression

(p < 0.05)
PDR (n = 101)

Tomita (2020) PDR (n = 43) 58.1 ± 13.6 77.1 Tokyo Vitreous UHPLC-MS t-test (FDR < 0.05)
controls (n = 21) 69.4 ± 7.0 42.1

Lin (2020) PDR (n = 31) America Vitreous LC/MS/MS t-test (p < 0.05)
controls (n = 13)

Yun (2020) PDR (n = 51) 62.60 (11.60) 60.2 Korea Serum LC-MS Logistic regression analysis
NPDR (n = 123) 61.18 (11.87) 50.29

Ye (2021) PDR (n = 45) 59.9 ± 11.3 55.56 China Fecal UPLC-MS PLS-DA (VIP > 1), p < 0.05,
|log2(FC)| > 1

diabetic patients without DR
(n = 90) 60.9 ± 9.9 55.56

Wang (2022) PDR (n = 88) (Plasma); PDR
(n = 51) (Vitreous)

55.3 ± 9.7 (Plasma);
54.9 ± 9.2
(Vitreous)

51.80 China Plasma &
Vitreous UPLC-MS/MS

FDR < 0.05, OPLS-DA (VIP > 1.0),
FC > 1.2 or <0.83 and
multivariate analysis

nondiabetic controls (n = 51)
(Plasma); nondiabetic

controls(n = 23) (Vitreous)

67.0 ± 8.1 (Plasma);
67.1 ± 8.8
(Vitreous)

36.49

ROP = retinopathy of prematurity; nAMD = Neovascular age-related macular degeneration; PCV = polypoidal choroidal vasculopathy; PDR = proliferative diabetic retinopathy;
NPDR = non-proliferative diabetic retinopathy; RD = retinal detachment; MH = macular hole; GA = gestational age; AH = aqueous humor; LC = Liquid Chromatogram; MS = mass
spectrometry; UPLC = Ultra Performance Liquid Chromatography; GC = gas chromatography; TOF = time of flight; Q-TOF = Quadrupole-Time of Flight; OPLS-DA = orthogonal
projections to latent structures discriminant analysis; PLS-DA = partial least squares discriminant analysis; ANOVA = one-way analysis of variance; FC = fold change; VIP = variable
importance in projection; FDR = false discovery rate.
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All studies were observational, and all 25 studies were case-control studies, except for
a longitudinal multi-time point observational study of serum in preterm infants established
by Nilsson et al. [18]. Twelve studies (46.15%) were conducted in China [19–30], four
(16%) in the United States [31–34], two (8%) in Japan [35,36], and the remaining studies
were conducted in Spain, Korea Switzerland, and elsewhere. [18,37–43] The studies were
published between 2009 and 2022, with sample sizes ranging from 40 to 431, and non-
equilibrium rates (number of cases in the majority category/number of cases in the minority
category) between the case and control groups of the sample ranging from 1 to 3.66. Factors
such as age, gender, race and lifestyle affect metabolic processes, with the ROP study
recruiting newborns as study participants and both the nAMD study and the DR study
recruiting middle-aged and older participants. The study by Mitchell et al. had the lowest
proportion of males in the nAMD group (35%) [32] and the study by Tomita et al. study
had the proliferative DR group with the highest proportion (77.1%) [36]. Smoking was
present in some studies, especially involving elderly populations. Reasonable control of the
influence of biological and experimental confounding factors is also important to ensure
the reliability of the study results. Some studies reported measures such as collection of
biological samples after eating, gender and age matching. Finally, the selection of study
controls affects the interpretation of the study results, but due to ethical factors and sample
availability, biological rock samples of controls are often obtained from other diseases
or other procedures in our department, and not healthy controls, such as those in the
study by Han et al., whose study control samples were obtained from cataract patients
without AMD [22], Zhu, Sumarriva et al. used plasma from NPDR subjects [26,33], and
Wang et al. obtained vitreous samples from MH patients and AH from cataract patients [21].
Regarding analytical platforms, 24 articles reported mass spectrometry-based metabolomics
studies, including liquid chromatography-mass spectrometry (LC-MS; n = 22), and gas
chromatography-mass spectrometry (GC-MS; n = 2), with different detection platforms
covering different ranges of metabolic pouches, which also contributed to the differences
in detection across studies.

