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Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and highly malignant 
pathological type of kidney cancer. We sought to establish a metabolic signature to 
improve post-operative risk stratification and identify novel targets in the predic-
tion models for ccRCC patients. A total of 58 metabolic differential expressed genes 
(MDEGs) were identified with significant prognostic value. LASSO regression analy-
sis constructed 20-mRNA signatures models, metabolic prediction models (MPMs), 
in ccRCC patients from two cohorts. Risk score of MPMs significantly predicts prog-
nosis for ccRCC patients in TCGA (P < 0.001, HR = 3.131, AUC = 0.768) and CPTAC 
cohorts (P = 0.046, HR = 2.893, AUC = 0.777). In addition, G6PC, a hub gene in PPI 
network of MPMs, shows significantly prognostic value in 718 ccRCC patients from 
multiply cohorts. Next, G6Pase was detected high expressed in normal kidney tis-
sues than ccRCC tissues. It suggested that low G6Pase expression significantly cor-
related with poor prognosis (P < 0.0001, HR = 0.316) and aggressive progression 
(P < 0.0001, HR = 0.414) in 322 ccRCC patients from FUSCC cohort. Meanwhile, 
promoter methylation level of G6PC was significantly higher in ccRCC samples with 
aggressive progression status. G6PC significantly participates in abnormal immune 
infiltration of ccRCC microenvironment, showing significantly negative association 
with check-point immune signatures, dendritic cells, Th1 cells, etc. In conclusion, 
this study first provided the opportunity to comprehensively elucidate the prognos-
tic MDEGs landscape, established novel prognostic model MPMs using large-scale 
ccRCC transcriptome data and identified G6PC as potential prognostic target in 
1,040 ccRCC patients from multiply cohorts. These finding could assist in managing 
risk assessment and shed valuable insights into treatment strategies of ccRCC.
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1  | INTRODUC TION

Renal cell carcinoma is one of the most common malignant tumours 
of the urogenital system, accounting for about 5% of all new cases 
of adult males and 3% of new cases of females.1 According to sta-
tistics in the United States, there are about 73 820 new cases of 
kidney cancer and 14 770 deaths in 2019.2 Clear cell renal cell carci-
noma (ccRCC) is the most common and highly malignant pathological 
type of kidney cancer (accounting for 70%-85%). About 25%-30% 
of ccRCC patients have metastases at first diagnosis, and the 5-year 
survival rate of metastatic ccRCC is only 32%. In addition, even 
ccRCC patients who are initially effective in treatment will have dis-
ease progression after a period of time, at which time most patients 
will lack subsequent effective treatment.

In recent years, new immunotherapy represented by PD-1/PD-
L1, CTLA4 inhibitors has rapidly emerged in the field of ccRCC treat-
ment and has shown encouraging results for patients with advanced 
refractory disease.3 In 2020, ASCO GU published the 5-year fol-
low-up results of the CheckMate 025 study, showing the 5-year sur-
vival rate of monoclonal antibody second-line treatment is as high as 
26%, which demonstrates the advantages of immunotherapy's sur-
vival benefits and new chapter of treatment strategies for high-risk 
ccRCC patients.4–6 Immune check-point inhibitors combined with 
TKI play a variety of roles from the perspective of inducing anti-tu-
mour immune normalization, inhibiting the development of advanced 
ccRCC and regulating tumour microenvironment (TME). Its success 
largely depends on deep understanding of tumour cells and TME in-
teraction.7,8 With the deepening of research, more evidence shows 
that not only the efficacy of immunotherapy depends on the activa-
tion of the tumour immune microenvironment, but also the efficacy 
of traditional treatments such as targeted therapy also depends on 
the strength of individual anti-tumour immune response.9–11 Thus, it 
is of great significance exploring the underlying mechanism of TME-
driven tumorigenesis and development, improving the efficiency of 
various existing treatments and discovering novel precise targets for 
ccRCC therapies.

In TME, tumour cells and immune cells reprogram their metabolic 
patterns to adapt to the microenvironment of hypoxia, acidity and 
low nutrition.12 For example, tumour cells show enhanced aerobic 
glycolysis (Warburg effect) but reduce oxidative phosphorylation, 
which has a great effect on T cell-mediated anti-tumour immune 
response and tumour-infiltrating myeloid cell activity; macrophages 
tend to be M2-type polarization, showing up-regulated fatty acid 
synthesis and β-oxidation.13 The activation of tumour cell pro-cancer 
signals not only affects its own malignant biological behaviour, but 
also promotes the development of tumours.14 It can also deflect the 

functional phenotype of tumour-infiltrating immune cells by chang-
ing the metabolic secretion profile and TME of tumour cells and in-
duce the formation of tumour immune escape.14,15 Therefore, the 
metabolic reprogramming of tumour cells and immune cells is crucial 
for understanding the game process of tumour cells' evil behaviour, 
tumour immune response and tumour immune escape and provides 
new directions for regulating tumour immunity.