The included studies generally utilized a combination of univariate and multivariate
analyses to screen for between-group differential metabolites, with 11 of the total studies
utilizing supervised multivariate analysis methods, such as partial least squares/orthogonal
partial least squares discriminant analysis, in combination with univariate analysis methods,
such as t/U test/univariate ANOVA/Wilcoxon rank sum test [19–22,25–30], with 4 of
the 10 studies additionally adding fold change as a screening criteria [19,28,29] and one
adding univariate area under curve value as an additional screening criterion [26]. It is
worth noting that further screening criteria for difference variables often differed between
studies, with criteria set at variable importance in projection (VIP) values greater than 1
or 2 and p values less than 0.05 or 0.01 for univariate analysis, or a Benjamini-Hochberg
correction to control for false discovery rates. VIP values were used to screen metabolites by
measuring the impact and explanatory power of metabolites on the increase in categorical
discrimination of each group of samples in [44], while p-values were the probability of
occurrence of more extreme results than those observed in the obtained samples in [45], and
ploidy change methods, i.e., calculating the fold of difference in expression of a metabolite
between two groups based on the relative quantitative or absolute quantitative results of
the metabolite. Different analytical methods observe data from different perspectives, and
different methods can be used in combination depending on the actual study purpose. In
the included study, we counted significant metabolites and their trends (Figure 2). There
were 38 metabolites reported repeatedly in different biological samples, 12 of which were
reported more than, or equal to, 3 times. Among them, Citrulline appeared most frequently
(n = 6), followed by Arginine, Lysine, Proline and Pyruvic acid.

2.2. Biomarker Interpretation and Optimal Selection

Some of the reasons that prevent biomarkers identified by experimental studies to be
used in clinical applications are the difficulty of explaining changes in complex disease
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mechanisms by individual biomarkers [46] and the difficulty of validating the results in
other validation sets due to the strict limitations of sample screening [47]. Metabolism is a
dynamic process, and metabolic data respond to changes in endogenous and exogenous
metabolites at a particular point in time [48]. Within an organism, metabolites coordinate
with each other to form a complete network of biological functions, and it is difficult
to explain complex disease mechanisms with a single metabolite. Pathway analysis is a
way to interpret and provide more biofunctional information about biomarkers by map-
ping metabolites that are changed by abnormal disease states onto an interactive network
constructed with a priori knowledge, by mapping individual changed biomarkers into a
coherent metabolic network [49]. In this review, biochemical interpretation of all altered
metabolites was performed using MetaboAnalyst 5.0 (http://www.metaboanalyst.ca/,
accessed on 1 August 2020), a software that allows analysis of the impact of particular
compounds on biochemical pathways. Pathway analysis was derived from integrating dif-
ferential metabolites based on the Kyoto Encyclopedia of Genes and Genomes and Human
Metabolome Database [50]. We performed separate pathway analysis of the differential
metabolites identified in our study in different biological sample sources, and the results of
the study showed that 8, 4, 4 and 10 statistically significant metabolic pathways (p < 0.05)
were enriched in plasma, serum, AH and vitreous humor, respectively. Table 2 shows the
results of pathway analysis in each biological sample (FDR < 0.05) and matching differential
metabolites in each pathway. Arginine biosynthesis, Aminoacyl-tRNA biosynthesis and
Glyoxylate and dicarboxylate metabolism pathways were repeatedly enriched in different
biological samples. When pathway analysis was performed separately, according to disease
type, the following four metabolic pathways were repeatedly enriched (p < 0.05): Phenylala-
nine, tyrosine and tryptophan biosynthesis; Aminoacyl-tRNA biosynthesis; Linoleic acid
metabolism; Lysine degradation. Among them, the Aminoacyl-tRNA biosynthesis path-
way was meaningfully enriched in the analysis of different biological samples and disease
species, respectively. It is worth noting that the existing databases, such as KEGG, include
the results of existing studies, and more detailed information on metabolic pathways needs
to be further improved. Therefore, the p-values and Q-values of the pathway analysis are
only a reference for the study results, and those pathways that are not significant are also
worth interpreting.
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The focus of this study was to review metabolomics studies of the pathological phe-
nomenon of retinal and choroidal neovascularization, and, therefore, included differential
metabolites among subjects with different disease sources, biological samples, ages, and
ethnicities, and screened for repeatedly identified differential metabolites. Biomarkers
should have the ability to help identify diseases, and nine studies in this review evalu-
ated the intergroup discriminatory performance of identified potential biomarkers [51],
as shown in Table 3. Only the study by Mitchell et al. did an internal validation (test
set) for identifying a panel of metabolite markers (159 differential features), obtaining an
AUC value of 0.83 AUC value [32]. Ideal biomarkers need to be evaluated and compared
in multiple ways, and repeatedly identified differential metabolites may become biologi-
cal representations of disease characteristics. We validated the extent to which repeated
identification of differential metabolites contributed to disease classification using the raw
metabolic data mentioned in the four studies included in the review, including the study
by Han et al. that included both anionic and cationic patterns and the study by Wang et al.
that covered both vitreous and AH biological samples [21,22,37,42]. We randomly divided
the case and control groups into training and validation sets containing 70% and 30% of
these samples [52], respectively, and used repeated identification of differential metabolites
as metabolic biomarker panels to construct multiple machine learning models for repeated
identification of differential metabolites, including logistic regression, random forest, sup-
port vector machine (SVM) and XGBoost, and performed model evaluation. The results are
shown in Table 4. The results show that repeated identification of differential metabolites
had good classification performance in different studies and models. In addition, the study
suggested that among the included metabolomics studies, random forests obtained better
performance in small sample studies and n/p large differences. XGBoost showed better
performance in unbalanced sample data and SVM and integration methods were more
stable in studies with relatively small sample sizes and numbers of features. The results
provide an additional reference for researchers to compare with the gold standard when
identifying biomarkers in the future, in addition to duplicate identification markers in
studies, and it covers both performance optimization of newly identified biomarkers and
considerations based on the existing research base.