The methods of constructing clinical prediction models based 
on retrospective data help researches realize the prediction of clini-
cal outcomes with several prognostic factors, which is more likely to 
change our clinical practice and has strong clinical guidance value.16 
In 2018, RCClnc4 has been demonstrated to have precise prognos-
tic significance in early ccRCC. This study aimed to first establish 
and validate an effective prognostic metabolic prediction models 
enrolled large-scale transcriptome metabolic genes for ccRCC pa-
tients. We suggested that the metabolic prediction models (MPMs) 
classifier could facilitate risk management and treatment strat-
egies for ccRCC patients and identify novel targets in the MPMs 
co-network.

2  | MATERIAL S AND METHODS

2.1 | Raw data collection and processing

Publicly available mRNA expression and clinical data from ccRCC 
cohorts were used in this study. Consents and ethical approval of 
enrolled patients are available in the related original articles where 
the data sets were published. A total of 718 ccRCC patients from 
online data sets, including 534 ccRCC and 72 normal samples ob-
tained from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/), 93 ccRCC and 20 normal samples obtained 
from Clinical Proteomic Tumor Analysis Consortium (CPTAC) and 91 
ccRCC samples obtained from RECA-EU (available in International 
Cancer Genome Consortium, ICGC), were included in this study.

2.2 | Identification of metabolic differentially 
expressed genes

Forty-one metabolic pathways were selected according to KEGG 
pathways atlas. The 911 metabolic genes were utilized for iden-
tification of significant metabolic differentially expressed genes 
(MDEGs) using Limma R package (Version 3.6.3) with FDR < 0.05 and 
|logFC|>0.5. The intersective metabolic genes between TCGA and 
CPTAC cohorts were selected for further analyses.

K E Y W O R D S
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2.3 | Development of metabolic prediction models 
(MPMs) and survival analysis

Univariate Cox regression analysis was used to identify prognostic im-
plications of significant MDEGs and presented in forest plot using the 
survival R package. Then, LASSO regression analysis was performed to 
construct the 20-mRNA signatures model, metabolic prediction mod-
els (MPMs), in ccRCC patients from TCGA and CPTAC cohorts with 
the glmnet and survival R package. A risk score of each ccRCC patient 
was calculated on the basis of MPMs, and ccRCC patients were thus 
divided into low- and high-risk groups.

For survival analyses, we selected TCGA and CPTAC cohorts 
with relevant long-term survival data from patients at the time of 
surgical resection and pathologically diagnosed as ccRCC. Survival 
data were of two types: overall survival and progression-free sur-
vival. Log-rank test in separate curves and Kaplan-Meier method 
with 95% confidence intervals (95%CI) were utilized to performing 
the follow-up duration analysis. Meanwhile, survival risk assessment 
of MPMs and hierarchical clustering was shown in patients from 
TCGA or CPTAC cohort.

2.4 | Cox regression analysis and receiver operating 
characteristic curve construction

All ccRCC patients from TCGA and CPTAC cohorts with complete 
transcriptome information and relevant clinical pathologic parame-
ters were included for subsequent analysis. Univariate and multivari-
able Cox regression analyses were used to evaluate the independent 
prognostic value of the metabolic clusters using forest plot with 
the survival R package. The receiver operating characteristic curve 
(ROC) was constructed for traditional clinical pathologic parameter 
and the risk score of MPMs in both TCGA and CPTAC cohorts using 
survival ROC R package. The area under the curve (AUC) was utilized 
to assess the predictive value of these prognostic signatures. In ad-
dition, Nomogram was developed on the basis of all the independent 
prognostic factors in TCGA cohort.

2.5 | Gene set enrichment analyses

Gene set enrichment analyses (GSEA) were performed with a 
permutation test with 1000 times to find the top enriched sig-
nal pathways and significantly involved metabolic pathways the 
Molecular Signatures Database v4.0 (MSigDB) with Adj. P < 0.01 and 
FDR < 0.25.

2.6 | Tumour microenvironment purity assessment

ESTIMATE algorithm was utilized to evaluate total and immune scores 
using estimate package (http://r-forge.rproj ect.org; repos = rforge, 
dependencies = TRUE) in patients from TCGA cohort. Associated 

between tumour microenvironment (TME) purity and risk score of 
MPMs or G6PC expression was assessed using Pearson's r test.

2.7 | Differential G6PC mRNA expression and 
survival analysis

Protein-protein interaction network of 20 signatures in MPMs 
was constructed using Search Tool for the Retrieval of Interacting 
Genes (STRING; http://strin g-db.org, version 10.0) online database. 
Differential expressed G6PC level was evaluated between ccRCC 
and normal samples from TCGA, CPTAC and RECA-EU cohort using 
Student's t test. Survival analysis of G6PC predicting prognosis ability 
was performed with GEPIA (http://gepia.cance r-pku.cn/detail.php###) 
in patients from TCGA cohort with cut-off value set as median. Kaplan-
Meier method with 95% confidence intervals (95% CI) and log-rank test 
were used in survival analysis in CPTAC, RECA-EU and FUSCC. Best 
cut-off values were set using X-tile software. All patients at risk or pa-
tients numbers in different risk groups were shown in all survival plots.

2.8 | Glucose-6-phosphatase (G6Pase) expression in 
ccRCC and normal samples

G6Pase protein expression, coded by G6PC gene, was detected in 
ccRCC and normal samples from the human protein atlas (https://
www.prote inatl as.org/) and immunohistochemistry (IHC) data, 
including staining quantity, intensity, location and patients’ data, 
were available online. Formalin-fixed, paraffin-embedded ccRCC tis-
sues and human renal tissues were stained for anti-G6Pase using 
ab243319 (Abcam, USA) at 1/3000 dilution in FUSCC cohort and 
then independently evaluated by two experienced pathologists. The 
overall IHC score ranging from 0 to 12 was measured based on the 
multiply of the staining intensity and extent score, as previously de-
scribed.17 Low G6Pase expression group scores from 0 to 2, and high 
G6Pase group scores from 3 to 12.

2.9 | Immune cell infiltrations of G6PC in ccRCC

TIMER (Tumor IMmune Estimation Resource, https://cistr ome.shiny 
apps.io/timer /) is a web server for evaluating systematic various im-
mune cells infiltration and clinical implications. In this study, correla-
tion between infiltration of immune cells and G6PC copy number 
variation and expression levels were performed.

2.10 | Statistical analysis

All analyses were performed in the R (Version 3.6.0) and RStudio 
(Version 1.2.1335) and GraphPad Prism 7. Unless otherwise stated, re-
sults were considered statistically significant when P-value < 0.05. Two-
sided and p-values less than 0.05 were taken as significant in all tests.

http://r-forge.rproject.org
http://string-db.org
http://gepia.cancer-pku.cn/detail.php
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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3  | RESULTS

3.1 | Identification of metabolic differential 
expressed genes (MDEGs) in both TCGA and CPTAC 
cohorts

The expression of 911 metabolic genes was collected from 534 ccRCC 
and 72 normal samples in TCGA cohort. At the same time, 905 of 911 
metabolic genes were also found from 56 ccRCC patients and 47 normal 
people in CPTAC cohort. Then, these 905 metabolic genes were utilized 
for further analysis. 133 significant MDEGs were identified in 905 meta-
bolic genes and visualized in volcano plot (Figure 1A). Hierarchical parti-
tioning of significant MDEGs was acquired from DNA microarrays based 
on TCGA cohort (Figure 1B). The mRNA expression of these genes was 
performed across 534 ccRCC patients and 72 normal people with high 
in red and low in green. Meanwhile, univariate Cox regression analysis of 
58 significant MDEGs (P < 0.05) in TCGA cohort was performed in a for-
est plot (Figure 1C). Markedly, LASSO regression analysis constructed 
20-mRNA signatures model, metabolic prediction models (MPMs), 
in ccRCC patients of TCGA or CPTAC cohort. Kaplan-Meier survival 
analysis showed significant predictive value of the risk score depending 
on MPMs in TCGA (Figure 1D) or CPTAC cohort (Figure 1E). High-risk 
group was marked in red, and low-risk group was marked in blue.

3.2 | Survival risk assessment of MPMs in TCGA or 
CPTAC cohort

Survival risk assessment of MPMs consisting of metabolic 20-mRNA 
signatures was performed in TCGA or CPTAC cohort. The distribu-
tion of survival time, status (Figure 2A), risk score (Figure 2B) and 
hierarchical partitioning (Figure 2C) of MPMs in tumour and normal 
samples was shown in TCGA cohort. Meanwhile, the distribution of 
survival time, status (Figure 2D), risk score (Figure 2E) and hierarchi-
cal partitioning (Figure 2F) of MPMs in tumour and normal samples 
was shown in CPTAC cohort.