Random Forest (RF) is a statistical learning theory, which uses a bootstrap resampling
method to draw multiple samples from the original sample, model decision trees for
each sample, and then combines the predictions of multiple decision trees to arrive at the
final prediction by voting. Support vector machines (SVM) are based on a model that
defines “the classifier with the largest interval on the feature space”. The extreme gradient
boosting (XGBoost) algorithm is based on the idea of boosting, which is an optimization
improvement of the gradient boosting decision tree, and is a collection of many CART
regression tree models to form a strong classifier. AUC = area under curve.
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Table 2. Results of the Pathway Analysis of Metabolic Biomarkers.

Pathway Name Match p FDR Impact Match Details

Plasma

Arginine biosynthesis 7/14 <0.0001 0.0003 0.6244 L-Glutamate; L-Arginine; L-Citrulline; L-Aspartate; Carbamoyl
phosphate; L-Glutamine; Fumarate

Aminoacyl-tRNA biosynthesis 11/48 <0.0001 0.0014 <0.0001
L-Phenylalanine; L-Arginine; L-Glutamine; L-Aspartate;
L-Methionine; L-Valine; L-Lysine; L-Tryptophan; L-Tyrosine;
L-Proline; L-Glutamate

AH

Aminoacyl-tRNA biosynthesis 10/48 <0.0001 0.0001 0.1667 L-Phenylalanine; L-Glutamine; L-Serine; L-Methionine; L-Lysine;
L-Leucine; L-Tryptophan; L-Tyrosine; L-Proline; L-Glutamate

Glyoxylate and dicarboxylate metabolism 6/32 0.0003 0.0118 0.1455 cis-Aconitate; L-Serine; L-Glutamate; D-Glycerate; Isocitrate;
L-Glutamine

Vitreous

Aminoacyl-tRNA biosynthesis 9/48 <0.0001 0.0005 <0.0001 L-Phenylalanine; L-Glutamine; Glycine; L-Valine; L-Alanine;
L-Lysine; L-Leucine; L-Threonine; L-Proline

Alanine, aspartate and glutamate metabolism 7/28 <0.0001 0.0005 0.2484 N-Acetyl-L-aspartate; L-Alanine; L-Glutamine; 2-Oxoglutaramate;
Pyruvate; Succinate; 2-Oxoglutarate

Arginine biosynthesis 5/14 <0.0001 0.0009 0.2893 L-Citrulline; L-Ornithine; L-Glutamine; 2-Oxoglutarate;
N-Acetyl-L-glutamate

Glycine, serine and threonine metabolism 7/33 <0.0001 0.0009 0.3426 N, N-Dimethylglycine; L-Cystathionine; Glycine; L-Threonine;
D-Glycerate; Creatine; Pyruvate

Valine, leucine and isoleucine biosynthesis 3/8 0.0014 0.0235 <0.0001 L-Threonine; L-Leucine; L-Valine
Glyoxylate and dicarboxylate metabolism 5/32 0.0025 0.0346 0.1852 Glycine; D-Glycerate; Acetate; Pyruvate; L-Glutamine

AH = aqueous humor; FDR = false discovery rate.