3.3 | Cox regression analysis, ROC analysis and 
Nomogram of independent prognostic factors and 
MPMs in ccRCC patients

Univariate and multivariate Cox regression analysis enrolling clini-
cal pathologic parameters and MPMs were illustrated in TCGA 

and CPTAC cohorts using forest plots (Figure 3A-D). Risk score 
of MPMs significantly predicts prognosis for ccRCC patients in 
TCGA (P < 0.001, HR = 3.131) and CPTAC cohorts (P = 0.046, 
HR = 2.893). In addition, ROC analysis showed robust predictive 
value of MPMs in TCGA (AUC = 0.768) and CPTAC (AUC = 0.777) 
cohorts (Figure 3E-F). A Nomogram was constructed based on 5 
independent prognostic factors, including ISUP grade, pathologic 
M stage, pathologic T stage, AJCC stage and risk score of MPMs, in 
ccRCC patients (Figure 3G).

3.4 | KEGG pathways analysis using GSEA

GSEA indicated significantly altered KEGG pathways based on 
differential risk score of MPMs in ccRCC patients with available 
transcriptomics data from TCGA and CPTAC cohorts. Top 5 signifi-
cantly altered KEGG pathways in high- or low-risk ccRCC patients 
were performed in TCGA (Figure 4A) or CPTAC (Figure 4B) cohort. 
Metabolic significant KEGG pathways in high- or low-risk ccRCC pa-
tients were performed in TCGA (Figure S1A) or CPTAC (Figure S1B) 
cohort. Tumour environment purity was measured using ESTIMATE 
algorithm, which showed a significant relationship with risk score of 
MPMs in ccRCC patients from TCGA cohort (r2 = 0.2373, P < 0.0001) 
(Figure 4C). Meanwhile, immune purity in ccRCC environment signif-
icantly correlated with risk score of MPMs (r2 = 0.3007, P < 0.0001) 
(Figure 4D).

3.5 | The hub gene in PPI network of MPMs

G6PC, a hub gene in PPI network of MPMs, shows significant prog-
nostic value in 699 ccRCC patients from TCGA, CPTAC and ICGC 
cohorts. PPI network was constructed in 20 metabolic mRNA sig-
natures in MPMs (Figure 5A). Interestingly, because of relatively 
low protein expression in tumour samples, the mRNA and proteome 
expression levels are in significant linear relationship (Figure S2A, 
P < 0.001, r = 0.371). In transcriptional levels, transcription factor 
regulation, related LncRNA, targeted miRNA, activation and in-
hibition of G6PC networks were constructed in Figure S2B G6PC 
mRNA expression showed a negatively relationship with tumour 
environment purity (r2 = −0.1012, P < 0.0001) and immune purity 
(r2 = −0.1205, P < 0.0001) in ccRCC (Figure 5B and C). Differential 
mRNA expression of G6PC in ccRCC and adjacent normal tis-
sues was displayed based on TCGA, CPTAC and RECA-EU cohorts 

F I G U R E  1   Identification of MDEGs in both TCGA and CPTAC cohorts. A, Identification of significant MDEGs using Limma package in 
905 metabolic genes. B, Hierarchical partitioning of significant MDEGs was acquired from DNA microarrays based on TCGA cohort. The 
mRNA expression of these genes was performed across 534 ccRCC patients and 72 normal people with high in red and low in green. C, 
Univariate Cox regression analysis of 58 significant MDEGs (P < 0.05) in TCGA cohort was performed in a forest plot. D, The 20-mRNA 
signatures model (MPMs) in ccRCC patient was calculated using LASSO regression analysis. Kaplan-Meier survival analysis showed 
significant predictive value of the risk score depending on MPMs in TCGA cohort. E, Kaplan-Meier survival analysis showed significant 
predictive value of the risk score depending on MPMs in CPTAC cohort. High-risk group was marked in red, and low-risk group was marked 
in blue. MDEGs, metabolic differential expressed genes; MPMs, metabolic prediction models; ccRCC, clear cell renal cell carcinoma; TCGA, 
the cancer genome atlas; CPTAC, Clinical Proteomic Tumor Analysis Consortium
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(Figure 5D-F). In addition, Kaplan-Meier survival analysis indicated 
that low G6PC mRNA expression level significantly correlated with 
poor OS (P < 0.0001, HR = 0.35) and PFS (P < 0.0001, HR = 0.35) 
in TCGA cohort (Figure 5G and H). Low G6PC mRNA expression 
level was significantly associated with poor prognosis in CPTAC 
(P = 0.0035, HR = 0.218) and RECA-EU (P = 0.0443, HR = 0.446) 
cohorts (Figure 5I and J).