Table 3. Classification/Prediction Potential of Biomarker Panels.

References Discriminant Models Discriminant Group; Precision

ROP

Yang (2020) Altered metabolites All AUC > 0.5; C3DC (AUC = 0.914, sen = 97.5%, and spe = 68.3%); glycine
(AUC = 0.659, sen = 92.5%, and spe = 58.5%)

Zhou (2021) Altered metabolites
The AUC values for citrulline, creatinine, arginine, and aminoadipic acid were 0.7221,
0.7000, 0.6759, and 0.6545; The combination of the 4 altered metabolites
(AUC = 0.8703)
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Table 3. Cont.

References Discriminant Models Discriminant Group; Precision

Zhou (2020) Altered metabolites 10 metabolites obtained AUC larger than 0.7 under positive ion mode; Under
negative ion mode, 5 metabolites obtained AUC larger than 0.7.

AMD
Mitchell (2018) 159 differential features Accuracy = 96.1% (training set); 75.6% (test set)

Li (2016) differential features LPA (18:2), LPC (20:4), PC (20:1p/19:1), SM (d16:0/22:2), PAF (35:4), PC (16:0/22:5)
and PC (18:1/20:4) are evaluated separately, AUC is greater than or equal 0.8

Liu (2020)
Demographic characteristics and panel metabolites(hypoxanthine,
L-2-amino-3-(1-pyrazolyl)propanoic acid, linoleic acid, maleic acid, ribonolactone)
(PM vs. control);

AUC = 0.906; sen = 0.877; spe = 0.684 (PM vs. control);

Demographic characteristics and panel metabolites(5-hydroxylysine, caproic acid,
D-tagatose, glyceraldehyde, hydroxyphenyllactic acid,
L-2-amino-3-(1-pyrazolyl)propanoic acid, linoleic acid, pipecolic acid, pyruvic acid,
and ribonolactone) (AMD vs. control);

AUC = 0.971; sen = 0.963; spe = 0.907 (AMD vs. control);

Demographic characteristics and panel
metabolites(hypoxanthine,L-2-Amino-3-(1-pyrazolyl)propanoicacid,linoleic acid,
maleic acid, pipecolic acid, pyruvic acid, ribonolactone, 5-hydroxydopamine, and
phenylpyruvic acid) (PCV vs. control);

AUC = 0.948; sen = 0.901; spe = 0.853 (PCV vs. control);

PDR
Sumarriva (2019) 219 differential features Accuracy = 91.7%
Zhu (2019) Fumaric acid, uridine, acetic acid, and cytidine AUCs = 0.96, 0.95, 1.0, and 0.95, respectively

Wang (2019) AH: D-2,3-dihydroxypropanoic acid, isocitric acid, fructose 6-phosphate, and
L-lactic acid (AH)AUC = 0.965, sen = 88%, spe = 95.7%

Vitreous: pyroglutamic acid and pyruvic acid (Vitreous) AUC = 0.965, sen = 88%, spe = 95.7%

AMD = age-related macular degeneration; PCV = polypoidal choroidal vasculopathy; ROP = retinopathy of prematurity; PDR = proliferative diabetic retinopathy; sen = sensitivity;
spe = specificity; AUC = area under curve.



Metabolites 2022, 12, 814 12 of 19

Table 4. Performance of Different Classifiers.

Accuracy Sensitivity Specificity Precision F1-Score AUC (Test)

neg-Han (2020)

Logistic-all 0.643 0.500 0.750 0.600 0.545 0.578
Logistic-step 0.786 0.625 1.000 1.000 0.769 0.833
RF 0.929 1.000 0.800 0.900 0.947 0.900
SVM 0.786 0.800 0.750 0.889 0.842 0.744
XGBoost 0.714 0.889 0.400 0.727 0.800 0.644
pos-Han (2020)

Logistic-all 0.714 0.750 0.800 0.600 0.667 0.700
Logistic-step 0.929 1.000 0.900 0.800 0.889 0.900
RF 0.929 1.000 0.800 0.900 0.947 0.900
SVM 0.857 0.818 1.000 1.000 0.900 0.800
XGBoost 0.929 1.000 0.800 0.900 0.947 0.900
AH-Wang (2019)