3.6 | Differential G6Pase expression predicts 
outcomes in FUSCC cohort

A total of 322 ccRCC patients from FUSCC cohort were enrolled. 
G6Pase was detected high expressed in normal kidney tissues (specif-
ically in tubules cells rather than glomeruli cells), while not detected in 
ccRCC tissues from the Human Protein atlas (Figure 6A). Meanwhile, 
significantly elevated G6Pase expression was found in normal tis-
sues compared with ccRCC tissues from FUSCC cohort (Figure 6B). 
Clinicopathological characteristics in relation to G6Pase expres-
sion status were shown in 322 ccRCC patients from FUSCC cohort 

(Table S1). Traditionally clinicopathological factors, such as TNM stage 
or ISUP grade, were significantly correlated with G6Pase expression 
level in tumour samples (P < 0.05). In addition, low G6Pase expres-
sion was significantly correlated with poor prognosis (P < 0.0001, 
HR = 0.316) and aggressive progression (P < 0.0001, HR = 0.414) in 
322 ccRCC patients from FUSCC cohort (Figure 6C and D).

3.7 | Most co-expressed genes and promoter 
methylation levels of G6PC in ccRCC

Top 50 co-expression genes with G6PC were extracted and shown 
in heat map in ccRCC (Figure 7A and B). Promoter methylation lev-
els of G6PC were significantly lower in primary ccRCC samples than 
normal samples (Figure 7C, P < 0.0001). Promoter methylation levels 
of G6PC significantly climbed with elevated individual cancer stage 
and were the highest in samples with stage 4 (Figure 7D). Promoter 
methylation levels of G6PC significantly climbed with elevated indi-
vidual tumour grade and were the highest in samples with grade 4 
(Figure 7E). Promoter methylation levels of G6PC were significantly 

F I G U R E  2   Survival risk assessment of MPMs consists of metabolic 20-mRNA signatures in TCGA and CPTAC cohorts. A-C, The 
distribution of survival time, status, risk score and hierarchical partitioning of 20 signatures in tumour and normal samples was shown in 
TCGA cohort. D-F, The distribution of survival time, status, risk score and hierarchical partitioning of 20 signatures in tumour and normal 
samples was shown in CPTAC cohort. MPMs, metabolic prediction models; TCGA, the cancer genome atlas; CPTAC, Clinical Proteomic 
Tumor Analysis Consortium

F I G U R E  3   Cox regression analysis, ROC analysis and Nomogram of independent prognostic factors and MPMs in ccRCC patients. A-D, 
Univariate and multivariate Cox regression analysis enrolling clinical pathologic parameters and MPMs were illustrated in TCGA and CPTAC 
cohorts using forest plots. Risk score of MPMs significantly predicts prognosis for ccRCC patients in TCGA (P < 0.001, HR = 3.131) and 
CPTAC cohorts (P = 0.046, HR = 2.893). E-F, ROC analysis showed robust predictive value of MPMs in TCGA (AUC = 0.768) and CPTAC 
(AUC = 0.777) cohorts. G, A Nomogram was constructed based on 5 independent prognostic factors, including ISUP grade, pathologic M 
stage, pathologic T stage, AJCC stage and risk score of MPMs, in ccRCC patients. MPMs, metabolic prediction models; ccRCC, clear cell 
renal cell carcinoma; TCGA, the cancer genome atlas; CPTAC, Clinical Proteomic Tumor Analysis Consortium
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higher in ccRCC samples with nodal metastasis compared with pN0 
patients (Figure 7F, P < 0.05).

3.8 | Potential role of G6PC in ccRCC immune 
microenvironment

As the main regulator of glucose production, G6PC is highly ex-
pressed in liver and kidney tissues. G6PC expression is significantly 
higher in normal tissue compared with renal cell carcinomas, while 
significantly lower in normal samples compared with hepatocellular 
carcinoma and cholangiocarcinoma (Figure 8A). At the same time, 
copy number alteration of G6PC significantly correlated with envi-
ronmental immune cells infiltration level (Figure 8B). Elevated arm-
level deletion of G6PC leads to inferior B cell, CD8+ cells, CD4+ cells, 

macrophage, neutrophil, dendritic cells infiltration compared with 
normal samples (P < 0.05). In addition, G6PC significantly participates 
in abnormal immune infiltration of ccRCC cells and microenviron-
ment, showing significantly negative association with check-point 
immune signatures, dendritic cells, Th1 cells, MHC class I, cytolytic 
activity, inflammation promotion, HLA, APC co-inhibition and co-
stimulation activities (cor.< −0.7, Figure 8C). Moreover, GSEA indi-
cated that G6PC significantly involved in several signal pathways, 
including bile acid metabolism, fatty acid metabolism, epithelial 
mesenchymal transition and E2F targets in ccRCC (Figure 8D-G). A 
total of 100 up- and down-regulated genes associated with differ-
ential G6PC expression were then visualized in ccRCC (Figure S3). 
Spearman's correlation and estimated statistical significance be-
tween G6PC expression and related genes and markers of immune 
cells were displayed in ccRCC patients using TIMER (Table 1).

F I G U R E  4   GSEA indicated significantly 
altered KEGG pathways based on 
differential risk score of MPMs in ccRCC 
patients with available transcriptomics 
data from TCGA and CPTAC cohorts. A, 
Top 5 significantly altered KEGG pathways 
in high- or low-risk ccRCC patients in 
TCGA cohort. B, Top 5 significantly 
altered significant KEGG pathways in 
high- or low-risk ccRCC patients of CPTAC 
cohort. C, Tumour environment purity 
was measured using ESTIMATE algorithm 
and showed a significant relationship 
with risk score of MPMs in ccRCC 
patients from TCGA cohort (r2 = 0.2373, 
P < 0.0001). D, Immune purity in ccRCC 
environment significantly correlated 
with risk score of MPMs (r2 = 0.3007, 
P < 0.0001). GSEA, gene set enrichment 
analysis; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; MPMs, metabolic 
prediction models; ccRCC, clear cell renal 
cell carcinoma; TCGA, the cancer genome 
atlas; CPTAC, Clinical Proteomic Tumor 
Analysis Consortium
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F I G U R E  5   G6PC, a hub gene in PPI network of MPMs, shows significant prognostic value in 699 ccRCC patients from TCGA, CPTAC and 
RECA-EU cohorts. A, PPI network was constructed in 20 metabolic mRNA signatures in MPMs. B and C, G6PC mRNA expression showed a 
negatively relationship with tumour environment purity (r2 = −0.1012, P < 0.0001) and immune purity (r2 = −0.1205, P < 0.0001) in ccRCC. 
D-F, Differential mRNA expression of G6PC in ccRCC and adjacent normal tissues was displayed based on TCGA, CPTAC and RECA-EU 
(public data at ICGC) cohorts. G-H, Kaplan-Meier survival analysis indicated that low G6PC mRNA expression level significantly correlated 
with poor OS (P < 0.0001, HR = 0.35) and PFS (P < 0.0001, HR = 0.35). I, Low G6PC mRNA expression level was significantly associated 
with poor prognosis in CPTAC (P = 0.0035, HR = 0.218) and ICGA (P = 0.0443, HR = 0.446) cohorts. PPI, protein-protein interaction; MPMs, 
metabolic prediction models; ccRCC, clear cell renal cell carcinoma; TCGA, the cancer genome atlas; CPTAC, Clinical Proteomic Tumor 
Analysis Consortium; ICGC, International Cancer Genome Consortium
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4  | DISCUSSION

The control of energy metabolism in human is a complex and cau-
tious process, and metabolic disorders may lead to the occurrence 
and development of a variety of diseases.18 For instance, abnor-
mal lipid metabolism may reduce growth and impair fertility, while 
disorders in glucose metabolism can lead to diabetes and hyper-
tension.19,20 Importantly, the relationship between metabolic repro-
gramming and tumorigenesis has been paid more and more attention 
in recent years. Steven L. Gonias et al claimed that activation of lipid 
metabolism promotes tumour cell survival and tumour progression in 
pancreatic cancer.21 Some studies found that abnormal glucose me-
tabolism plays an key role in tumorigenesis.22,23 Metabolic changes 
promote the proliferation of tumours microenvironment and also 
help us better understand the alterations of characteristics phe-
notypes and immune microenvironment of cancers.24 For example, 
the activation of PI3K/AKT/mTOR and other carcinogenic pathways 
is related to the changes of bioenergy pathways such as glycolysis, 
fatty acid and glutamine metabolism, which provides a new target 
for tumour therapy.25–27

ccRCC is one of the most common types of renal cell carcinoma 
in the world, and it is associated with poor prognosis because of its 
high metastasis and recurrence rate.1,28 Metabolic reprogramming 
in ccRCC is most often associated with mutations in VHL, which 
occur in about 90% of cases.29 In VHL mutant diseases, activation 
of metabolic pathways mediated by HIF leads to the activation of 
pathways contrary to the effects of hypoxia in normoxic environ-
ments.30 Previous studies found that ccRCC produces energy mainly 
through the accumulation of lactic acid,31,32 which is also called 

Warburg effect or aerobic glycolysis. HIF-1α, as the obvious driving 
force behind the Warburg effect in ccRCC, increases the expres-
sion of GLUT-1, thus promoting intracellular glucose uptake.33,34 
Interestingly, complex components in tumour microenvironment 
could exhibit metabolic stress on immune cells infiltrations, which 
can lead to immunosuppressive and tumour immune evasion.24 The 
increased expression of GLUT-1 in ccRCC is associated with a de-
crease in the number of infiltrated CD8+T cells, suggesting that glu-
cose metabolism may suppress the immune system through another 
mechanism in renal cell carcinoma.35 Normally, elevated glycolysis 
increases tumours immunity, immune check-point factors (PD-L1) 
expression levels on tumour cells, and thus imposed a favourable im-
munotherapy response in cancers.36 Thus, the relationship between 
metabolic reprogramming and ccRCC microenvironment was worthy 
of further exploration.