Logistic-all 0.733 0.667 0.833 0.857 0.750 0.652
Logistic-step 0.600 0.556 0.667 0.714 0.625 0.643
RF 0.867 0.875 0.857 0.857 0.857 0.866
SVM 0.800 0.857 0.750 0.750 0.800 0.804
XGBoost 0.733 0.625 0.857 0.833 0.714 0.741
Vit-Wang (2019)

Logistic-all 0.556 0.600 0.500 0.600 0.600 0.525
Logistic-step 0.722 0.778 0.667 0.700 0.737 0.725
RF 0.833 0.750 0.900 0.857 0.800 0.825
SVM 0.778 0.750 0.800 0.750 0.750 0.775
XGBoost 0.778 0.750 0.800 0.750 0.750 0.775
Yun (2020)

Logistic-all 0.811 0.909 0.333 0.870 0.889 0.478
Logistic-step 0.792 0.889 0.250 0.870 0.879 0.472
RF 0.792 0.429 0.848 0.300 0.353 0.638
SVM 0.868 0.500 0.898 0.286 0.364 0.621
XGBoost 0.792 0.571 0.826 0.333 0.421 0.699
Barca (2020)

Logistic-all 0.667 0.600 0.778 0.818 0.692 0.671
Logistic-step 0.750 0.692 0.818 0.818 0.750 0.748
RF 0.667 0.538 0.818 0.778 0.636 0.678
SVM 0.667 0.727 0.615 0.615 0.667 0.671
XGBoost 0.792 0.692 0.909 0.900 0.783 0.801

3. Metabolomics for the Interpretation and Treatment of Retinal and
Choroidal Neovascularization

A well-functioning vascular system is necessary to meet the high-energy metabolic de-
mands of the eye and the function of retinal neurons, and pathological states of the vascular
system (neovascularization) are accompanied by a range of metabolic changes and occur
in a range of ocular diseases. Metabolomics is being used to unravel disease-associated
metabolic disorders and also offers the opportunity to find new therapeutic targets, em-
ploying angiogenic phenotypes that may reprogram the metabolism of disease [53].

3.1. Amino Acid Metabolism and Neovascularization

A growing number of studies have shown that amino acid metabolism affects functions
such as vascular tone, redox homeostasis, and immunity and inflammation, and amino
acids with different characteristics have different functions [54,55]. In this study, many
amino acid metabolism-related pathways were found to be separately enriched in different
biological samples and diseases. Glutamine was identified as a differential metabolite in
three studies and is the most abundant free amino acid in plasma [21,25,41], participating
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in the tricarboxylic acid cycle, providing precursors for gluconeogenesis and converting
to glutamate and ammonia by the action of glutaminase. Glutamate is a retinal excitatory
neurotransmitter, and high concentrations of glutamate overstimulate ionotropic glutamate
receptors (N-methyl-D-aspartate receptors), leading to overload of intracellular calcium
ions and ultimately cell death [56]. Glutamate is often involved in maintaining important
functions of the retina as a downstream product of, or related to, other amino acid metabolic
pathways. Arginine induces the gene expression of insulin-like growth factor 1 (IGF-1) [57],
and IGF-1 is involved in vascular neogenesis by enhancing the vascular endothelial-derived
growth factor (VEGF) signaling pathway [58], which was observed to be upregulated in four
studies [24,27,41,43]. The metabolism of arginine is regulated by nitric oxide synthase (NOS)
and arginase, and its metabolites could mediate a variety of angiogenic reactions. L-arginine
is catalyzed by NOS to produce nitric oxide (NO), one kind of multifunctional messenger
molecule. Numerous studies have shown NOS and NOS-produced NO involvement in
promoting VEGF-induced vascular permeability and angiogenesis through the regulation of
endothelial cell function [59–61]. Palmer et al. found that arginine deficiency in endothelial
cell cultures was associated with eNOS dysfunction [62]. Arginase competes with NOS
to metabolize L-arginine to produce urea and ornithine. Increased activity of arginase
could decrease the availability of L-arginine for NOS, thus reducing bioavailability of NO
production, increasing formation of reactive oxygen species, and ultimately resulting to
endothelial cell dysfunction [63]. Proline is the downstream product of arginine metabolism
and plays a key role in maintaining cell redox homeostasis. It was elucidated that L-
proline could reduce the level of NO related marker P-asymmetric dimethylarginine and
improve the redox state, thus increasing the bioavailability of NO [64]. Proline is converted
to glutamate by further metabolism [65]. In addition, pathways related to branched
chain amino acids (BCAAs) (valine, leucine and isoleucine biosynthesis) were found to be
significantly enriched in tissue biological samples (AH and Vitreous). Of these, valine was
identified in four studies [21,23,30,38], and, interestingly, valine levels showed an opposite
direction of change in two DR studies, probably due to differences in study populations
and analysis platforms, while leucine showed an increasing trend in both studies. Higher
BCAAs level are associated with increased neurotoxic levels of glutamate in the retina [66].
BCAAs exert their function through activation of the mammalian rapamycin (mTOR)
pathway, which regulates cell growth, proliferation, and survival [67]. MTOR plays a key
role in upregulating the VEGF pathway, which leads to augmented expression of caspase-3
and promotes proliferation and migration of endothelial cells [68,69]. Complement factor
H is a tyrosine sulfated protein and there is an association between its specific haplotype
and an elevated risk of developing nAMD [70,71]. Complement factor H on the RPE
and choroid regulates the formation of the local membrane attack complex, which is
essential for the development of laser-induced CNV [72]. Inhibitors of amino acid-related
metabolic pathways have important therapeutic value for diseases caused by pathological
neovascularization. However, further studies are still needed.