G6PC (Glucose-6-Phosphatase Catalytic Subunit) is a protein 
coding gene, and it is closely associated with glycogen storage 
disease37 and hypoglycaemia.38 Gross, D. N et al claimed that 
G6PC was related to FoxO1 signalling pathway39 and G6PC plays 
a key role in Hexose transport.40 This study found that expres-
sion of G6PC in ccRCC is much lower than that of normal tissues 
in multiple cohorts including TCGA, CPTAC, ICGC and FUSCC 
cohorts. And survival analyses indicated that expression level 
of G6PC was positively correlated with patients’ outcome, sug-
gesting that G6PC may have tumour suppressive properties in 
ccRCC. Studies have focused on exploring the biological signifi-
cance of G6PC. Ting Guo et al 41 found that G6PC plays a dual 
role in both glucose metabolism and cell cycle regulation in ovarian 
cancer, which makes it a promising therapeutic target. Glycogen 

F I G U R E  6   Differential G6Pase expression predicts outcomes in 322 ccRCC patients from FUSCC cohorts. A, G6Pase was detected high 
expressed in normal kidney tissues (specifically in tubules cells rather than glomeruli cells), while not detected in ccRCC tissues from the 
Human Protein atlas. B, Significantly elevated G6Pase expression was found in normal tissues compared with ccRCC tissues from FUSCC 
cohort. C-D, Low G6Pase expression was significantly correlated with poor prognosis (P < 0.0001, HR = 0.316) and aggressive progression 
(P < 0.0001, HR = 0.414) in 322 ccRCC patients from FUSCC cohort. ccRCC, clear cell renal cell carcinoma; FUSCC, Fudan University 
Shanghai Cancer Center
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F I G U R E  7   Most co-expressed genes and promoter methylation levels of G6PC in ccRCC. A and B, Top 50 co-expression genes with G6PC 
were extracted and shown in heat map in ccRCC. C, Promoter methylation levels of G6PC were significantly lower in primary ccRCC samples 
than normal samples (P < 0.0001). D, Promoter methylation levels of G6PC significantly climbed with elevated individual cancer stage and 
were the highest in samples with stage 4. E, Promoter methylation levels of G6PC significantly climbed with elevated individual tumour grade 
and were the highest in samples with grade 4. F, Promoter methylation levels of G6PC were significantly higher in ccRCC samples with nodal 
metastasis compared with pN0 patients (P < 0.05). ccRCC, clear cell renal cell carcinoma; pN0, pathological negative nodal metastasis status
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F I G U R E  8   Potential role of G6PC in pan-cancers and ccRCC microenvironment. A, As the main regulator of glucose production in the 
liver, high G6PC active expression is found in liver and kidney tissues. G6PC expression is significantly higher in normal tissue compared 
with renal cell carcinoma (KIRC, KIRP, KICH), while significantly lower in normal samples compared with hepatocellular carcinoma and 
cholangiocarcinoma. B, Copy number alteration of G6PC significantly correlated with environmental immune cells infiltration level. Elevated 
arm-level deletion of G6PC leads to inferior B cell, CD8+ cells, CD4+ cells, macrophage, neutrophil, dendritic cells infiltration compared with 
normal samples (P < 0.05). C, G6PC significantly participates in abnormal immune infiltration of ccRCC cells and microenvironment, showing 
significantly negative association with check-point immune signatures, dendritic cells, Th1 cells, MHC class I, cytolytic activity, inflammation 
promotion, HLA, APC co-inhibition and co-stimulation activities (cor.<−0.7). D-G, GSEA indicated that G6PC significantly involved in 
several signal pathways, including bile acid metabolism, fatty acid metabolism, epithelial mesenchymal transition and E2F targets in ccRCC. 
ccRCC, clear cell renal cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; KICH, kidney 
Chromophobe; GSEA, gene set enrichment analysis

TA B L E  1   Immune cells infiltrations in relationship to G6PC expression

Description Gene markers

G6PC

None Purity

Cor P Cor P

CD8 + T cell CD8A −0.032 .468 −0.004 .94

CD8B −0.008 .862 0.022 .637

T cell (general) CD3D −0.081 .061 −0.052 .204

CD3E −0.067 .124 −0.037 .427

CD2 −0.071 .104 −0.042 .369

B cell CD19 −0.18 **** −0.151 **

CD79A −0.222 **** −0.209 ****

Monocyte CD86 −0.157 *** −0.142 **

CD115 (CSF1R) −0.146 *** −0.132 **

TAM CCL2 0.083 .054 0.108 *

CD68 −0.084 .054 −0.126 **

IL10 −0.109 * −0.087 .062

M1 Macrophage INOS (NOS2) 0.194 **** 0.216 ****

IRF5 −0.089 * −0.112 *

COX2 (PTGS2) −0.252 **** −0.212 ****

M2 Macrophage CD163 −0.092 * −0.095 *

VSIG4 −0.232 **** −0.234 ****

MS4A4A −0.136 ** −0.12 **

Neutrophils CD66b (CEACAM8) 0.064 .138 0.047 .311

CD11b (ITGAM) −0.093 * −0.085 .069

CCR7 −0.085 * −0.08 .087

Natural killer cell KIR2DL1 0.108 * 0.089 .055

KIR2DL3 0.087 * 0.065 .163

KIR2DL4 −0.057 .192 −0.053 .252

KIR3DL1 0.163 *** 0.137 **

KIR3DL2 0.094 * 0.077 .101

KIR3DL3 −0.052 .232 −0.051 .276

KIR2DS4 0.025 .567 0.02 .67

(Continues)
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storage disease type I (GSDI) is a rare hereditary pathology char-
acterized by glucose-6-phosphatase (G6Pase) deficiency. Monika 
Gjorgjieva et al found occurrence of ccRCC in mouse model with 
a kidney-specific G6Pase deficiency (K. G6pc-/- mice).42 It is not a 
unique instance, but has its counterpart. Cho Jun-Ho et al43 also 
claimed that G6PC could inhibit the occurrence of hepatic carci-
noma, which is compatible with our hypothesis. In view of the pos-
sible inhibitory effect on tumour cells of G6PC, it may shed light 
on the management of ccRCC.

Thus, our research has some limitations. The main thing is the 
retrospective design of this study. Multicenter prospective studies 
are needed to verify the conclusions. Also, we did not validate prog-
nostic specificity and sensitivity of MPMs in ccRCC patients from a 

real-world cohort; thus, we presented prognostic value of MPMs 
in CRTAC and validate role of G6PC in > 1000 ccRCC patients 
from TCGA, CPTAC, RECA-EU, HPA and FUSCC (validation cohort 
in China) cohorts. In addition, there is an urgent need for in vitro 
and in vivo experiments to explore potential effective functions of 
G6PC and reveal the underlying mechanisms.

5  | CONCLUSION

In conclusion, this study first provided the opportunity to com-
prehensively elucidate the prognostic MDEGs landscape, estab-
lished novel prognostic model MPMs using large-scale ccRCC 

Description Gene markers

G6PC

None Purity

Cor P Cor P

Dendritic cell HLA-DPB1 0.025 .572 0.038 .411

HLA-DQB1 0.073 .091 0.081 .082

HLA-DRA 0.022 .615 0.028 .553

HLA-DPA1 0.04 .355 0.062 .186

BDCA-1 (CD1C) 0.148 *** 0.185 ****

BDCA-4 (NRP1) 0.128 ** 0.136 **

CD11c (ITGAX) −0.125 ** −0.123 **

Th1 T-bet (TBX21) 0.076 .079 0.089 .057

STAT4 −0.108 * −0.108 *

STAT1 −0.061 .163 −0.048 .304

IFN-γ (IFNG) −0.089 * −0.078 .095

TNF-α (TNF) 0.008 .861 0.023 .623

Th2 GATA3 −0.173 **** −0.083 .073

STAT6 0.08 .066 0.056 .227

STAT5A −0.167 *** −0.151 **

IL13 −0.009 .844 −0.027 .565

Tfh BCL6 −0.198 **** −0.238 ****

IL21 −0.137 ** −0.13 **

Th17 STAT3 −0.091 * −0.081 .081

IL17A −0.044 .31 −0.022 .636

Treg FOXP3 −0.217 **** −0.212 ****

CCR8 −0.111 * −0.106 *

STAT5B 0.343 **** 0.325 ****

TGFβ (TGFB1) −0.325 **** −0.315 ****

T cell exhaustion PD-1 (PDCD1) −0.068 .116 −0.051 .273

CTLA4 −0.115 ** −0.102 *

LAG3 −0.115 ** −0.095 *

TIM-3 (HAVCR2) 0.173 **** 0.157 ***

GZMB −0.043 .319 −0.034 .46

* P< 0.05; ** P< 0.01; *** P< 0.001; **** P< 0.0001.

TA B L E  1   (Continued)
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transcriptome data and identified G6PC as potential prognostic tar-
gets in 1040 ccRCC patients from multiply cohorts. These finding 
could assist in managing risk assessment and shed valuable insights 
into treatment strategies of ccRCC.
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