3.2. Abnormalities in Neovascular Metabolism and Potential Therapeutic Opportunities

The active metabolism of the retina requires large amounts of energy and oxygen
consumption. Vascular dysfunction may lead to oxidative stress and excessive production
of reactive oxygen species, resulting in oxidative damage [73]. The process of neovascular-
ization also requires significant oxygen consumption, which can further exacerbate retinal
hypoxia. Hypoxia-inducible factor-1α (HIF-1α) is a specific mediator in adaptation to
hypoxic environments and pathological responses [74]. HIF-1α deficiency in a nude mouse
model significantly reduced the growth rate of malignant tumors and decreased neovascu-
larization [75]. Under hypoxic conditions, HIF-1α enters the nucleus and binds to HIF-1β to
form dimers, which finally bind to hypoxia response elements; the bound dimers promote
angiogenesis by inducing upregulation of the expression of VEGF, erythropoietin, glucose
transporter 1 and platelet-derived growth factor (PDGF) [76]. PDGF is a hypoxia-regulated
gene product that, together with VEGF-A, promotes ocular neovascularization, and the
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combination of the two causes an additive effect [77]. PDGF inhibitor (Fovista; Ophthotech,
New York, NY, USA) has been proposed in combination with anti-VEGF (ranibizumab)
for the treatment of nAMD, and results from a phase 2b clinical trial showed significant
improvement, compared to anti-vascular endothelial growth factor monotherapy [78].
However, to the disappointment of the clinical investigators, the next two phase 3 trials did
not show the benefits of the combination therapy.

Oxidative stress mainly affects RPE cells [79]. Proline was identified in four studies
and was reported to mediate metabolism between RPE cells and the retina, to act as
an alternative energy source during stress or hypoxia, and to act as an antioxidant in
maintaining redox homeostasis by controlling mitochondrial function [80]. Oxidative stress
also disrupts the regulation of the complement system by RPE cells [81], which is involved
in innate immune response and, once activated, forms membrane attack complexes [82].
Nozaki et al. showed that somatic induction of endochoroidal neovascularization increased
the levels of C3a and C5a, and that C3a and C5a induced an increase in VEGF secretion
by primary human RPE in vitro [83]. Knockout of C3 gene protected mice from choroidal
neovascularization after laser treatment. Complement pathway-related therapeutic agents
have been proposed, such as an inducer targeting C5 (ARC1905) used in clinical trials
for the treatment of nAMD and geographic atrophy [84] and the therapeutic complement
receptor 2-factor H used to inhibit angiogenesis and RPE injury in a mouse model of
CNV [85].

Endothelial cells rely on glycolysis to obtain ATP, and upregulation of pyruvate (an
intermediate product of glycolytic metabolism) was observed in both serum and vitreous
metabolomics studies in [21,28,36] The end product of glycolysis, lactate, contributes largely
to the angiogenic phenotype through inhibition of prolyl hydroxylase 2 and activation
of HIF1α and nuclear factor-κB [86]. In this study, the Citrate cycle (TCA cycle) pathway
was found to be enriched, and previous studies found that oral supplementation with
TCA cycle metabolites helped maintain retinal function and protected photoreceptor cells
and nerves on the inner retinal network in mice [87]. A recent study by Kanow et al.
highlights the importance of maintaining a gradient of aerobic glycolytic activity between
the retina and the RPE [88]. When the glycolytic activity of the RPE is abnormally high,
less glucose is available for retinal consumption, which can also lead to photoreceptor
death. This is evidenced by the upregulation of lactate observed in three studies. VEGF
enhances the expression of the key glycolytic enzyme 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 (PFKFB3), increasing glycolysis to support the high ATP requirement
required for angiogenesis [89,90]. Pharmacological blockade of PFKFB3 has been shown
to effectively impair pathological angiogenesis and enhance the anti-angiogenic effects of
anti-VEGF in CNV models [89]. Extracellular purine metabolites (ATP, ADP and adeno-
sine) are important regulators of vascular homeostasis. It was shown that adenosine A2a
receptor (ADORA2A) activation promotes transcriptional induction of glycolytic enzymes
through the HIF-1α pathway, whereas knockdown of ADORA2A reduces hypoxia-induced
glycolytic enzyme expression and glycolytic flux and inhibits endothelial cell proliferation
and angiogenesis [91]. These findings provide directions for the development of therapeutic
drugs targeting the glycolytic pathway for retinal neovascularization.

Pathway analysis revealed that Arachidonic acid metabolism, Biosynthesis of un-
saturated fatty acids, Glycerolipid metabolism and Linoleic acid metabolism pathways
were significantly enriched, suggesting that fatty acid metabolism may be involved in
the mechanism of retinal and choroidal neovascularization. Retina is a tissue rich in
polyunsaturated fatty acids (PUFA), which are metabolized mainly by cyclooxygenase, and
lipoxygenase, and cytochrome P450 enzymes, 12-hydroxyeicosatetraenoic acid (12-HETE)
and 20-hydroxyeicosatetraenoic acid (20-HETE), are among the metabolites [92–94]. It is
thought that 12-HETE is an important regulator of neovascularization that regulates the
expression of VEGF and PEDF. Arachidonic acid metabolism via cytochrome P450-4A/F
produces 20-HETE, which has been shown to stimulate c-Src and epidermal growth fac-
tor receptor-mediated downstream signaling pathways, including MAPK and PI3K/Akt
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pathways, the eNOS uncoupling, and NOX/ROS system activation, thereby inducing the
proliferation, migration, secretion, and angiogenesis of pro-angiogenic molecules (e.g.,
HIF-1α, VEGF) in endothelial progenitor cells. In vivo and in vitro studies have shown
that eicosapentaenoic acid (EPA) inhibits the activation and expression of VEGF-specific
tyrosine kinase receptors, while EPA supplementation significantly reduces the mRNA
expression and protein levels of ICAM-1, MCP-1, VEGF and IL-6 [95–97], providing an
opportunity to find new therapeutic targets. The number of studies is currently limited,
and some studies of related diseases exist outside of the study to provide complementary
findings [98]. Biomarkers and the search for disease-related metabolic pathways contribute
to our understanding of disease mechanisms, but are not yet clinically translatable and
require continuous research. In addition, metabolomics studies require strict quality con-
trol, from sample sources, inclusion criteria, analytical platforms, and data processing and
analysis, which can all affect the results.

4. Conclusions

With the advances in histological technologies, more and more features of diseases at
the molecular level of genes, proteins, metabolism, etc. have been obtained and have un-
veiled a new understanding of disease features. Retinal and choroidal neovascularization
disease is a common feature of a group of diseases and is one of the serious pathologies that
threaten visual function. Current metabolomics studies have identified metabolic changes
in selected retinal and choroidal neovascular diseases, identified disease-related metabolic
pathways, and provided new insights into understanding disease mechanisms. However,
metabolomics study design is critical to the accuracy and reproducibility of findings, so
this study summarized existing studies and advocates a comparative strategy, based on
existing studies, as an additional guiding strategy to direct new biomarker discoveries. In
addition, the study discusses existing metabolomics findings to promote understanding of
disease mechanisms and potential therapeutic opportunities to provide additional thera-
peutic opportunities to the current treatment strategy based on anti-vascular endothelial
factor therapy.
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